RELIABILITY REPORT
FOR
MAX3362AKA#G
PLASTIC ENCAPSULATED DEVICES

November 20, 2008

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Wendel</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Director, Reliability Engineer</td>
</tr>
</tbody>
</table>
Conclusion

The MAX3362AKA#G successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX3362 low-power, high-speed transceiver for RS-485/RS-422 communication operates from a single +3.3V power supply. The device contains one differential transceiver consisting of a line driver and receiver. The transceiver operates at data rates up to 20Mbps, with an output skew of less than 6ns. Driver and receiver propagation delays are guaranteed below 50ns. This fast switching and low skew make the MAX3362 ideal for multidrop clock/data distribution applications. The output level is guaranteed at +1.5V with a standard 54Ù load, compliant with RS-485 specifications. The transceiver draws 1.7mA supply current when unloaded or fully loaded with the drivers disabled. Additionally, the MAX3362 has a low-power shutdown mode, reducing the supply current to 1µA. The MAX3362 has a 1/8-unit-load receiver input impedance, allowing up to 256 transceivers on the bus. The MAX3362 is designed for half-duplex communication. The device has a hot-swap feature that eliminates false transitions on the data cable during circuit initialization. The drivers are short-circuit current limited, and a thermal shutdown circuit protects against excessive power dissipation. The MAX3362 is available in an 8-pin SOT package and specified over industrial and automotive temperature ranges.
II. Manufacturing Information

A. Description/Function: 3.3V, High-Speed, RS-485/RS-422 Transceiver in SOT Package
B. Process: B8
C. Number of Device Transistors: 0
D. Fabrication Location: California or Texas
E. Assembly Location: Carsem Malaysia, UTL Thailand
F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 8-Pin SOT23
B. Lead Frame: Copper Alloy
C. Lead Finish: 85Sn/15Pb plate
D. Die Attach: Ag Filled Epoxy
E. Bondwire: Au (1.0 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C
J. Single Layer Theta Ja: 103°C/W
K. Single Layer Theta Jc: 75°C/W

IV. Die Information

A. Dimensions: 90 X 45 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide
C. Interconnect: Aluminum/Si (Si = 1%)
D. Backside Metallization: None
E. Minimum Metal Width: 0.8 microns (as drawn)
F. Minimum Metal Spacing: 0.8 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are pending. Using these results, the Failure Rate (λ) is calculated as follows:

 \[\frac{1}{\text{MTTF}} = 1.83 \text{ (Chi square value for MTTF upper limit)} \]

 \(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV} \)

 \(\frac{1}{\text{MTTF}} = \frac{1}{192 \times 4340 \times 125 \times 2} \)

 \[\lambda = 8.6 \times 10^{-9} \]

 \[\lambda = 8.6 \text{ F.I.T. (60% confidence level @ 25°C)} \]

 The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/.

 Current monitor data for the B8 Process results in a FIT Rate of 2.71 @ 25°C and 17.30 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

 The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

 The RT32 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 85°C RH = 85% Biased Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-65°C/150°C 1000 Cycles Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data