RELIABILITY REPORT

FOR

MAX233xPP

PLASTIC ENCAPSULATED DEVICES

August 7, 2003

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by
Jim Pedicord
Quality Assurance
Reliability Lab Manager

Reviewed by
Bryan J. Preeshl
Quality Assurance
Executive Director
Conclusion

The MAX233 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description V. Quality Assurance Information
II. Manufacturing Information VI. Reliability Evaluation
III. Packaging Information
IV. Die Information

I. Device Description

A. General

The MAX233 line driver/receiver is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, and in particular, for those applications where ±12V is not available.

This part is particularly useful in battery-powered systems, since its low-power shutdown mode reduces power dissipation to less than 5μW. The MAX233 uses no external components and is recommended for applications where printed circuit board space is critical.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>V+</td>
<td>(VCC - 0.3V) to +14V</td>
</tr>
<tr>
<td>V-</td>
<td>+0.3V to -14V</td>
</tr>
<tr>
<td>Input Voltages</td>
<td></td>
</tr>
<tr>
<td>TIN</td>
<td>-0.3V to (VCC + 0.3V)</td>
</tr>
<tr>
<td>RIN</td>
<td>±30V</td>
</tr>
<tr>
<td>Output Voltages</td>
<td></td>
</tr>
<tr>
<td>TOUT</td>
<td>(V+ + 0.3V) to (V- - 0.3V)</td>
</tr>
<tr>
<td>ROUT</td>
<td>-0.3V to (VCC + 0.3V)</td>
</tr>
<tr>
<td>Short-Circuit Duration, TOUT</td>
<td>Continuous</td>
</tr>
<tr>
<td>Operating Temperature Ranges</td>
<td></td>
</tr>
<tr>
<td>MAX233C</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>MAX233E</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>-65°C to +160°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td></td>
</tr>
<tr>
<td>20-Pin PDIP</td>
<td>889mW</td>
</tr>
<tr>
<td>Derate above +70°C</td>
<td>11.11mW/°C</td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description/Function: +5V-Powered, Multi-Channel RS-232 Driver/Receiver
B. Process: SG5 (Standard 5 micron silicon gate CMOS)
C. Number of Device Transistors: 228
D. Fabrication Location: Oregon, USA
E. Assembly Location: Philippines
F. Date of Initial Production: November, 1995

III. Packaging Information

A. Package Type: 20-Lead PDIP
B. Lead Frame: Copper
C. Lead Finish: Solder Plate
D. Die Attach: Silver-filled Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: # 31-0042
H. Flammability Rating: Class UL94-V0

IV. Die Information

A. Dimensions: 70 x 109 mils
B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Aluminum/Si (Si = 1%)
D. Backside Metallization: None
E. Minimum Metal Width: 5 microns (as drawn)
F. Minimum Metal Spacing: 5 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO$_2$
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations)
Bryan Preeshl (Executive Director of QA)
Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4389 \times 80 \times 2} \quad \text{(Chi square value for MTTF upper limit)}$$

Temperature Acceleration factor assuming an activation energy of 0.8eV

$$\lambda = 13.57 \times 10^{-9}$$

$$\lambda = 13.57 \text{ F.I.T. (60% confidence level @ 25°C)}$$

This low failure rate represents data collected from Maxim’s reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-0260) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The RS12 die type has been found to have all pins able to withstand a transient pulse of ±800V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±50mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>PACKAGE</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C</td>
<td>DC Parameters & functionality</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 121°C</td>
<td>DC Parameters & functionality</td>
<td>PDIP</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Pressure Pot</td>
<td>P = 15 psi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH = 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85/85</td>
<td>Ta = 85°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Ta = 85°C/150°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data
TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Each pin individually</td>
<td>(The common combination</td>
</tr>
<tr>
<td></td>
<td>connected to terminal A</td>
<td>of all like-named pins</td>
</tr>
<tr>
<td></td>
<td>with the other floating)</td>
<td>connected to terminal B)</td>
</tr>
<tr>
<td>1.</td>
<td>All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2.</td>
<td>All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, $+V_S$, $-V_S$, V_{REF}, etc).

3.4 Pin combinations to be tested.
 a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
 b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
 c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

REGULATED HIGH VOLTAGE SUPPLY

TERMINAL A

TERMINAL B

TERMINAL C

TERMINAL D

CURRENT PROBE (NOTE 6)

$R = 1.5k\Omega$

$C = 100\text{pf}$

Mil Std 883D
Method 3015.7
Notice 8