RELIABILITY REPORT
FOR
MAX2023ETX+
PLASTIC ENCAPSULATED DEVICES

September 9, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering
Conclusion

The MAX2023ETX+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
 A. General

II. Manufacturing Information

III. Packaging Information

IV. Die Information

V. Quality Assurance Information

VI. Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX2023 low-noise, high-linearity, direct upconversion/ downconversion quadrature modulator/demodulator is designed for single and multicarrier 1500MHz to 2300MHz DCS 1800/PCS 1900 EDGE, cdma2000®, WCDMA, and PHS/PAS base-station applications. Direct conversion architectures are advantageous since they significantly reduce transmitter or receiver cost, part count, and power consumption as compared to traditional IF-based double-conversion systems. In addition to offering excellent linearity and noise performance, the MAX2023 also yields a high level of component integration. This device includes two matched passive mixers for modulating or demodulating in-phase and quadrature signals, two LO mixer amplifier drivers, and an LO quadrature splitter. On-chip baluns are also integrated to allow for single-ended RF and LO connections. As an added feature, the baseband inputs have been matched to allow for direct interfacing to the transmit DAC, thereby eliminating the need for costly I/Q buffer amplifiers.

EDN China Innovation Award, Winner 2006
Direct-Conversion Transmitter Solution:
MAX2021MAX2023MAX2058MAX2059
II. Manufacturing Information

A. Description/Function: High-Dynamic-Range, Direct Up-/Downconversion 1500MHz to 2300MHz Quadrature Mod/Demod

B. Process: G4

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: China, Thailand

F. Date of Initial Production: July 17, 2006

III. Packaging Information

A. Package Type: 36-pin TQFN 6x6

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive Epoxy

E. Bondwire: Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-2265

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1

J. Single Layer Theta Ja: 38°C/W

K. Single Layer Theta Jc: 1.4°C/W

L. Multi Layer Theta Ja: 28°C/W

M. Multi Layer Theta Jc: 1.4°C/W

IV. Die Information

A. Dimensions: 131 X 131 mils

B. Passivation: Si₃N₄

C. Interconnect: Au

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as drawn) Metal 4

F. Minimum Metal Spacing: 1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as drawn) Metal 4

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Ken Wendel (Director, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test
 The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (χ) is calculated as follows:

 \[\chi = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 48 \times 2} \]
 (Chi square value for MTTF upper limit)
 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

 \[\chi = 9.98 \times 10^{-9} \]
 \[\chi = 9.98 \text{ F.i.T. (60% confidence level @ 25°C)} \]

 The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the G4 Process results in a FIT Rate of 0.02 @ 25C and 0.37 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests
 The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing
 The CR37 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250 mA.
Table 1
Reliability Evaluation Test Results

MAX2023ETX+

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 150°C Biased Time = 192 hrs.</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 130°C RH = 85% Biased Time = 96hrs.</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature -65°C/150°C Cycle 1000 Cycles Method 1010</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data