RELIABILITY REPORT
FOR
MAX856ESA+
(MAX856-MAX859)
PLASTIC ENCAPSULATED DEVICES

January 30, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Wendel</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td></td>
<td>Director, Reliability Engineering</td>
</tr>
</tbody>
</table>
Conclusion

The MAX856ESA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I. Device Description
 A. General

II. Manufacturing Information

III. Packaging Information

IV. Die Information

V. Quality Assurance Information

VI. Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX856-MAX859 are high-efficiency, CMOS, step-up, DC-DC switching regulators for small, low input voltage or battery-powered systems. The MAX856/MAX858 accept a positive input voltage between 0.8V and VOUT and convert it to a higher, pin-selectable output voltage of 3.3V or 5V. The MAX857/MAX859 adjustable versions accept 0.8V to 6.0V input voltages and generate higher adjustable output voltages in the 2.7V to 6.0V range. Typical efficiencies are greater than 85%. Typical quiescent supply current is 25µA (1µA in shutdown). The MAX856-MAX859 combine ultra-low quiescent supply current and high efficiency to give maximum battery life. An internal MOSFET power transistor permits high switching frequencies. This benefit, combined with internally set peak inductor current limits, permits the use of small, low-cost inductors. The MAX856/MAX857 have a 500mA peak inductor current limit. The MAX858/MAX859 have a 125mA peak inductor current limit.
II. Manufacturing Information

A. Description/Function: 3.3V/5V or Adjustable Output, Step-Up DC-DC Converters
B. Process: S3
C. Number of Device Transistors:
D. Fabrication Location: Oregon
E. Assembly Location: Unisem Malaysia, ATP Philippines, UTL Thailand, Carsem Malaysia
F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 8-pin SOIC (N)
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-1701-0171
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: 170°C/W
K. Single Layer Theta Jc: 40°C/W
L. Multi Layer Theta Ja: 132°C/W
M. Multi Layer Theta Jc: 38°C/W

IV. Die Information

A. Dimensions: 58 X 83 mils
B. Passivation: $\text{Si}_3\text{N}_4/\text{SiO}_2$ (Silicon nitride/ Silicon dioxide
C. Interconnect: Aluminum/Si (Si = 1%)
D. Backside Metallization: None
E. Minimum Metal Width: 3.0 microns (as drawn)
F. Minimum Metal Spacing: 3.0 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO_2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

\[\chi = \frac{1}{MTTF} = \frac{1.83}{192 \times 4340 \times 1120 \times 2} \] (Chi square value for MTTF upper limit)

(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of } 0.8eV)

\[\chi = 2.1 \times 10^{-9} \]

\[\lambda = 2.1 \text{ F.I.T. (60% confidence level @ 25°C)} \]

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maximic.com/. Current monitor data for the S3 Process results in a FIT Rate of 2.1 @ 25°C and 36.6 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PW44 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C, Biased, Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>1120</td>
<td>1</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 85°C, RH = 85%, Biased, Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle Method -65°C/150°C 1000 Cycles 1010</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data