先頭に戻る

Fremont (MAXREFDES6#): 16-Bit, High-Accuracy, 0 to 100mV Input, Isolated Analog Front-End (AFE)

MAXREFDES6

リファレンスデザインの免責事項 参照:  重要なお知らせと免責事項  (リファレンスデザインおよびその他マキシムのリソース)

説明

Introduction


The compact Fremont (
MAXREFDES6#) subsystem reference design (Figure 1) accurately measures low voltage, 0 to 100mV, single-ended analog signals with a high-accuracy, 16-bit analog front end (AFE) complete with an isolated data path. The design optimizes the functions of an ultra-precision low-noise buffer (MAX9632); a highly accurateADC(MAX11100); an ultra-high-precision 4.096V voltage reference (MAX6126); a 600VRMS monolithic data isolator (MAX14850); and low-dropout (LDO) regulators providing regulated +6V, +5V, and -5V power rails (MAX1659 andMAX1735). This one-of-a-kind AFE solution works in many applications requiring low-voltage input, high impedance, and high-accuracy analog-to-digital conversion.Smart factories, industrial, and medical applications continue to utilize more sensors, of various configurations. While low-voltage sensors provide essential data, they also require/generate high signal-to-noise ratios, rendering many discrete and integrated analog-to-digital converters (ADCs) insufficient for these applications.

Figure 1. The Fremont subsystem design block diagram.
Figure 1. The Fremont subsystem design block diagram.

Features

Applications

  • High-accuracy analog input
  • High impedance
  • 0 to 100mV input range
  • Isolated data path
  • Small printed-circuit board (PCB) area
  • Device drivers
  • Example C source code
  • Pmod™-compatible form factor
  • Low-voltage output sensors
  • Process control
  • Medical

Competitive Advantages

  • Unique single-ended architecture
  • Optimized board size
  • Magnetically immune data path isolation

  • MAXREFDES6

    This 16-bit high-accuracy industrial analog input design is optimized to accept 0 to 100mV analog voltage inputs and provides a digital SPI output. The data path and power is fully isolated. The design features an ultra-precision low-noise buffer and 16 bit ADC. MAXREFDES6

  • maxrefdes6fig00

    maxrefdes6fig00

This 16-bit high-accuracy industrial analog input design is optimized to accept 0 to 100mV analog voltage inputs and provides a digital SPI output. The data path and power is fully isolated. The design features an ultra-precision low-noise buffer and 16 bit ADC.

Icon

設計、作成、試験済み

このボードは完全実装および試験済みです。

 

回路図

Bill Of Material

Nexys 3 Platform

ZedBoard Platform (Zynq-7000)

詳細セクション

詳細セクション


More detailed image
(JPG)

Introduction

Smart factories, industrial, and medical applications continue to utilize more sensors, of various configurations. While low-voltage sensors provide essential data, they also require/generate high signal-to-noise ratios, rendering many discrete and integrated analog-to-digital converters (ADCs) insufficient for these applications.

The compact Fremont (MAXREFDES6#) subsystem reference design (Figure 1) accurately measures low voltage, 0 to 100mV, single-ended analog signals with a high-accuracy, 16-bit analog front end (AFE) complete with an isolated data path. The design optimizes the functions of an ultra-precision low-noise buffer (MAX9632); a highly accurate ADC(MAX11100); an ultra-high-precision 4.096V voltage reference (MAX6126); a 600VRMS monolithic data isolator (MAX14850); and low-dropout (LDO) regulators providing regulated +6V, +5V, and -5V power rails (MAX1659 and MAX1735). This one-of-a-kind AFE solution works in many applications requiring low-voltage input, high impedance, and high-accuracy analog-to-digital conversion.

Figure 1. The Fremont subsystem design block diagram.
Figure 1. The Fremont subsystem design block diagram.

Features

Applications

  • High-accuracy analog input
  • High impedance
  • 0 to 100mV input range
  • Isolated data path
  • Small printed-circuit board (PCB) area
  • Device drivers
  • Example C source code
  • Pmod-compatible form factor
  • Low-voltage output sensors
  • Process control
  • Medical

 

Competitive Advantages

  • Unique single-ended architecture
  • Optimized board size
  • Magnetically immune data path isolation

Detailed Description of Hardware



Fremont interfaces with field-programmable gate array (FPGA) development boards using a Pmod connector. The Pmod specification allows for both 3.3V and 5V modules as well as various pin assignments. Fremont requires a 3.3V supply voltage and uses the SPI pin assignments as illustrated here.

Table 1 shows the power requirements. Table 2 shows the supported platforms and ports.

Table 1. Power Requirement for the Fremont Subsystem Reference Design

Power Type Input Input Voltage (V) Input Current (mA, typ)
External Power EXT_V+ 7 22
External Power EXT_V- -6 20

Table 2. Supported Platforms and Ports

Supported Platforms Ports
Nexys 3 platform (Spartan®-6) JB1
ZedBoard platform (Zynq®-7020) JA1

The MAX9632 (U1) op amp input circuit amplifies and buffers a 0 to100mV signal to match the input range of the ADC (MAX11100), which is 0 to 4.096V.

The MAX11100 (U2) is a 16-bit, successive-approximation register (SAR) ADC with AutoShutdown and fast 1.1µs wake-up features. The ADC’s reference input is driven by an ultra-high-precision 4.096V voltage reference, the MAX6126 (U3), with 0.02% initial accuracy and a 3ppm/°C maximum temperature coefficient (tempco).

The Fremont hardware design provides isolated data (MAX14850) for a high-accuracy, high-impedance, 0 to 100mV signal, analog-to-digital conversion application.

External power supplies power the Fremont board prior to voltage regulation. The MAX1659 LDO regulator provides +6V and +5V rails and the MAX1735 LDO regulator provides the -5V rail. The MAX14850 (U5) isolates the digital data up to 600V.

To power the Fremont board, connect the ground terminal of the external power supplies to the GND2 connector. Connect the +7V to +16.5V supply to the EXT_V+ connector, and the -6V supply to the EXT_V- connector.

 

Detailed Description of Firmware for Nexys 3 Platform

Table 2 shows currently supported platforms and ports. Support for additional platforms may be added periodically under Firmware Files in the All Design Files section below.

The Fremont firmware released for the Nexys 3 development kit targets a Microblaze soft-core microcontroller placed inside a Xilinx® Spartan-6 FPGA.

The firmware allows for immediate interfacing to the hardware, and for collection and saving of samples. Figure 2a shows the simple process flow. The firmware is in C, developed using the Xilinx software development kit (SDK) tool, based on the Eclipse open source standard. Custom Fremont-specific design functions (driver in the maximDeviceSpecificUtilities.c file) were created utilizing the standard Xilinx XSpi core version 3.03a. The SPI clock frequency is set to 3.125MHz.

Figure 2a. The Fremont firmware flowchart for Nexys 3 platform.
Figure 2a. The Fremont firmware flowchart for Nexys 3 platform.

The firmware accepts commands, writes status, and can download blocks of sampled data to a standard terminal program over a virtual COM port. The complete source code speeds customer development. Code documentation resides in the corresponding firmware platform files.

 

Detailed Description of Firmware for ZedBoard Platform

The Fremont firmware design also supports the ZedBoard kit and targets an ARM® Cortex® -A9 processor placed inside a Xilinx Zynq system-on-chip (SoC).

The firmware features an AXI MAX11100 custom IP core to optimize the sampling rate and SPI timing stability.

The firmware allows for immediate interfacing to the hardware, for collection and saving of samples. Figure 2b shows the simple process flow. The firmware is in C, developed using the Xilinx SDK tool, based on the Eclipse open source standard. Custom Fremont-specific design functions (driver in the maximDeviceSpecificUtilities.c file) were created utilizing the AXI MAX11100 custom IP core. The SPI clock frequency is 4.54MHz when the sample rate is 189.4ksps. The SPI clock frequency is set to 2.5MHz for all other sampling rate.

Figure 2b. The Fremont firmware flowchart ZedBoard platform.
Figure 2b. The Fremont firmware flowchart ZedBoard platform.

The firmware accepts commands, writes status, and can download blocks of sampled data to a standard terminal program over a virtual COM port. The complete source code speeds customer development. Code documentation resides in the corresponding firmware platform files.

 

Quick Start

Required equipment:

  • Windows® PC with two USB ports
  • Fremont (MAXREFDES6#) board
  • Fremont-supported platform (i.e., Nexys 3 development kit or ZedBoard kit)
  • Industrial sensor or signal source

Download, read, and carefully follow each step in the appropriate Fremont Quick Start Guide:
Fremont (MAXREFDES6#) Nexys 3 Quick Start Guide
Fremont (MAXREFDES6#) ZedBoard Quick Start Guide

Lab Measurements

Equipment:

  • HP 33120A waveform generator
  • Voltage calibrator DVC-8500
  • Windows PC with two USB ports
  • Fremont (MAXREFDES6#) board
  • Nexys 3 development kit
  • +7V power supply
  • -6V power supply

Take special care and use proper equipment when testing the Fremont design. Any high-accuracy design requires sources and measurement equipment of higher accuracy than the design under test. Duplication of the presented test data requires a low distortion signal source. A HP 33120A function generator produced the input signal, and the FFTs were created using the FFT control in SignalLab from Mitov Software.

Figure 3 and Figure 4 show AC and DC performance.

Figure 3. AC FFT using on-board isolated power, a 0 to 100mV, 1kHz sine-wave input signal, high-impedance input, a 20ksps sample rate, and a Blackman-Harris window.
Figure 3. AC FFT using on-board isolated power, a 0 to 100mV, 1kHz sine-wave input signal, high-impedance input, a 20ksps sample rate, and a Blackman-Harris window.


Figure 4. DC histogram using on-board isolated power; a 50mV input signal; a 20ksps sample rate; 65,536 samples; a code spread of 19 LSBs with 95.7% of the codes falling within the nine center LSBs; and a standard deviation of 2.236.

ARM is a registered trademark and registered service mark of ARM Limited.
AutoShutdown is a trademark of Maxim Integrated Products, Inc.
Cortex is a registered trademark of ARM Limited.
Eclipse is a trademark of Eclipse Foundation, Inc.
MicroBlaze is a trademark of Xilinx, Inc.
Nexys is a trademark of Digilent Inc.
Pmod is a trademark of Digilent Inc.
Spartan is a registered trademark of Xilinx, Inc.
Windows is a registered trademark and registered service mark of Microsoft Corporation.
Xilinx is a registered trademark and registered service mark of Xilinx, Inc.
ZedBoard is a trademark of ZedBoard.org.
Zynq is a registered trademark of Xilinx, Inc.

パラメトリック

入力タイプ Vin(Min) Vin(Max) Iout(Max) シングル/マルチ出力 Vout(V) Pout(W) 絶縁型/非絶縁型 トポロジ
DC - - - - - - Non-Isolated -

パラメトリック

入力タイプ DC
Vin(Min) -
Vin(Max) -
Iout(Max) -
シングル/マルチ出力 -
Vout(V) -
Pout(W) -
絶縁型/非絶縁型 Non-Isolated
トポロジ -

マキシムデバイス (5)

型番 名称 製品ファミリ 注文 設計キットおよび評価モジュール
MAX1735 200mA、負出力、低ドロップアウトリニアレギュレータ、SOT23 低ドロップアウトリニアレギュレータ(LDO) 今すぐ購入 Design Kits
MAX1659 350mA、16.5V入力、低ドロップアウトリニアレギュレータ 低ドロップアウトリニアレギュレータ(LDO) 今すぐ購入 Design Kits
MAX11100 16ビット、+5V、200ksps ADC、10µAシャットダウン アナログ-デジタルコンバータ 今すぐ購入 Design Kits
MAX9632 36V、高精度、低ノイズ、高帯域アンプ アンプ 今すぐ購入 Design Kits
MAX14850 6チャネルデジタルアイソレータ アイソレーション 今すぐ購入 Design Kits

マキシムデバイス (5)

型番 製品ファミリ
低ドロップアウトリニアレギュレータ(LDO)
200mA、負出力、低ドロップアウトリニアレギュレータ、SOT23
低ドロップアウトリニアレギュレータ(LDO)
350mA、16.5V入力、低ドロップアウトリニアレギュレータ
アナログ-デジタルコンバータ
16ビット、+5V、200ksps ADC、10µAシャットダウン
アンプ
36V、高精度、低ノイズ、高帯域アンプ
アイソレーション
6チャネルデジタルアイソレータ

設計ファイル (11)

タイトル 種類 サイズ 日付
maxrefdes6-cad-ra ZIP 160KB 2017-11-01
maxrefdes6_cad_rb ZIP 159KB 2017-11-01
rd6v01_00 ZIP 42MB 2017-11-01
CAM output PDF 151KB 2017-11-01
MAXREFDES6BMA.xls PDF 11KB 2017-11-03
MAXREFDES6BMA.xls PDF 11KB 2019-07-09
CAM output PDF 151KB 2019-07-09
maxrefdes6-cad-rb ZIP 159KB 2019-07-09
rd6_nexys3_v01_00 ZIP 29MB 2019-07-09
rd6_zed_v01_00 ZIP 12MB 2019-07-09
rd6v02_00 ZIP 42MB 2019-07-09
日付 種類
2017-11-01

maxrefdes6-cad-ra

(ZIP, 160KB)

2017-11-01

maxrefdes6_cad_rb

(ZIP, 159KB)

2017-11-01

rd6v01_00

(ZIP, 42MB)

2017-11-01

CAM output

(PDF, 151KB)

2017-11-03

MAXREFDES6BMA.xls

(PDF, 11KB)

2019-07-09

MAXREFDES6BMA.xls

(PDF, 11KB)

2019-07-09

CAM output

(PDF, 151KB)

2019-07-09

maxrefdes6-cad-rb

(ZIP, 159KB)

2019-07-09

rd6_nexys3_v01_00

(ZIP, 29MB)

2019-07-09

rd6_zed_v01_00

(ZIP, 12MB)

2019-07-09

rd6v02_00

(ZIP, 42MB)

MAXREFDES6 関連ビデオ

全ビデオを見る