PRODUCT RELIABILITY REPORT
FOR

MAXQ1850, Rev B2

Maxim Integrated Products

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Don Lipps
Manager, Reliability Engineering
Maxim Integrated Products
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email: don.lipps@maxim-ic.com
ph: 972-371-3739
fax: 972-371-6016
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim products:

MAXQ1850, Rev B2

In addition, Maxim's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maxim-ic.com/TechSupport/dsreliability.html.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[AfT = \exp((Ea/k)*(1/Tu - 1/Ts)) = tu/ts \]

\(AfT \) = Acceleration factor due to Temperature
\(tu \) = Time at use temperature (e.g. 55°C)
\(ts \) = Time at stress temperature (e.g. 125°C)
\(k \) = Boltzmann's Constant (8.617 x 10^-5 eV/°K)
\(Tu \) = Temperature at Use (°K)
\(Ts \) = Temperature at Stress (°K)
\(Ea \) = Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[AfV = \exp(B*(Vs - Vu)) \]

\(AfV \) = Acceleration factor due to Voltage
\(Vs \) = Stress Voltage (e.g. 7.0 volts)
\(Vu \) = Maximum Operating Voltage (e.g. 5.5 volts)
\(B \) = Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, \(B \), related to the failure mechanism is derived from either internal studies or industry accepted standards, or a \(B \) of 1.0 will be used whenever actual failure mechanisms or their \(B \) are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, \(Fr \), is related to the acceleration during life test by:

\[Fr = X/(ts * AfV * AfT * N * 2) \]

\(X \) = Chi-Sq statistical upper limit
\(N \) = Life test sample size

Rev B, 1/3/08
The calculated failure rate for this device/process is:

\[\text{FAILURE RATE: } \quad \text{MTTF (YRS): } 34006 \quad \text{FITS: } 3.4 \]

\[\text{DEVICE HOURS: } 272952563 \quad \text{FAILS: } 0 \]

Only data from Operating Life or similar stresses are used for this calculation.

The parameters used to calculate this failure rate are as follows:

- \(C_f: 60\% \)
- \(E_a: 0.7 \)
- \(B: 0 \)
- \(T_u: 25°C \)
- \(V_u: 3.6 \) Volts

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:
- **Process:** TSMC 0.18um Mixed signal, Embedded Flash, General Purpose, Two Poly Five Metal, 1.8V/3.3V Polymide - No
- **Passivation:** SiO/SiN
- **Die Size:** 166 x 166
- **Number of Transistors:** 3660434
- **Interconnect:** Aluminum / 0.5% Copper
- **Gate Oxide Thickness:** 32 Å

<table>
<thead>
<tr>
<th>ESD HBM</th>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD22-A114 HBM 500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD22-A114 HBM 1000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD22-A114 HBM 2000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD22-A114 HBM 4000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD22-A114 HBM 8000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td>No FA</td>
</tr>
</tbody>
</table>

Total: 3

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD78A, I-TEST 125C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP V</td>
<td>0852 MAXQ1850</td>
<td>QJO91074AA JESD78A, V-SUPPLY TEST 125C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
</table>

Rev B, 1/3/08

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[\text{MTTF} = \frac{1}{\text{FITS}} \]

NOTE: MTTF is frequently used interchangeably with MTBF.
HIGH TEMP OP LIFE	0831	DS33M33	QG095632A	125C, 2.0V (PSB) & 3.5V (PSA)	1000 HRS	45	0
HIGH TEMP OP LIFE	0842	DS3102	QX085545AD	125C, 3.5V (PSA) & 2.0V (PSB)	1000 HRS	45	0
HIGH TEMP OP LIFE	0842	DS3104	QX085545AF	125C, 3.5V (PSA) & 2.0V (PSB)	1000 HRS	25	0
HIGH TEMP OP LIFE	0843	DS3102	QX085545AE	125C, 3.5V (PSA) & 2.0V (PSB)	1000 HRS	25	0
HIGH TEMP OP LIFE	0848	DS34T102	QX096583AC	125C, 2.0V (PSB) & 3.5V (PSA)	1000 HRS	45	0
HIGH TEMP OP LIFE	0848	DS34T102	QX096583AD	125C, 2.0V (PSB) & 3.5V (PSA)	1000 HRS	45	0
HIGH TEMP OP LIFE	0848	DS34T101	QX096583AB	125C, 2.0V (PSB) & 3.5V (PSA)	1000 HRS	45	0
HIGH TEMP OP LIFE	0852	MAXQ1850	QJ091074AA	125C, 3.6 VOLTS	192 HRS	75	0

Total:

- FAILURE RATE: 0
- MTTF (YRS): 34006
- FITS: 3.4
- DEVICE HOURS: 272952563
- FAILS: 0