RELIABILITY REPORT
FOR
MAX507xxxG
PLASTIC ENCAPSULATED DEVICES

May 15th, 2003

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by Reviewed by
Jim Pedicord Bryan J. Preeshl
Quality Assurance Quality Assurance
Reliability Lab Manager Executive Director
Conclusion

The MAX507 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information
IV.Die Information

I. Device Description

A. General

The MAX507 is a complete 12-bit, voltage-output digital-to-analog converter (DAC). The DAC output voltage and the reference have the same polarity, allowing single-supply operation. This DAC includes an internal buried-zener reference. Integrating a DAC, voltage-output amplifier, and reference on one monolithic device greatly enhances reliability over multi-chip circuits.

Double-buffered logic inputs interface easily to microprocessors (µPs). Data is transferred into the input register from a 12-bit-wide data bus for 16-bit µPs.

The DAC is specified and tested for both dual- and single-supply operation. Usable supplies range from single +12V to dual ±15V.

On-board gain-setting resistors allow three output-voltage ranges: 0V to +5V and 0V to +10V can be generated when using either single or dual supplies. With dual supplies, ±5V is also available. The output amplifier can drive a 2kΩ load to +10V.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD} to AGND</td>
<td>-0.3V, +17V</td>
</tr>
<tr>
<td>V_{DD} to DGND</td>
<td>-0.3V, +17V</td>
</tr>
<tr>
<td>V_{DD} to V_{SS}</td>
<td>-0.3V, +34V</td>
</tr>
<tr>
<td>AGND to DGND</td>
<td>-0.3V, V_{DD}</td>
</tr>
<tr>
<td>Digital Input Voltage to GND</td>
<td>-0.3V, V_{DD} +0.3V</td>
</tr>
<tr>
<td>V_{OUT} to AGND (Note 1)</td>
<td>V_{SS}, V_{DD}</td>
</tr>
<tr>
<td>V_{OUT} to V_{SS} (Note 1)</td>
<td>0V, +34V</td>
</tr>
<tr>
<td>V_{OUT} to V_{DD} (Note 1)</td>
<td>-34V, 0V</td>
</tr>
<tr>
<td>REFOUT to AGND (Note 1)</td>
<td>-0.3V, V_{DD} +0.3V</td>
</tr>
<tr>
<td>Storage Temp.</td>
<td>-65°C to +160°C</td>
</tr>
<tr>
<td>Lead Temp. (10 sec.)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>450mW</td>
</tr>
<tr>
<td>Derates above +75°C</td>
<td>6mW/°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td>1067mW</td>
</tr>
<tr>
<td>24-Pin Narrow PDIP</td>
<td>941mW</td>
</tr>
<tr>
<td>Derates above +70°C</td>
<td>13.3mW/°C</td>
</tr>
<tr>
<td>24-Pin WSO</td>
<td>11.8mW/°C</td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description/Function: Voltage-Output, 12-Bit DAC with Internal Reference

B. Process: SG5 (Standard 5 micron silicon gate CMOS)

C. Number of Device Transistors: 650

D. Fabrication Location: Oregon, USA

E. Assembly Location: Philippines or Malaysia

F. Date of Initial Production: January, 1992

III. Packaging Information

A. Package Type: 24-Lead Narrow PDIP 24-Lead WSO

B. Lead Frame: Copper Copper

C. Lead Finish: Solder Plate Solder Plate

D. Die Attach: Silver-filled Epoxy Silver-filled Epoxy

E. Bondwire: Gold (1.3 mil dia.) Gold (1.3 mil dia.)

F. Mold Material: Epoxy with silica filler Epoxy with silica filler

G. Assembly Diagram: # 05-0401-0123 # 05-0401-0118

H. Flammability Rating: Class UL94-V0 Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1 Level 1

IV. Die Information

A. Dimensions: 142x140 mils

B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 5 microns (as drawn)

F. Minimum Metal Spacing: 5 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO$_2$

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Jim Pedicord (Manager, Reliability Operations)
 Bryan Preeshl (Executive Director of QA)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[
 \lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4389 \times 577 \times 2} \quad \text{(Chi square value for MTTF upper limit)}
 \]

 Thermal acceleration factor assuming a 0.8eV activation energy

 \[
 \lambda = 1.88 \times 10^{-9} \quad \lambda = 1.88 \text{ F.I.T.} \quad (60\% \text{ confidence level } @ 25^\circ\text{C})
 \]

 This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure the reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on lots exceeding this level. The following Burn-In Schematic (Spec. # 06-2788) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

 Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

 The DA21 die type has been found to have all pins able to withstand a transient pulse of \(\pm1500V\), per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \(\pm50mA\).
Table 1
Reliability Evaluation Test Results

MAX507xxxG

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>PACKAGE</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 150°C Biased
Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>577</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Pressure Pot
Ta = 121°C
P = 15 psi.
RH= 100%
Time = 168hrs.</td>
<td>DC Parameters & functionality</td>
<td>WSO PDIP</td>
<td>77 77</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>85/85
Ta = 85°C
RH = 85%
Biased
Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle
-65°C/150°C
1000 Cycles
Method 1010</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic process/package data.
Attachment #1

TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Each pin individually connected to terminal A with the other floating)</td>
<td>(The common combination of all like-named pins connected to terminal B)</td>
</tr>
<tr>
<td>1.</td>
<td>All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2.</td>
<td>All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, $+V_{S}$, $-V_{S}$, V_{REF}, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.
24 SKINNY DIP
MX7245 or MAX507

VDD = 15V (I=12mA MAX)

P_d (max) = 255mW
T_{max} = 125°C

VSS = -15V (I=5mA MAX)

RESISTORS ARE 1/4W, 1%
BYPASS VDD AND VSS WITH 0.1uF EVERY 10 DEVICES

Steady state life test is per MIL-STD-883 Method 1005.
Burn-in is per MIL-STD-883 Method 1015. COND.

NOTES:
1. TEMPERATURE: +125 DEGREES C OR EQUIVALENT
2. TIME: 160 HOURS MIN. OR EQUIVALENT
3. PACKAGE TYPE:
4. MAX. SUPPLY CURRENT PER DEVICE:
5. C = C = 0.1 uf + 20%
6. R_1
7. BURN-IN BOARD MATERIAL & ALL COMPONENTS MUST
WITHSTAND +150° C CONTINUOUS OPERATION.