PRODUCT RELIABILITY REPORT
FOR

MAX2580

Maxim Integrated

14460 Maxim Dr.
Dallas, TX 75244

Approved by:

Sokhom Chum
MTS, Reliability Engineering
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim Integrated products:

MAX2580

In addition, Maxim Integrated's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maximintegrated.com/qa/reliability/monitor.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://www.maximintegrated.com/search/parts.mvp.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[\text{AfT} = \exp((Ea/k)*(1/Tu - 1/Ts)) = tu/ts \]
\[\text{AfT} = \text{Acceleration factor due to Temperature} \]
\[tu = \text{Time at use temperature (e.g. } 55^\circ\text{C}) \]
\[ts = \text{Time at stress temperature (e.g. } 125^\circ\text{C}) \]
\[k = \text{Boltzmann's Constant } (8.617 \times 10^{-5} \text{ eV/}^\circ\text{K}) \]
\[Tu = \text{Temperature at Use } (^\circ\text{K}) \]
\[Ts = \text{Temperature at Stress } (^\circ\text{K}) \]
\[Ea = \text{Activation Energy (e.g. } 0.7 \text{ ev}) \]

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[\text{AfV} = \exp(B*(Vs - Vu)) \]
\[\text{AfV} = \text{Acceleration factor due to Voltage} \]
\[Vs = \text{Stress Voltage (e.g. } 7.0 \text{ volts}) \]
\[Vu = \text{Maximum Operating Voltage (e.g. } 5.5 \text{ volts}) \]
\[B = \text{Constant related to failure mechanism type (e.g. } 1.0, 2.4, 2.7, \text{ etc.}) \]

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, Fr, is related to the acceleration during life test by:

\[Fr = X/(ts * AfV * AfT * N * 2) \]
\[X = \text{Chi-Sq statistical upper limit} \]
\[N = \text{Life test sample size} \]
Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

$$\text{MTTF} = \frac{1}{\text{Fr}}$$

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

- **FAILURE RATE:**
 - **MTTF (YRS):** 46508
 - **FITS:** 2.5
 - **DEVICE HOURS:** 373303008
 - **FAILS:** 0

Only data from Operating Life or similar stresses are used for this calculation.

The parameters used to calculate this failure rate are as follows:

- **Cf:** 60%
- **Ea:** 0.7
- **B:** 0
- **Tu:** 25 °C
- **Vu:** 2.75 Volts

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:
- **Process:** 65nm Lower Power Enhanced RFCMOS LPE 1P7M 1/2/2.5V.
- **Passivation:** SiN / SiO2
- **Die Size:** 259 x 247
- **Number of Transistors:** 6299540
- **Interconnect:** Aluminum / 0.5% Copper
- **Gate Oxide Thickness:** 17 Å

ESD HBM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD22-A114 HBM 500 VOLS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD22-A114 HBM 1000 VOLS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD22-A114 HBM 1500 VOLS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD78A, I-TEST 25C 100mA</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP I</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD78A, I-TEST 25C 250mA</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP V</td>
<td>1451 MAX2580EGW+</td>
<td>ZX150542A JESD78, V-SUPPLY TEST 25C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>DATE CODE/PRODUCT/LOT</td>
<td>CONDITION</td>
<td>READPOIN</td>
<td>QTY</td>
<td>FAILS</td>
<td>FA#</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX150542AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX150542AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX150543AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX150543AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX138363AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1451 MAX2580</td>
<td>ZX138363AB 135C, 2.75V (PSA), 1.32V (PSB), 3.3V (PSD)</td>
<td>1000 HRS</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

FAILURE RATE:
- MTTF (YRS): 46508
- FITS: 2.5

DEVICE HOURS:
- 373303008
- FAILS: 0