RELIABILITY REPORT

FOR

MAX5482EUD+
(MAX5481, MAX5483, MAX5484)

PLASTIC ENCAPSULATED DEVICES

October 17, 2008

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by

Ken Wendel
Quality Assurance
Director, Reliability Engineering
Conclusion

The MAX5482EUD+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX5481-MAX5484 10-bit (1024-tap) nonvolatile, linear-taper, programmable voltage-dividers and variable resistors perform the function of a mechanical potentiometer, but replace the mechanics with a pin-configurable 3-wire serial SPI(tm)-compatible interface or up/down digital interface. The MAX5481/MAX5482 are 3-terminal voltage-dividers and the MAX5483/MAX5484 are 2-terminal variable resistors. The MAX5481-MAX5484 feature an internal, nonvolatile, electrically erasable programmable read-only memory (EEPROM) that stores the wiper position for initialization during power-up. The 3-wire SPI-compatible serial interface allows communication at data rates up to 7MHz. A pin-selectable up/down digital interface is also available.

The MAX5481-MAX5484 are ideal for applications requiring digitally controlled potentiometers. Two end-to-end resistance values are available (10k and 50k) in a voltage-divider or a variable-resistor configuration (see the Selector Guide in the full data sheet). The nominal resistor temperature coefficient is 35ppm/°C end-to-end, and only 5ppm/°C ratiometric, making these devices ideal for applications requiring low-temperature-coefficient voltage-dividers, such as low-drift, programmable gain-amplifiers. The MAX5481-MAX5484 operate with either a +2.7V to +5.25V single power supply or ±2.5V dual power supplies. These devices consume 400µA (max) of supply current when writing data to the nonvolatile memory and 1.0µA (max) of standby supply current. The MAX5481-MAX5484 are available in a space-saving (3mm x 3mm), 16-pin TQFN, or a 14-pin TSSOP package and are specified over the extended (-40°C to +85°C) temperature range.
II. Manufacturing Information

A. Description/Function: 10-Bit, Nonvolatile, Linear-Taper Digital Potentiometers
B. Process: E35X, 3P3M,DPE2,CrSi,DSD,PDESD,PDRES,Cap,ENPN,DPT,HTO,SgHalo
C. Number of Device Transistors:
D. Fabrication Location: Dallas
E. Assembly Location: UTL THAILAND, ASAT CHINA
F. Date of Initial Production: July 23, 2005

III. Packaging Information

A. Package Type: 14-pin TSSOP
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: 1.0 (mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #
H. Flammability Rating: Class UL94-V0
J. Single Layer Theta Ja: 110°C/W
K. Single Layer Theta Jc: 30°C/W
L. Multi Layer Theta Ja: 100.4°C/W
M. Multi Layer Theta Jc: 30°C/W

IV. Die Information

A. Dimensions: 97 X 97 mils
B. Passivation: TEOS Ox-Nit 2-Mask Laser/Pass
C. Interconnect: Al/Cu
D. Backside Metallization: None
E. Minimum Metal Width: 0.4 um
F. Minimum Metal Spacing: 0.35um
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: Silicon Dioxide
I. Die Separation Method: Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 125 C biased (static) life test are pending. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 48 \times 2}$$

(Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 22.37 \times 10^{-9}$$

$$\lambda = 22.37 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the E35X Process results in a FIT Rate of 0.28 @ 25C and 17.30 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The DP22-1 die type has been found to have all pins able to withstand a HBM transient pulse of 2500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of 250 mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 125 C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 85°C Biased RH = 85% Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>520</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature -55°C/125°C Cycle 1000 Cycles JESD22 A104</td>
<td>DC Parameters & functionality</td>
<td>616</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data