RELIABILITY REPORT
FOR
MAX2620EUA
PLASTIC ENCAPSULATED DEVICES

May 19, 2003

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by Reviewed by
Jim Pedicord Bryan J. Preeshl
Quality Assurance Quality Assurance
Reliability Lab Manager Executive Director
Conclusion

The MAX2620 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. ...Device Description	V.Quality Assurance Information
II.Manufacturing Information	VI.Reliability Evaluation
III.Packaging Information	IV.Die Information
.....Attachments	

I. Device Description

A. General

The MAX2620 combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small µMAX package. This device integrates functions typically achieved with discrete components. The oscillator exhibits low-phase noise when properly mated with an external varactor-tuned resonant tank circuit. Two buffered outputs are provided for driving mixers or prescalers. The buffers provide load isolation to the oscillator and prevent frequency pulling due to load-impedance changes. Power consumption is typically just 27mW in operating mode ($V_{CC} = 3.0V$), and drops to less than 0.3µW in standby mode. The MAX2620 operates from a single +2.7V to +5.25V supply.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC1, VCC2 to GND</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>TANK, SHDN to GND</td>
<td>-0.3V to (VCC + 0.3V)</td>
</tr>
<tr>
<td>OUT, OUT to GND</td>
<td>(VCC - 0.6V) to (VCC + 0.3V)</td>
</tr>
<tr>
<td>FDBK to GND</td>
<td>(VCC - 2.0V) to (VCC + 0.3V)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +165°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td>457mW</td>
</tr>
<tr>
<td>8-Pin µMAX</td>
<td>5.7mW/°C</td>
</tr>
<tr>
<td>Derates above +70°C</td>
<td>8-Pin µMAX</td>
</tr>
</tbody>
</table>

II. Manufacturing Information

- **A. Description/Function:** 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs
- **B. Process:** GST2 – High Speed Double Poly-Silicon Bipolar Process
- **C. Number of Device Transistors:** 113
- **D. Fabrication Location:** Oregon, USA
- **E. Assembly Location:** Philippines, Malaysia or Thailand
- **F. Date of Initial Production:** July, 1997

III. Packaging Information

- **A. Package Type:** 8-Pin uMAX
- **B. Lead Frame:** Copper
- **C. Lead Finish:** Solder Plate
- **D. Die Attach:** Silver-filled Epoxy
- **E. Bondwire:** Gold (1.3 mil dia.)
- **F. Mold Material:** Epoxy with silica filler
- **G. Assembly Diagram:** # 05-7001-0229
- **H. Flammability Rating:** Class UL94-V0
- **I. Classification of Moisture Sensitivity per JEDEC standard JESD22-112:** Level 1

IV. Die Information

- **A. Dimensions:** 38 x 31 mils
- **B. Passivation:** Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
- **C. Interconnect:** Poly / Au
- **D. Backside Metallization:** None
- **E. Minimum Metal Width:** 2 microns (as drawn)
- **F. Minimum Metal Spacing:** 2 microns (as drawn)
- **G. Bondpad Dimensions:** 5 mil. Sq.
- **H. Isolation Dielectric:** SiO₂
- **I. Die Separation Method:** Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Jim Pedicord (Manager, Rel Operations)
 Bryan Preeshl (Executive Director)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 9823 \times 45 \times 2} \]

 (Chi square value for MTTF upper limit)

 Temperature Acceleration factor assuming an activation energy of 0.8eV

 \[\lambda = 10.78 \times 10^{-9} \]

 \[\lambda = 10.78 \text{ F.I.T.} \text{ (60% confidence level @ 25°C)} \]

 This low failure rate represents data collected from Maxim’s reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-B2A).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The WR17-1 die type has been found to have all pins able to withstand a transient pulse of ±200V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±50mA.
Table 1
Reliability Evaluation Test Results

MAX2620EUA

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>PACKAGE</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 150°C</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 121°C</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P = 15 psi.</td>
<td></td>
<td>uMAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH = 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85/85</td>
<td>Ta = 85°C</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>-65°C/150°C</td>
<td>DC Parameters & functionality</td>
<td></td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data
TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Each pin individually</td>
<td>(The common combination of all like-named pins</td>
</tr>
<tr>
<td>connected to terminal A</td>
<td>connected to terminal B)</td>
</tr>
<tr>
<td>with the other floating)</td>
<td></td>
</tr>
<tr>
<td>1. All pins except (V_{PS1}) 3/</td>
<td>All (V_{PS1}) pins</td>
</tr>
<tr>
<td>2. All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where \(V_{PS1} \) is \(V_{DD} \), \(V_{CC} \), \(V_{SS} \), \(V_{BB} \), GND, \(+V_s\), \(-V_s\), \(V_{REF} \), etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(V_{SS1} \), \(V_{SS2} \) or \(V_{SS3} \) or \(V_{CC1} \), or \(V_{CC2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Diagram:

- **Terminal C**
 - \(R_1 \)
 - \(S_1 \)
 - REGULATED HIGH VOLTAGE SUPPLY
- **Terminal B**
 - DUT SOCKET
 - \(S_2 \)
 - SHORT
- **Terminal A**
 - CURRENT PROBE (NOTE 6)
 - \(R = 1.5k\Omega \)
 - \(C = 100pf \)
- **Terminal D**

Mil Std 883D
Method 3015.7
Notice 8