PRODUCT RELIABILITY REPORT
FOR

MAX32555

Maxim Integrated

14460 Maxim Dr.
Dallas, TX 75244

Approved by:

Sokhom Chum
MTS, Reliability Engineering
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all
Maxim Integrated products:

MAX32555

In addition, Maxim Integrated's continuous reliability monitor program ensures that all outgoing
product will continue to meet Maxim's quality and reliability standards. The current status of the
reliability monitor program can be viewed at http://www.maximintegrated.com/qa/reliability/monitor.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that
are temperature accelerated.

\[
AfT = \exp\left(\frac{Ea}{k}\left(\frac{1}{T_u} - \frac{1}{T_s}\right)\right) = \frac{tu}{ts}
\]

\(AfT =\) Acceleration factor due to Temperature
\(tu =\) Time at use temperature (e.g. 55°C)
\(ts =\) Time at stress temperature (e.g. 125°C)
\(k =\) Boltzmann’s Constant (8.617 x 10-5 eV/°K)
\(Tu =\) Temperature at Use (°K)
\(Ts =\) Temperature at Stress (°K)
\(Ea =\) Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry
accepted standards, or activation energy of 0.7ev will be used whenever actual failure
mechanisms or their activation energies are unknown. All deratings will be done from the stress
ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms,
which are voltage accelerated.

\[
AfV = \exp\left(B\left(V_s - V_u\right)\right)
\]

\(AfV =\) Acceleration factor due to Voltage
\(Vs =\) Stress Voltage (e.g. 7.0 volts)
\(Vu =\) Maximum Operating Voltage (e.g. 5.5 volts)
\(B =\) Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry
accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are
unknown. All deratings will be done from the stress voltage to the maximum operating voltage.
Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the
60% or 90% confidence level (Cf).

The failure rate, \(Fr\), is related to the acceleration during life test by:

\[
Fr = \frac{X}{(ts \times AfV \times AfT \times N^2)}
\]

\(X =\) Chi-Sq statistical upper limit
\(N =\) Life test sample size
Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

$$MTTF = 1/Fr$$

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

<table>
<thead>
<tr>
<th>FAILURE RATE:</th>
<th>MTTF (YRS):</th>
<th>FITS:</th>
<th>FAILS:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11205</td>
<td>10.2</td>
<td>0</td>
</tr>
</tbody>
</table>

DEVICE HOURS: 89940416

Only data from Operating Life or similar stresses are used for this calculation.

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data.

Bold Product Number denotes specific product data.

Device Information:

Process: Grace GSMC 0.13um e-Flash shrink-cell mask reduction 7M Salicide 1.5V/3.3V/HV process

Passivation: SiO/SiN

Die Size: 171 x 171

Number of Transistors: 10135019

Interconnect: Aluminum / 0.5% Copper

Gate Oxide Thickness:

ESD HBM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD22-A114 HBM 500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD22-A114 HBM 1000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD22-A114 HBM 1500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD22-A114 HBM 2000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD22-A114 HBM 2500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD78A, I-TEST 25C 100mA</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP V</td>
<td>1531 MAX32555</td>
<td>ZX154352DA JESD78A, V-SUPPLY TEST 25C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>Device Code</td>
<td>Description</td>
<td>Hours</td>
<td>Fails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1523</td>
<td>MAX32555</td>
<td>ZX15234BA</td>
<td>192</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125C, 3.6V (PSA) & 5.5V (PSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1531</td>
<td>MAX32555</td>
<td>ZX154352DA</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125C, 3.6V (PSA) & 5.5V (PSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1535</td>
<td>MAX32555</td>
<td>ZX165353AB</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125C, 3.6V (PSA) & 5.5V (PSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Failure Rate:
- FITS: 10.2
- MTTF (YRS): 11205
- Device Hours: 89940416
- Fails: 0