RELIABILITY REPORT
FOR
MAX44206AUA+T
PLASTIC ENCAPSULATED DEVICES

March 13, 2015

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by

| Eric Wright |
| Quality Assurance |
| Reliability Engineering |
Conclusion

The MAX44206AUA+T successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I. Device Description
II. Manufacturing Information
III. Packaging Information
IV. Die Information
V. Quality Assurance Information
VI. Reliability Evaluation
Attachments

I. Device Description

A. General

The MAX44206 is a low-noise, low-distortion fully differential operational amplifier suitable for driving high-speed, high-resolution, 20-/18-/16-bit SAR ADCs, including the MAX11905 ADC family. Featuring a combination of wide 2.7V to 13.2V supply voltage range and wide 400MHz bandwidth, the MAX44206 is suitable for low-power, high-performance data acquisition systems. The MAX44206 offers a VOCM input to adjust the output common-mode voltage, eliminating the need for a coupling transformer or AC-coupling capacitors. This adjustable output common-mode voltage allows the MAX44206 to match the input common-mode voltage range of the ADC following it. Shutdown mode consumes only 6.8µA and extends battery life in battery-powered applications or reduces average power in systems cycling between shutdown and periodic data readings. The MAX44206 is available in an 8-pin µMAX® package and is specified for operation over the -40°C to +125°C temperature range.
II. Manufacturing Information

A. Description/Function: 180MHz, Low-Noise, Low-Distortion, Fully Differential Op Amp/ADC Driver
B. Process: CB5
C. Fabrication Location: USA
D. Assembly Location: USA, Philippines, Thailand
E. Date of Initial Production: December 8, 2014

III. Packaging Information

A. Package Type: 8-pin uMAX
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-5537
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1
J. Single Layer Theta Ja: 97°C/W
K. Single Layer Theta Jc: 5°C/W
L. Multi Layer Theta Ja: 77.6°C/W
M. Multi Layer Theta Jc: 5°C/W

IV. Die Information

A. Dimensions: 59.8425 X 59.8425 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 0.6 microns (as drawn)
F. Minimum Metal Spacing: 0.4 microns (as drawn)
G. Isolation Dielectric: SiO2
H. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4340 \times 79 \times 2}$$

(Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 13.9 \times 10^{-9}$$

$$\lambda = 13.9 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the Process results in a FIT Rate of 0.88 @ 25°C and 15.16 @ 55°C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing

The OZ02-0 die type has been found to have all pins able to withstand an HBM transient pulse of +/-1500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>79</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.