RELIABILITY REPORT
FOR
MAX31856MUD+
PLASTIC ENCAPSULATED DEVICES

November 11, 2015

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer
Conclusion

The MAX31856MUD+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated’s quality and reliability standards.

Table of Contents

I. Device Description IV. Die Information
II. Manufacturing Information V. Quality Assurance Information
III. Packaging Information VI. Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX31856 performs cold-junction compensation and digitizes the signal from any type of thermocouple. The output data is formatted in degrees Celsius. This converter resolves temperatures to 0.0078125 °C, allows readings as high as +1800°C and as low as -210°C (depending on thermocouple type), and exhibits thermocouple voltage measurement accuracy of ±0.15%. The thermocouple inputs are protected against overvoltage conditions up to ±45V. A lookup table (LUT) stores linearity correction data for several types of thermocouples (K, J, N, R, S, T, E, and B). Line frequency filtering of 50Hz and 60Hz is included, as is thermocouple fault detection. A SPI-compatible interface allows selection of thermocouple type and setup of the conversion and fault detection processes.
II. Manufacturing Information

A. Description/Function: Precision Thermocouple to Digital Converter with Linearization
B. Process: S45
C. Number of Device Transistors: 113412
D. Fabrication Location: California, Texas or Japan
E. Assembly Location: Malaysia, Philippines, Thailand
F. Date of Initial Production: April 8, 2015

III. Packaging Information

A. Package Type: 14-pin TSSOP
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (0.8 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-5851
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1
J. Single Layer Theta Ja: 110°C/W
K. Single Layer Theta Jc: 30°C/W
L. Multi Layer Theta Ja: 100.4°C/W
M. Multi Layer Theta Jc: 30°C/W

IV. Die Information

A. Dimensions: 108X136 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: Metal1 = 0.5 microns (as drawn)
F. Minimum Metal Spacing: Metal1 = 0.45 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by theDatasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

\[
\lambda = \frac{1}{192 \times 4340 \times 80 \times 2} = \frac{1}{1.83} \quad \text{(Chi square value for MTTF upper limit)}
\]

(Chi square value for MTTF upper limit)

\[
\lambda = \frac{1}{192 \times 4340 \times 80 \times 2} = \frac{1}{1.83} \quad \text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}
\]

\[
\lambda = 13.7 \times 10^{-9}
\]

\[
\lambda = 13.7 \text{ F.I.T. (60% confidence level @ 25°C)}
\]

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.13 @ 25°C and 2.31 @ 55°C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot TAXW5Q001C, D/C 1502)

The DT13-0 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>80</td>
<td>0</td>
<td>TAXW5Q001C, D/C 1502</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.