RELIABILITY REPORT
FOR
MAX1749EUK+T
PLASTIC ENCAPSULATED DEVICES

August 27, 2013

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer
Conclusion

The MAX1749EUK+T successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I.Device Description IV.Die Information
II.Manufacturing Information V.Quality Assurance Information
III.Packaging Information VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX1749 allows for a constant vibration force while operating from a +2.5V to +6.5V input range and delivering up to 120mA. A PMOS pass transistor allows the 80µA supply current to remain independent of the load. The output voltage can be adjusted from +1.25V to VIN with an external resistor-divider. When turned off (ON = low), the MAX1749 supply current drops to 1µA (max) to minimize battery drain. Other features include short-circuit protection, thermal shutdown protection, and reverse battery protection. The MAX1749 is available in a 5-pin SOT23 package.
II. Manufacturing Information

A. Description/Function: SOT23 Vibrator Motor Driver
B. Process: B12
C. Number of Device Transistors:
D. Fabrication Location: Oregon, California or Texas
E. Assembly Location: Malaysia, Thailand, or Philippines
F. Date of Initial Production: April 24, 1999

III. Packaging Information

A. Package Type: 5-pin SOT23
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-1701-0281
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: 324.3°C/W
K. Single Layer Theta Jc: 82°C/W
L. Multi Layer Theta Ja: 255.9°C/W
M. Multi Layer Theta Jc: 81°C/W

IV. Die Information

A. Dimensions: 38 X 55 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 1.2 microns (as drawn)
F. Minimum Metal Spacing: 1.2 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[\lambda = \frac{1}{1000 \times 4340 \times 530 \times 2} = 1.83 \]
 (Chi square value for MTTF upper limit)

 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

 \[\chi^2 = 0.4 \times 10^{-9} \]

 \[\chi = 0.4 \text{ F.I.T. (60% confidence level @ 25°C)} \]

 The following failure rate represents data collected from Maxim Integrated’s reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the B12 Process results in a FIT Rate of 0.02 @ 25°C and 0.33 @ 55°C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (lot NJZBE2071C, D/C 9913)

 The PW84-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.
Table 1: Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 150°C</td>
<td>DC Parameters</td>
<td>100</td>
<td>0</td>
<td>NJZAGA104Q, D/C 0733</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td>150</td>
<td>0</td>
<td>NJZBGA096Q, D/C 0716</td>
</tr>
<tr>
<td></td>
<td>Time = 1000 hrs.</td>
<td></td>
<td>49</td>
<td>0</td>
<td>NJZAGA104Q, D/C 0733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>0</td>
<td>NJZAGA123Q, D/C 0813</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>0</td>
<td>NJZAGA097Q, D/C 0701</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>0</td>
<td>NJZBG3053Q, D/C 0532</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.