RELIABILITY REPORT
FOR
MAX268ACNG+
(MAX263/264, MAX267/268)
PLASTIC ENCAPSULATED DEVICES

January 12, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Wendel</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Director, Reliability Engineering</td>
</tr>
</tbody>
</table>
Conclusion

The MAX268ACNG+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX263/264 and MAX267/268 CMOS switched-capacitor active filters are designed for precision filtering applications. Center frequency, Q, and operating mode are all selected via pin-strapped inputs. The MAX263/264 uses no external components for a variety of bandpass, lowpass, highpass, notch and allpass filters. The MAX267/268 is dedicated to bandpass applications and includes an uncommitted op-amp. Two second-order filter sections are included in both devices. An input clock and a 5-bit programming input precisely set the filter center/corner frequency. Q is also programmed from 0.5 to 64. Separate clock inputs for each filter half operate either an external clock or a crystal. The MAX263 and 267 operate with center frequencies up to 57kHz while the MAX264 and 268 extend the f0 range to 140kHz by employing lower fCLK/f0 ratios. The MAX263/264 is supplied in 28 pin wide DIP and small outline packages while the MAX267/268 is supplied in 24 pin narrow DIP and wide SO packages. All devices are available in commercial, extended, and military temperature ranges.
II. Manufacturing Information

A. Description/Function: Pin-Programmable Universal and Bandpass Filters
B. Process: SG5
C. Number of Device Transistors:
D. Fabrication Location: Oregon
E. Assembly Location: Carsem Malaysia
F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 24-pin PDIP
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-0201-0028
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: 75°C/W
K. Single Layer Theta Jc: 30°C/W

IV. Die Information

A. Dimensions: 199 X 132 mils
B. Passivation: \(\text{Si}_3\text{N}_4/\text{SiO}_2 \) (Silicon nitride/ Silicon dioxide
C. Interconnect: Aluminum/Si (Si = 1%)
D. Backside Metallization: None
E. Minimum Metal Width: 5.0 microns (as drawn)
F. Minimum Metal Spacing: 5.0 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: \(\text{SiO}_2 \)
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 - Ken Wendel (Director, Reliability Engineering)
 - Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level:
 - 0.1% for all electrical parameters guaranteed by the Datasheet.
 - 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 - < 50 ppm

D. Sampling Plan:
 - Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4340 \times 550 \times 2}$$

(Chi square value for MTTF upper limit)

(Where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 1.96 \times 10^{-9}$$

$$\lambda = 1.96 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the SG5 Process results in a FIT Rate of 0.4 @ 25°C and 7.4 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AF05-8 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.
Table 1
Reliability Evaluation Test Results

MAX268ACNG+

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C, Biased, Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>550</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 85°C, RH = 85%, Biased, Time = 1000hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Ta = -65°C/150°C, Cycle 1000, Method 1010</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data