RELIABILITY REPORT
FOR
MAX9939AUB+
PLASTIC ENCAPSULATED DEVICES

October 11, 2010

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Don Lipps
Quality Assurance
Manager, Reliability Engineering
Conclusion

The MAX9939AUB+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I. Device Description V. Quality Assurance Information
II. Manufacturing Information VI. Reliability Evaluation
III. Packaging Information IV. Die Information
 Attachments

I. Device Description

A. General

The MAX9939 is a general-purpose, differential-input programmable-gain amplifier (PGA) that is ideal for conditioning a variety of wide dynamic range signals such as those found in motor current-sense, medical instrumentation, and sonar data acquisition applications. It features SPI(tm)-programmable differential gains from 0.2V/V to 157V/V, input offset-voltage compensation, and an output amplifier that can be configured either as a high-order active filter or to provide a differential output. The PGA is optimized for high-signal bandwidth and its gain can be programmed to be 0.2V/V, 1V/V, 10V/V, 20V/V, 30V/V, 40V/V, 60V/V, 80V/V, 119V/V, and 157V/V. Precision resistor matching provides extremely low gain tempco and high CMRR. Although the MAX9939 operates from a single supply VCC between 2.9V to 5.5V, it can process signals both above and below ground due to the use of an input level-shifting amplifier stage. Furthermore, its inputs are protected to ±16V, allowing it to withstand fault conditions and signal overranges. The output amplifier is designed for high bandwidth and low-bias currents, making it ideal for use in multiple-feedback active filter topologies that offer much higher Qs and stopband attenuation than Sallen-Key architectures. The MAX9939 draws 3.4mA of quiescent supply current at 5V, and includes a software-programmable shutdown mode that reduces its supply current to only 13µA. The MAX9939 is available in a 10-pin µMAX® package and operates over the -40°C to +125°C automotive temperature range.
II. Manufacturing Information

A. Description/Function: SPI-Programmable Gain Amplifier (PGA) with Input V_{OS} Trim and Output Op Amp

B. Process: B8

C. Number of Device Transistors: 1472

D. Fabrication Location: Oregon

E. Assembly Location: Thailand

F. Date of Initial Production: October 25, 2008

III. Packaging Information

A. Package Type: 10-pin uMAX

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive

E. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-3277

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1

J. Single Layer Theta Ja: 180°C/W

 Single Layer Theta Jc: 41.9°C/W

L. Multi Layer Theta Ja: 113.1°C/W

M. Multi Layer Theta Jc: 41.9°C/W

IV. Die Information

A. Dimensions: 55 X 52 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.8 microns (as drawn)

F. Minimum Metal Spacing: 0.8 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = 1.83$$
(Chi square value for MTTF upper limit)

$$\text{MTTF} = \frac{192 \times 4340 \times 48 \times 2}{4340} = 48 \times 48$$
(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 22.9 \times 10^{-9}$$

$$\chi = 22.9 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.06 @ 25°C and 0.99 @ 55°C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot TPLZBQ001A, D/C 0827)

The OY30 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500C per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C</td>
<td>DC Parameters</td>
<td>48</td>
<td>0</td>
<td>TPLZBQ001A, D/C 0827</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.