RELIABILITY REPORT
FOR
MAX2822ETM+
PLASTIC ENCAPSULATED DEVICES

October 27, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering
Conclusion

The MAX2822ETM+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
 A. General

II. Manufacturing Information

III. Packaging Information

IV. Die Information

V. Quality Assurance Information

VI. Reliability Evaluation

......Attachments

I. Device Description

The MAX2822 single-chip transceiver is designed for 802.11b (11Mbps) applications operating in the 2.4GHz to 2.5GHz ISM band. The transceiver includes all the circuitry required to implement an 802.11b RF-to-baseband transceiver solution, including the power amplifier, transmit/receive switch, and 50 matching. The fully integrated receive path, transmit path, VCO, frequency synthesis, and baseband/control interface provide all the required active RF circuitry. Only a small number of passive components are needed to form the complete radio front-end solution. The IC eliminates the need for external IF SAW and RF image-reject filters by utilizing a direct-conversion radio architecture and monolithic baseband filters for both receiver and transmitter. It is specifically optimized for 802.11b (11Mbps CCK) and 22Mbps PBCC™ applications. The baseband filtering and Rx and Tx signal paths support the CCK modulation scheme for BER = 10-5 at the required sensitivity levels. The transceiver is suitable for the full range of 802.11b data rates (1Mbps, 2Mbps, 5.5Mbps, and 11Mbps) as well as the higher-rate 22Mbps PBCC standard. The MAX2822 is available in the very small 7mm x 7mm 48-lead QFN or thin QFN packages. The small solution size makes it ideal for small form-factor 802.11b applications such as PDAs, SmartPhones, and embedded modules.
II. Manufacturing Information

A. Description/Function: 2.4GHz 802.11b Zero-IF Transceiver with Integrated PA and Tx/Rx Switch
B. Process: G4
C. Number of Device Transistors:
D. Fabrication Location: Oregon
E. Assembly Location: China, Thailand
F. Date of Initial Production: July 11, 2003

III. Packaging Information

A. Package Type: 48-pin TQFN 7x7
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-1683
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1
J. Single Layer Theta Ja: 38°C/W
K. Single Layer Theta Jc: 1.3°C/W
L. Multi Layer Theta Ja: 26°C/W
M. Multi Layer Theta Jc: 1.3°C/W

IV. Die Information

A. Dimensions: 152 X 166 mils
B. Passivation: SiO\textsubscript{2}
C. Interconnect: Au
D. Backside Metallization: None
E. Minimum Metal Width: 1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as drawn) Metal 4
F. Minimum Metal Spacing: 1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as drawn) Metal 4
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO\textsubscript{2}
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

\[
\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 45 \times 2} \quad \text{(Chi square value for MTTF upper limit)}
\]

\[
\text{MTTF} = \frac{192 \times 4340 \times 45 \times 2}{1.83}
\]

(\text{where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV})

\[\lambda = 23.9 \times 10^{-9}\]

\[\lambda = 23.9 \text{ F.I.T. (60% confidence level @ 25°C)}\]

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the G4 Process results in a FIT Rate of 0.02@ 25°C and 0.37 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The WD17-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-200 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.
<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 150°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>HAST Ta = 130°C RH = 85% Biased Time = 96hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature -65°C/150°C Cycle 1000 Cycles Method 1010</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data