RELIABILITY REPORT
FOR
MAX8553EEE+
PLASTIC ENCAPSULATED DEVICES

June 15, 2010

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don Lipps</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Manager, Reliability</td>
</tr>
<tr>
<td>Engineering</td>
</tr>
</tbody>
</table>
Conclusion

The MAX8553EEE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description V. Quality Assurance Information
II. Manufacturing Information VI. Reliability Evaluation
III. Packaging Information IV. Die Information

I. Device Description

A. General

The MAX8553 is a 4.5V to 28V input-voltage, synchronous step-down controller that provides a complete power-management solution for DDR memory. The MAX8553 generates 1/2 VREFIN voltage for VTT and VTTR. The VTT and VTTR tracking voltages are maintained within 1% of 1/2 VREFIN. The MAX8554 is a 4.5V to 28V input-voltage, nontracking step-down controller with a low 0.6V feedback threshold voltage. The MAX8553/MAX8554 use Maxim’s proprietary Quick-PWM(tm) architecture for fast transient response and operate with selectable pseudo-fixed frequencies. Both controllers can operate without an external bias supply. The controllers operate in synchronous-rectification mode to ensure balanced current sourcing and sinking capability of up to 25A. The MAX8553/MAX8554 also provide up to 95% efficiency, making them ideal for server and point-of-load applications. Additionally, a low 5μA shutdown current allows for longer battery life in notebook applications. Lossless current monitoring is achieved by monitoring the low-side MOSFET's drain-to-source voltage. The MAX8553/MAX8554 have an adjustable foldback current limit to withstand a continuous output overload and short circuit. Digital soft-start provides control of inrush current during power-up. Overvoltage protection shuts the converter down and discharges the output capacitor. The MAX8553/MAX8554 come in space-saving 16-pin QSOP packages.
II. Manufacturing Information

A. Description/Function: 4.5V to 28V Input, Synchronous PWM Buck Controllers for DDR Termination and Point-of-Load Applications

B. Process: B12

C. Number of Device Transistors:

D. Fabrication Location: Oregon, California or Texas

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: October 25, 2003

III. Packaging Information

A. Package Type: 16-pin QSOP

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive

E. Bondwire: Au (1.3 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-0716

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C

 Level 1

J. Single Layer Theta Ja: 120°C/W

K. Single Layer Theta Jc: 37°C/W

L. Multi Layer Theta Ja: 103.7°C/W

M. Multi Layer Theta Jc: 37°C/W

IV. Die Information

A. Dimensions: 84 X 116 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)

F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \)) is calculated as follows:

 \[
 \lambda = \frac{1}{192 \times 4340 \times 48 \times 2} \times 1.83
 \]

 (Chi square value for MTTF upper limit)

 \[
 \lambda = 22.9 \times 10^{-9}
 \]

 \(\lambda = 22.9 \text{ F.I.T.} \) (60% confidence level @ 25°C)

 The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B12 Process results in a FIT Rate of 0.06 @ 25°C and 1.06 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

 The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

 The PN15 die type has been found to have all pins able to withstand a HBM transient pulse of +/-200V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>(Note 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ta = 135°C Biased</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing</td>
<td>(Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAST</td>
<td>Ta = 130°C RH = 85% Biased</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Time = 96hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress</td>
<td>(Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>-65°C/150°C 1000 Cycles</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data