RELIABILITY REPORT

FOR

MAX1917EEE

PLASTIC ENCAPSULATED DEVICES

April 17, 2003

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by
Jim Pedicord
Quality Assurance
Reliability Lab Manager

Reviewed by
Bryan J. Preeshl
Quality Assurance
Executive Director
Conclusion

The MAX1917 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information
IV.Die Information

I. Device Description

A. General

The MAX1917 provides a complete power-management solution for DDR memory. It contains a synchronous buck controller and an amplifier to generate \(1/2V_{DDR}\) voltage for VTT and VTTR. The VTT and VTTR voltages are maintained within 1% of \(1/2V_{DDR}\). The controller operates in synchronous rectification mode to ensure balanced current sourcing and sinking capability of up to 25A. With a shutdown current of less than 5µA, the MAX1917 is the best choice for low-power notebook applications, as well as servers and desktop computers. An all N-FET design optimizes efficiency. The MAX1917 can also be used for generating \(V_{DDR}\) and as a general-purpose step-down controller with variable switching frequency as high as 1MHz with few additional components.

The MAX1917 uses Maxim’s proprietary Quick-PWM™ architecture for fast transient response up to 96% efficiency, and the smallest external components. Output current monitoring is achieved without sense resistors by monitoring the bottom FET’s drain-to-source voltage. The current-limit threshold is programmable through an external resistor. The MAX1917 comes in a space-saving 16-pin QSOP package.

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V^+) to GND</td>
<td>-0.3V to +15V</td>
</tr>
<tr>
<td>EN/HSD to GND</td>
<td>-0.3V to +16V</td>
</tr>
<tr>
<td>(VL) to GND</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>(PGND) to GND</td>
<td>-0.3V to +0.3V</td>
</tr>
<tr>
<td>VTT, DDR, POK to GND</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>REF, VTTR, DL, ILIM, FSEL to GND</td>
<td>-0.3V to (VL + 0.3V)</td>
</tr>
<tr>
<td>(LX) to (PGND)</td>
<td>-0.3V to +30V</td>
</tr>
<tr>
<td>(BST) to GND</td>
<td>-0.3V to +36V</td>
</tr>
<tr>
<td>(DH) to (LX)</td>
<td>-0.3V to (VBST + 0.3V)</td>
</tr>
<tr>
<td>(LX) to (BST)</td>
<td>-6V to +0.3V</td>
</tr>
<tr>
<td>REF Short Circuit to GND</td>
<td>Continuous</td>
</tr>
<tr>
<td>Operating Temperature Range Extended</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering 10s.)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation ((TA = +70°C)) 16-Pin QSOP</td>
<td>667mW</td>
</tr>
<tr>
<td>Derates above +70°C 16-Pin QSOP</td>
<td>8.3mW/°C</td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description: Tracking, Sinking and Sourcing, Synchronous Buck Controller for DDR Memory & Termination Supplies

B. Process: S12 (Standard 1.2 micron silicon gate CMOS)

C. Number of Device Transistors: 2708

D. Fabrication Location: Oregon or California, USA

E. Assembly Location: Philippines, Thailand or Malaysia

F. Date of Initial Production: January, 2002

III. Packaging Information

A. Package Type: 16-Lead QSOP

B. Lead Frame: Copper

C. Lead Finish: Solder Plate

D. Die Attach: Silver-filled Epoxy

E. Bondwire: Gold (1.3 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: Buildsheet # 05-3501-0022

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions: 84 x 116 mils

B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)

F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO$_2$

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Jim Pedicord (Reliability Lab Manager)
 Bryan Preeshl (Executive Director of QA)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[
 \lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4389 \times 45 \times 2}
 \]

 (Chi square value for MTTF upper limit)

 Temperature Acceleration factor assuming an activation energy of 0.8eV

 \[
 \lambda = 24.13 \times 10^{-9} \quad \lambda = 24.13 \text{ F.I.T.} \quad (60\% \text{ confidence level @ 25°C})
 \]

 This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The attached Burn-In Schematic (Spec. # 06-5923) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

 Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

 The PM04 die type has been found to have all pins able to withstand a transient pulse of +/-1000V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA.
Table 1
Reliability Evaluation Test Results

MAX1917EEE

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C</td>
<td>DC Parameters</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 121°C</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P = 15 psi.</td>
<td>& functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH= 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ta = 85°C</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td>& functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>-65°C/150°C</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data
Attachment #1

TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Each pin individually connected to terminal A with the other floating)</td>
<td>(The common combination of all like-named pins connected to terminal B)</td>
</tr>
<tr>
<td>1.</td>
<td>All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2.</td>
<td>All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, $+V_S$, $-V_S$, V_{REF}, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

![Circuit Diagram](image_url)

Regulated High Voltage Supply

TERMINAL C

TERMINAL A

TERMINAL B

TERMINAL D

R1

S1

R2

S2

DUT SOCKET

C1

R = 1.5kΩ
C = 100pf

Mil Std 883D
Method 3015.7
Notice 8
DEVICES: MAX 1917/1918
PACKAGE: 16-QSOP
MAX. EXPECTED CURRENT = 1mA (+10V), 250 uA (+5V)

DRAWN BY: HAK TAN

NOTES:
- ONCE PER SOCKET
- ONCE PER BOARD

0.22 μF
1 μF
2.2 μF
1 μF
1 K
100 ohm

+5V
+10V