RELIABILITY REPORT
FOR
MAX1790EUA
PLASTIC ENCAPSULATED DEVICES

December 5, 2002

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by
Jim Pedicord
Quality Assurance
Reliability Lab Manager

Reviewed by
Bryan J. Preeshl
Quality Assurance
Executive Director
Conclusion

The MAX1790 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
 V. Quality Assurance Information
II. Manufacturing Information
 VI. Reliability Evaluation
III. Packaging Information
 Attachments
IV. Die Information

I. Device Description

 A. General

 The MAX1790 boost converter incorporates high-performance (at 1.2MHz), current-mode, fixed-frequency, pulse-width modulation (PWM) circuitry with a built-in 0.21Ω N-channel MOSFET to provide a highly efficient regulator with fast response.

 High switching frequency (640kHz or 1.2MHz selectable) allows easy filtering and faster loop performance. An external compensation pin provides the user flexibility in determining loop dynamics, allowing the use of small, low equivalent series resistance (ESR) ceramic output capacitors. The device can produce an output voltage as high as 12V from an input as low as 2.6V.

 Soft-start is programmed with an external capacitor, which sets the input current ramp rate. In shutdown mode, current consumption is reduced to 0.1µA. The MAX1790 is available in a space-saving 8-pin µMAX package. The ultra-small package and high switching frequency allow the total solution to be less than 1.1mm high.

 B. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX to GND</td>
<td>-0.3V to +14V</td>
</tr>
<tr>
<td>IN, SHDN , FREQ, FB to GND</td>
<td>-0.3V to +6V</td>
</tr>
<tr>
<td>SS, COMP to GND</td>
<td>-0.3V to (VIN + 0.3V)</td>
</tr>
<tr>
<td>RMS LX Pin Current</td>
<td>1.2A</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (TA = +70°C)</td>
<td>330mW</td>
</tr>
<tr>
<td>8-Pin uMAX</td>
<td>4.1mW/°C</td>
</tr>
<tr>
<td>Derates above +70°C</td>
<td></td>
</tr>
<tr>
<td>8-Pin uMAX</td>
<td></td>
</tr>
</tbody>
</table>
II. Manufacturing Information

A. Description/Function: Low-Noise Step-Up DC-DC Converter
B. Process: S8 - Standard 8 micron silicon gate CMOS
C. Number of Device Transistors: 1012
D. Fabrication Location: California, USA
E. Assembly Location: Philippines, Malaysia or Thailand
F. Date of Initial Production: December, 1999

III. Packaging Information

A. Package Type: 8-Lead uMAX
B. Lead Frame: Copper
C. Lead Finish: Solder Plate
D. Die Attach: Silver-filled Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: Buildsheet # 05-2301-0021
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions: 61 X 87 mils
B. Passivation: Si$_3$N$_4$/SiO$_2$ (Silicon nitride/ Silicon dioxide)
C. Interconnect: TiW/ AlCu/ TiWN
D. Backside Metallization: None
E. Minimum Metal Width: .8 microns (as drawn)
F. Minimum Metal Spacing: .8 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO$_2$
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Jim Pedicord (Reliability Lab Manager)
 Bryan Preeshl (Executive Director of QA)
 Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[
 \lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4389 \times 320 \times 2}
 \]

 (Chi square value for MTTF upper limit)

 Temperature Acceleration factor assuming an activation energy of 0.8eV

 \[
 \lambda = 3.39 \times 10^{-9} \quad \lambda = 3.39 \text{ F.I.T. (60% confidence level @ 25°C)}
 \]

 This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The Burn-In Schematic (Spec.# 06-5497) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M) located on the Maxim website at http://www.maxim-ic.com.

B. Moisture Resistance Tests

 Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. andLatch-Up Testing

 The PY40 die type has been found to have all pins able to withstand a transient pulse of ±1500V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA.
Table 1
Reliability Evaluation Test Results

MAX1790EUA

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C</td>
<td>DC Parameters & functionality</td>
<td>330</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biased Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing (Note 2)</td>
<td>Ta = 121°C</td>
<td>DC Parameters & functionality</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P = 15 psi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH= 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 168hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85/85</td>
<td>Ta = 85°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased Time = 1000hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress (Note 2)</td>
<td>-65°C/150°C</td>
<td>DC Parameters</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic process/package data
TABLE II. Pin combination to be tested. 1/ 2/

<table>
<thead>
<tr>
<th>Terminal A (Each pin individually connected to terminal A with the other floating)</th>
<th>Terminal B (The common combination of all like-named pins connected to terminal B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All pins except (V_{PS1}) 3/</td>
<td>All (V_{PS1}) pins</td>
</tr>
<tr>
<td>2. All input and output pins</td>
<td>All other input-output pins</td>
</tr>
</tbody>
</table>

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where \(V_{PS1} \) is \(V_{DD} \), \(V_{CC} \), \(V_{SS} \), \(V_{BB} \), GND, \(+V_s \), \(-V_s \), \(V_{REF} \), etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.

b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(V_{SS1} \), \(V_{SS2} \) or \(V_{SS3} \) or \(V_{CC1} \), \(V_{CC2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D
Method 3015.7
Notice 8