RELIABILITY REPORT

FOR

MAX8882EUT

PLASTIC ENCAPSULATED DEVICES

November 25, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by
Jim Pedicord
Quality Assurance
Reliability Lab Manager

Reviewed by
Bryan J. Preeshl
Quality Assurance
Executive Director
Conclusion

The MAX8882 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX8882 dual, low-noise, low-dropout linear regulator operates from a +2.5V to +6.5V input and delivers up to 160mA each of continuous current. The device offers low output noise and low dropout of only 72mV at 80mA. Designed with an internal P-channel MOSFET pass transistor, the MAX8882 maintains a low 165µA supply current (both LDOs on), independent of the load current and dropout voltage. Other features include short-circuit protection and thermal-shutdown protection. The MAX8882 has a single shutdown input and provides an external reference bypass pin to improve noise performance. The MAX8882 is both available in a miniature 6-pin SOT23 package.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN, SHDN , SHDNA , SHDNB , BP to GND</td>
<td>-0.3V to +7.0V</td>
</tr>
<tr>
<td>OUTA, OUTB to GND</td>
<td>-0.3V to (VIN + 0.3V)</td>
</tr>
<tr>
<td>Output Short-Circuit Duration</td>
<td>Continuous</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td>6 Lead SOT-23 695mW</td>
</tr>
<tr>
<td>Derates above +70°C</td>
<td>6 Lead SOT-23 8.7mW/°C</td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description/Function: Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators
B. Process: S8
C. Number of Device Transistors: 493
D. Fabrication Location: California, USA
E. Assembly Location: Philippines
F. Date of Initial Production: October, 2000

III. Packaging Information

A. Package Type: 6 Lead SOT-23
B. Lead Frame: Copper
C. Lead Finish: Solder Plate
D. Die Attach: Non-Conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: Buildsheet # 05-2301-0061
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions: 60 x 41 mils
B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Aluminum/Copper/Si
D. Backside Metallization: None
E. Minimum Metal Width: .8 microns (as drawn)
F. Minimum Metal Spacing: .8 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO$_2$
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)
 Bryan Preeshl (Executive Director of QA)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4389 \times 158 \times 2}$$

(Chi square value for MTTF upper limit)

Temperature Acceleration factor assuming an activation energy of 0.8eV

$$\lambda = 6.87 \times 10^{-9}$$

$\lambda = 6.87$ F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim’s reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The attached Burn-In Schematic (Spec. # 06-5616) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

The PY66 die type has been found to have all pins able to withstand a transient pulse of ±1500V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA.
Table 1
Reliability Evaluation Test Results

MAX8882EUT

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Pressure Pot Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>85/85</td>
<td>Ta = 85°C RH = 85% Biased Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle -65°C/150°C 1000 Cycles Method 1010</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic package/process data.
TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th>Terminal A (Each pin individually connected to terminal A with the other floating)</th>
<th>Terminal B (The common combination of all like-named pins connected to terminal B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2. All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, $+V_{S}$, $-V_{S}$, V_{REF}, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

![Circuit Diagram](image-url)

TERMINAL A

TERMINAL B

TERMINAL C

TERMINAL D

R = 1.5kΩ
C = 100pf

REGULATED HIGH VOLTAGE SUPPLY

DUT SOCKET

SHORT

CURRENT PROBE (NOTE 6)

Mil Std 883D
Method 3015.7
Notice 8
NOTE: USE NON-CONDUCTIVE EPOXY ONLY

BONDABLE AREA

PKG. CODE: U6S-3
CAV./PAD SIZE: 64 x 46

SIGNATURES | DATE

MAXIM
CONFIDENTIAL & PROPRIETARY

BOND DIAGRAM #: 05-2301-0061
REV: A