RELIABILITY REPORT
FOR MAX5490xxxxx+
PLASTIC ENCAPSULATED DEVICES

July 2, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Wendel</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Director, Reliability Engineering</td>
</tr>
</tbody>
</table>
Conclusion

The MAX5490xxxx+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description V. Quality Assurance Information
II. Manufacturing Information VI. Reliability Evaluation
III. Packaging Information IV. Die Information
.....Attachments

I. Device Description

A. General

The MAX5490 precision resistor-divider consists of two accurately matched resistors with access to the ends and center of the divider. This device offers excellent resistance matching of 0.035% (A grade), 0.05% (B grade), and 0.1% (C grade). The MAX5490 provides an extremely low resistance-ratio temperature drift of 1ppm/°C (typ) over -55°C to +125°C, and has an end-to-end resistance of 100k. Resistance ratios from 1:1 to 100:1 are available. Five standard ratios are available (see Table 1 in the full data sheet), and custom ratios are also available upon request. The MAX5490 is ideal for precision gain-setting applications where tight resistance matching and low temperature drift are necessary. The MAX5490 is available in a space-saving 3-pin SOT23 package, and is guaranteed over the military -55°C to +125°C temperature range.
II. Manufacturing Information

A. Description/Function: 100kohm Precision-Matched Resistor-Divider in SOT23
B. Process: BCD8
C. Number of Device Transistors:
D. Fabrication Location: Oregon
E. Assembly Location: Thailand
F. Date of Initial Production: July 09, 2004

III. Packaging Information

A. Package Type: 3-pin SOT23
B. Lead Frame: Alloy42
C. Lead Finish: 100% matte Tin
D. Die Attach: Non-conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-1231
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Multi Layer Theta Ja: 140°C/W
K. Multi Layer Theta Jc: 82°C/W

IV. Die Information

A. Dimensions: 57 X 32 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu
D. Backside Metallization: None
E. Minimum Metal Width: 3.0 microns (as drawn)
F. Minimum Metal Spacing: 3.0 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)
Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate \(\lambda \) is calculated as follows:

\[
\frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 42 \times 2} \quad (\text{Chi square value for MTTF upper limit})
\]

(\text{where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV})

\[
\lambda = 25.6 \times 10^{-9}
\]

\[
\lambda = 25.6 \text{ F.I.T. (60% confidence level @ 25°C)}
\]

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the BCD80 Process results in a FIT Rate of 2.3 @ 25C and 39.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The DP17 die types have been found to have all pins able to withstand a HBM transient pulse of +/-1500 V per Mil-Std 883 Method 3015.7. Latch-Up testing is not appropriate for this device.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C, Biased, Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 85°C, RH = 85%, Biased, Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle -65°C/150°C, 1000 Cycles Method 1010</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data