RELIABILITY REPORT
FOR
MAX9113ExA
PLASTIC ENCAPSULATED DEVICES

March 5, 2003

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by Reviewed by
Jim Pedicord Bryan J. Preeshl
Quality Assurance Quality Assurance
Reliability Lab Manager Executive Director
Conclusion

The MAX9113 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

<table>
<thead>
<tr>
<th>I.</th>
<th>Device Description</th>
<th>V.</th>
<th>Quality Assurance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.</td>
<td>Manufacturing Information</td>
<td>VI.</td>
<td>Reliability Evaluation</td>
</tr>
<tr>
<td>III.</td>
<td>Packaging Information</td>
<td>IV.</td>
<td>Die Information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attachments</td>
</tr>
</tbody>
</table>

I. Device Description

A. General

The MAX9113 dual low-voltage differential signaling (LVDS) receivers is designed for high-speed applications requiring minimum power consumption, space, and noise. The device supports switching rates exceeding 500Mbps while operating from a single +3.3V supply, and features ultra-low 300ps (max) pulse skew required for high-resolution imaging applications such as laser printers and digital copiers.

The device conforms to the EIA/TIA-644 LVDS standard and converts LVDS to LVTTL/CMOS-compatible outputs. A fail-safe feature sets the outputs high when the inputs are undriven and open, terminated, or shorted. The MAX9113 is available in space-saving 8-pin SOT23 and SO packages.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC to GND</td>
<td>-0.3V to +4V</td>
</tr>
<tr>
<td>IN_+ to GND</td>
<td>-0.3V to +3.9V</td>
</tr>
<tr>
<td>OUT_+ to GND</td>
<td>-0.3V to (VCC + 0.3V)</td>
</tr>
<tr>
<td>ESD Protection (Human Body Model, IN_+, IN_-)</td>
<td>±11kV</td>
</tr>
<tr>
<td>Operating Temperature Ranges</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td>602mW</td>
</tr>
<tr>
<td>8-Pin SOT23</td>
<td>471mW</td>
</tr>
<tr>
<td>Derates above +70°C</td>
<td></td>
</tr>
<tr>
<td>8-Pin SOT23</td>
<td>7.52mW/°C</td>
</tr>
<tr>
<td>8-Pin SO</td>
<td>5.88mW/°C</td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description/Function: Dual LVDS Line Drivers with Ultra-Low Pulse Skew in SOT23

B. Process: TC35

C. Number of Device Transistors: 675

D. Fabrication Location: Taiwan

E. Assembly Location: Philippines, Malaysia or Thailand

F. Date of Initial Production: July, 2000

III. Packaging Information

A. Package Type:
 - 8-Pin SO
 - 8-Pin SOT23

B. Lead Frame: Copper
 Copper

C. Lead Finish: Solder Plate
 Solder Plate

D. Die Attach: Silver-filled Epoxy
 Silver-filled Epoxy

E. Bondwire: Gold (1 mil dia.)
 Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler
 Epoxy with silica filler

G. Assembly Diagram:
 - # 05-2801-0005
 - # 05-2801-0006

H. Flammability Rating:
 - Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard JESD22-112:
 - Level 1
 - Level 1

IV. Die Information

A. Dimensions: 30 x 45 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width:
 - Metal1 = 0.5
 - Metal2 = 0.6
 - Metal3 = 0.6 microns (as drawn)

F. Minimum Metal Spacing:
 - Metal1 = 0.45
 - Metal2 = 0.5
 - Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)
 Bryan Preeshl (Executive Director)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:
 $$\lambda = \frac{1}{\text{MTTF}} = \frac{4.04}{192 \times 4389 \times 79 \times 2}$$
 (Chi square value for MTTF upper limit)
 Temperature Acceleration factor assuming an activation energy of 0.8eV
 $$\lambda = 30.35 \times 10^{-9}$$
 $$\lambda = 30.35 \text{ F.I.T.} \ (60\% \text{ confidence level @ } 25\degree \text{C})$$

 This low failure rate represents data collected from Maxim’s reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-5608) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

 Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

 The HS02 die type has been found to have all pins able to withstand a transient pulse of ±1500V per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA and/or ±20V.
Table 1
Reliability Evaluation Test Results

MAX9113ExA

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>PACKAGE</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>(T_a = 135^\circ C)</td>
<td>DC Parameters & functionality</td>
<td>79</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>(T_a = 121^\circ C)</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pressure Pot</td>
<td>(P = 15) psi.</td>
<td></td>
<td>SO</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH= 100%</td>
<td></td>
<td>SOT23</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85/85</td>
<td>(T_a = 85^\circ C)</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>(-65^\circ C/150^\circ C)</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>1000 Cycles Method 1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data
TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2</td>
<td>All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, +V_{S}, -V_{S}, V_{REF}, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.
NOTE: CAVITY DOWN

BONDABLE AREA

PKG. CODE: K8-1
CAV./PAD SIZE: 50x34
Devices: MAX 9111/9113/9171/9172
MAX. EXPECTED CURRENT = 3.3 V
supply = 20 mA; 1.2 V supply = 15 uA

NOTES:
- ONCE PER SOCKET
- ONCE PER BOARD

200 KHZ, 1.0 to 1.4 VOLTS; 50% DUTY CYCLE

CLOCK

+1.2 VOLTS 15 uA

+3.3 VOLTS

50 OHMS

15 pF

1 uF

0.01 uF

8 PIN

NSO

R IN 1-

VCC

8

R IN 1+

Ro 1

7

R IN 2+

Ro 2

6

R IN 2-

GND

5

20 mA

Ro 1

Ro 2

5 OHMS

50 OHMS