RELIABILITY REPORT
FOR
MAX77801EWP+T
WAFER LEVEL DEVICE

October 2, 2015

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by

| Eric Wright |
| Quality Assurance |
| Reliability Engineer |
Conclusion

The MAX77801EWP+T successfully met the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
.....Attachments

I. Device Description

A. General

The MAX77801 is a high-current, high-efficiency buck-boost targeted to mobile applications that use a Li-ion battery or similar chemistries. The MAX77801 utilizes a four-switch H-bridge configuration to support buck and boost operating modes. Buck-boost provides 2.60V to 4.1875V of output voltage range and up to 2A output current.

A unique control algorithm allows high efficiency, outstanding performances in line/load transient response, and seamless transition between buck and boost modes.

DVS (dynamic voltage scaling) input allows the host processor to switch between two preprogrammed output voltages. This feature minimizes power loss for given load conditions. The ramp-up and ramp-down slew rates are programmable through I²C.

The MAX77801 features I²C-compatible, 2-wire serial interface consisting of a bidirectional serial-data line (SDA) and a serial-clock line (SCL). It supports SCL clock rates up to 3.4MHz.
II. Manufacturing Information

A. Description/Function: High-Efficiency Buck-Boost Regulator
B. Process: S18
C. Number of Device Transistors: 66118
D. Fabrication Location: USA
E. Assembly Location: USA
F. Date of Initial Production: June 5, 2015

III. Packaging Information

A. Package Type: 20-bump WLP 4x5
B. Lead Frame: N/A
C. Lead Finish: N/A
D. Die Attach: None
E. Bondwire: N/A (N/A mil dia.)
F. Mold Material: None
G. Assembly Diagram: #05-9000-5910
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: N/A°C/W
K. Single Layer Theta Jc: N/A°C/W
L. Multi Layer Theta Ja: 55.49°C/W
M. Multi Layer Theta Jc: N/A°C/W

IV. Die Information

A. Dimensions: 85.0394 X 73.2283 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 0.23 microns (as drawn)
F. Minimum Metal Spacing: 0.23 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $$\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4340 \times 48 \times 2}$$
 (Chi square value for MTTF upper limit)

 $$\lambda = 22.9 \times 10^{-9}$$

$$\lambda = 22.9 \text{ F.i.T. (60% confidence level @ 25°C)}$$

 The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S18 Process results in a FIT Rate of 0.40 @ 25°C and 6.96 @ 55°C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing

 The PB01-0 die type has been found to have all pins able to withstand an HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C Biased</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.