Conclusion

The MAX1883 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
II. Manufacturing Information
III. Packaging Information
IV. Die Information
V. Quality Assurance Information
VI. Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX1883 multiple-output DC-DC converter provides the regulated voltages required by active matrix thin-film transistor (TFT) liquid crystal displays (LCD) in a low-profile TSSOP package. One high-power step-up converter and two low-power charge pumps convert the 2.7V to 5.5V input voltage into three independent output voltages. A built-in linear regulator and VCOM buffer complete the power-supply requirements.

The main step-up converter accurately generates an externally set output voltage up to 13V that can supply the display’s row/column drivers. The converter’s high switching frequency and current-mode PWM architecture provide fast transient response and allow the use of small low-profile inductors and ceramic capacitors. The low-power BiCMOS control circuitry and internal 14V switch (0.35 N-channel MOSFET) enable efficiencies up to 91%.

A resistor-programmable, 40mA, low-dropout linear regulator provides preregulation or postregulation for any of the supplies. For higher current applications, an external transistor can be added. Additionally, the VCOM buffer provides a high current output that is ideal for driving the capacitive backplane of TFT LCD panels. The VCOM buffer’s output voltage is preset with an internal 50% resistive-divider or can be externally adjusted for other voltages.

The MAX1883 is protected against output undervoltage and thermal overload conditions by a latched fault detection circuit that shuts down the device. The device is available in the ultra-thin TSSOP package (1.1mm max height).

B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN, SHDN, TGND, FLTSET to GND</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>DRVN to GND</td>
<td>-0.3V to (VSUPN + 0.3V)</td>
</tr>
<tr>
<td>DRVP to GND</td>
<td>-0.3V to (VSUPP +0.3V)</td>
</tr>
<tr>
<td>PGND to GND</td>
<td>+/-0.3V</td>
</tr>
<tr>
<td>/RDY, SUPB to GND</td>
<td>-0.3V to +14V</td>
</tr>
<tr>
<td>LX, SUPP, SUPN to GND</td>
<td>-0.3V to 14V</td>
</tr>
<tr>
<td>SUPL to GND</td>
<td>-0.3V to 18V</td>
</tr>
<tr>
<td>LDOOUT to GND</td>
<td>-0.3V to (VSUPL +0.3V)</td>
</tr>
<tr>
<td>INTG, REF, FB, FBN, RBP to GND</td>
<td>-0.3V to (VIN +0.3V)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>879mW</td>
</tr>
<tr>
<td>20-Pin TSSOP</td>
<td>10.9mW/°C</td>
</tr>
</tbody>
</table>

The MAX1883 is protected against output undervoltage and thermal overload conditions by a latched fault detection circuit that shuts down the device. The device is available in the ultra-thin TSSOP package (1.1mm max height).
II. Manufacturing Information
 A. Description/Function: Quad-Output TFT LCD DC-DC Converter with Buffer
 B. Process: S8 - Standard 8 micron silicon gate CMOS
 C. Number of Device Transistors: 3739
 D. Fabrication Location: California, USA
 E. Assembly Location: Philippines
 F. Date of Initial Production: April, 2001

III. Packaging Information
 A. Package Type: 20 Lead TSSOP
 B. Lead Frame: Copper
 C. Lead Finish: Solder Plate
 D. Die Attach: Silver-filled Epoxy
 E. Bondwire: Gold (1.3 mil dia.)
 F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: Buildsheet # 05-2301-0106
 H. Flammability Rating: Class UL94-V0
 I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information
 A. Dimensions: 86 X 128 mils
 B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)
 C. Interconnect: TiW/ AlCu/ TiWN
 D. Backside Metallization: None
 E. Minimum Metal Width: .8 microns (as drawn)
 F. Minimum Metal Spacing: .8 microns (as drawn)
 G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO$_2$
 I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Jim Pedicord (Reliability Lab Manager)
 Bryan Preeshl (Executive Director of QA)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4389 \times 159 \times 2}$$

(Chi square value for MTTF upper limit)

Temperature Acceleration factor assuming an activation energy of 0.8eV

$$\lambda = 6.83 \times 10^{-9} \quad \lambda = 6.83 \text{ F.I.T. (60% confidence level @ 25°C)}$$

This low failure rate represents data collected from Maxim’s reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The Burn-In Schematic (Spec.# 06-5628) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1L) located on the Maxim website at http://www.maxim-ic.com.

B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

The PY26-2 die type has been found to have all pins able to withstand a transient pulse of ±200V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±50mA and/or ±20V.
Table 1
Reliability Evaluation Test Results

MAX1883EUP

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C Biased</td>
<td>DC Parameters & functionality</td>
<td>159</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Pressure Pot Ta = 121°C</td>
<td>DC Parameters & functionality</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P = 15 psi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH = 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85/85 Ta = 85°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>Temperature Cycle -65°C/150°C</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic process/package data
Attachment #3

TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Each pin individually connected to terminal A with the other floating)</td>
<td>(The common combination of all like-named pins connected to terminal B)</td>
</tr>
<tr>
<td>1. All pins except V_{PS1} 3/</td>
<td>All V_{PS1} pins</td>
</tr>
<tr>
<td>2. All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V_{PS1} is V_{DD}, V_{CC}, V_{SS}, V_{BB}, GND, $+V_S$, $-V_S$, V_{REF}, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D
Method 3015.7
Notice 8
DEVICES: MAX 1778/1880/1881/1882
MAX. EXPECTED CURRENT = (+5V) 5mA; (+10V) 10mA

DRAWN BY: HAK TAN

NOTES:

ONCE PER SOCKET

ONCE PER BOARD