RELIABILITY REPORT
FOR
MAX16999AUA15+
PLASTIC ENCAPSULATED DEVICES

November 3, 2014

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer
Conclusion

The MAX16999AUA15+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation

I. Device Description

A. General

The MAX16999 linear regulator operates from a 2.5V to 5.5V input voltage and delivers 100mA continuous load current with a low quiescent current typically around 13µA. The output voltage is preset to internally trimmed voltages in the 0.5V to 3.3V range (see the Selector Guide in the full data sheet). An active-low, open-drain reset output remains low for a programmable timeout delay after the output voltage reaches regulation. The reset timeout is programmed by an external capacitor connected to CRES. This device also features logic-controlled shutdown, and short-circuit and thermal-overload protection. The typical applications are multimedia, telematics, and motor control microcontrollers (µCs) with always-on requirements. The MAX16999 is used as a parallel, low-quiescent supply to power the core or interrupt section of µCs during sleep mode. It can also be used to supply a timer or memory during µC shutoff. The adjustable POR delay assists with power-supply sequencing.
II. Manufacturing Information

A. Description/Function: Ultra-Low Output Voltage, Low-Quiescent-Current Linear Regulator for High-Temperature Applications

B. Process: S45
C. Number of Device Transistors:
D. Fabrication Location: California, Texas or Japan
E. Assembly Location: Philippines, Malaysia
F. Date of Initial Production: April 23, 2008

III. Packaging Information

A. Package Type: 8-pin uMAX
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-3055
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1
J. Single Layer Theta Ja: 97°C/W
K. Single Layer Theta Jc: 4.8°C/W
L. Multi Layer Theta Ja: 77.6°C/W
M. Multi Layer Theta Jc: 4.8°C/W

IV. Die Information

A. Dimensions: 48X38 mils
B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: Metal1 = 0.5 microns (as drawn)
F. Minimum Metal Spacing: Metal1 = 0.45 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

\[\lambda = \frac{1}{MTTF} = \frac{1.83}{192 \times 4340 \times 48 \times 2} \]

(Chi square value for MTTF upper limit)

(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of } 0.8eV)

\[\lambda = 22.9 \times 10^{-9} \]

\[\lambda = 22.9 \text{ F.I.T. (60% confidence level @ 25°C)} \]

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.04 @ 25°C and 0.69 @ 55°C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (lot SARZCQ001D, D/C 0802)

The NR01 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA.
Table 1
Reliability Evaluation Test Results

MAX16999AUA15+

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>(Note 1)</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
<td>S000000016, D/C 0802</td>
</tr>
<tr>
<td></td>
<td>Ta = 135°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.