RELIABILITY REPORT
FOR
MAX16821AAT1+T
PLASTIC ENCAPSULATED DEVICES

February 12, 2015

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sokhom Chum</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Reliability Engineer</td>
</tr>
</tbody>
</table>
Conclusion

The MAX16821AAT+T successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated’s quality and reliability standards.

Table of Contents

I. Device Description
   A. General

II. Manufacturing Information

III. Packaging Information

IV. Die Information

V. Quality Assurance Information

VI. Reliability Evaluation

I. Device Description

A. General

The MAX16821A/MAX16821B/MAX16821C pulse-width-modulation (PWM) LED driver controllers provide high output-current capability in a compact package with a minimum number of external components. The MAX16821A/MAX16821B/MAX16821C are suitable for use in synchronous and nonsynchronous step-down (buck), boost, buck-boost, SEPIC, and Cuk LED drivers. A logic input (MODE) allows the devices to switch between synchronous buck and boost modes of operation. These devices are the first high-power drivers designed specifically to accommodate common-anode HB LEDs. The ICs offer average current-mode control that enable the use of MOSFETs with optimal charge and on-resistance figure of merit, thus minimizing the need for external heatsinking even when delivering up to 30A of LED current. The differential sensing scheme provides accurate control of the LED current. The ICs operate from a 4.75V to 5.5V supply range with the internal regulator disabled (VC C connected to IN). These devices operate from a 7V to 28V input supply voltage with the internal regulator enabled. The MAX16821A/MAX16821B/MAX16821C feature a clock output with 180° phase delay to control a second out-of-phase LED driver to reduce input and output filter capacitor size and to minimize ripple currents. The wide switching frequency range (125kHz to 1.5MHz) allows the use of small inductors and capacitors. Additional features include programmable overvoltage protection and an output enable function.
II. Manufacturing Information

A. Description/Function: High-Power Synchronous HB LED Drivers with Rapid Current Pulsing
B. Process: B12
C. Number of Device Transistors: 4003
D. Fabrication Location: Oregon, California or Texas
E. Assembly Location: China, Taiwan, Thailand
F. Date of Initial Production: July 28, 2007

III. Packaging Information

A. Package Type: 28-pin TQFN 5x5
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-2785
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C
J. Single Layer Theta Ja: 47°C/W
K. Single Layer Theta Jc: 1.7°C/W
L. Multi Layer Theta Ja: 29°C/W
M. Multi Layer Theta Jc: 1.7°C/W

IV. Die Information

A. Dimensions: 114X110 mils
B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 1.2 microns (as drawn)
F. Minimum Metal Spacing: 1.2 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)
   Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
   0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate ($\lambda$) is calculated as follows:

$$\lambda = \frac{1}{MTTF} = \frac{1}{192 \times 4340 \times 48 \times 2} = 1.83$$  (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8 eV)

$$\lambda = 22.9 \times 10^{-9}$$

$$\lambda = 22.9 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the B12 Process results in a FIT Rate of 0.05 @ 25°C and 0.92 @ 55°C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (ESD lot NFLZBQ001A D/C 0743, Latch-Up lot NFLZAQ001B D/C 0711)

The SP14 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA.
## Table 1
Reliability Evaluation Test Results

**MAX16821AAT1+T**

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C</td>
<td>DC Parameters &amp; functionality</td>
<td>48</td>
<td>0</td>
<td>NFLYAQ001C, D/C 0711</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.