RELIABILITY REPORT
FOR
MAX8822ETE+
PLASTIC ENCAPSULATED DEVICES

June 2, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering
Conclusion

The MAX8822ETE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information IV.Die Information
 Attachments

I. Device Description

A. General

The MAX8822 drives up to four white light-emitting diodes (LEDs) with regulated constant current for display backlighting in cell phones, digital cameras, PDAs, and other handheld devices. By utilizing a proprietary negative 0.5x inverting charge pump and innovative independent low-dropout (LDO) adaptive current regulators, very high efficiency is achieved over the full 1-cell Li+ battery voltage range, even with large LED VF mismatch. The 1MHz fixed-frequency switching allows for tiny external components. The regulation scheme is optimized to ensure low EMI and low input ripple. Two 200mA, low-noise, high power-supply-rejection-ratio (PSRR) LDOs with programmable output voltages are included on-chip to provide power to camera modules or other devices. The MAX8822 features a single-wire, serial-pulse control-logic interface that programs LED current and the output voltages of the LDOs. The LED dimming range is pseudo-logarithmic from 24mA to 0.1mA in 31 steps. LDO output voltages are programmable in 16 different combinations to meet various camera module requirements. The MAX8822 includes soft-start, thermal shutdown, open- and short-circuit protection.
II. Manufacturing Information

A. Description/Function: Ultra-Efficient Negative Charge-Pump LED Driver with Dual LDOs in 3mm x 3mm Thin QFN

B. Process: S45ST

C. Number of Device Transistors:

D. Fabrication Location: Texas

E. Assembly Location: UTL Thailand

F. Date of Initial Production: October 27, 2007

III. Packaging Information

A. Package Type: 16-pin TQFN 3x3

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive Epoxy

E. Bondwire: Gold (1.3 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-2786

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1

J. Multi Layer Theta Ja: 68°C/W

K. Multi Layer Theta Jc: 10°C/W

IV. Die Information

A. Dimensions: 70 X 70 mils

B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/0.5% Cu

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)

F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO2

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Ken Wendel (Director, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$
\frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 77 \times 2}
$$

(Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$
\lambda = 13.9 \times 10^{-9}
$$

$$
\lambda = 13.9 \text{ F.I.T. (60% confidence level @ 25°C)}
$$

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S45ST Process results in a FIT Rate of 2.33 @ 25C and 28.16 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PP96 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA, 1.5x VCCMax Overvoltage per JESD78.
<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
</table>
| **Static Life Test** (Note 1) | Ta = 135°C
Biased
Time = 192 hrs. | DC Parameters & functionality | 77 | 0 |
| **Moisture Testing** (Note 2) | 85/85
Ta = 85°C
RH = 85%
Biased
Time = 1000hrs. | DC Parameters & functionality | 77 | 0 |
| **Mechanical Stress** (Note 2) | Temperature -65°C/150°C
Cycle 1000 Cycles
Method 1010 | DC Parameters & functionality | 77 | 0 |

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data