RELIABILITY REPORT
FOR
MAX1616EUK+
PLASTIC ENCAPSULATED DEVICES

November 20, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering
Conclusion

The MAX1616EUK+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I.Device Description V.Quality Assurance Information
II.Manufacturing Information VI.Reliability Evaluation
III.Packaging Information IV.Die Information
......Attachments

I. Device Description

A. General

The MAX1615/MAX1616 are micropower, SOT23-5 linear regulators that supply always-on, keep-alive power to CMOS RAM and microcontrollers (µCs) in systems with high-voltage batteries. Key features include wide input voltage range, low dropout voltage, and low quiescent supply current. Despite a miserly 8µA (max) no-load supply current, the MAX1615/MAX1616 have excellent line-transient response and AC power-supply rejection ratio. They provide a clean, fixed 5V or 3.3V output (MAX1615) or an adjustable 1.24V to 28V output (MAX1616), even when subjected to fast supply-voltage changes that occur during the switchover from battery to AC adapter input power. The space-saving SOT23-5 package has excellent thermal characteristics and tolerates up to 571mW of power dissipation. Fault protection is provided by internal foldback current limiting and thermal-shutdown circuitry. The MAX1615/MAX1616 are now available in lead-free packages.
II. Manufacturing Information

A. Description/Function: High-Voltage, Low-Power Linear Regulators for Notebook Computers
B. Process: S12
C. Number of Device Transistors:
D. Fabrication Location: Oregon, California or Texas
E. Assembly Location: Malaysia, Philippines, Thailand
F. Date of Initial Production: April 26, 1997

III. Packaging Information

A. Package Type: 5-pin SOT23
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-1101-0017
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: 324.3°C/W
K. Single Layer Theta Jc: 82°C/W

IV. Die Information

A. Dimensions: 57 X 38 mils
B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 1.2 microns (as drawn)
F. Minimum Metal Spacing: 1.2 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)
Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \)) is calculated as follows:

\[
\lambda = \frac{1}{\text{MTTF}} = \frac{8.35}{192 \times 4340 \times 318 \times 2} \quad \text{(Chi square value for MTTF upper limit)}
\]

(Chi square value for MTTF upper limit)

\[
\lambda = 15.4 \times 10^{-9}
\]

\[
\lambda = 15.4 \text{ F.I.T. (60% confidence level @ 25°C)}
\]

The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S12 Process results in a FIT Rate of 0.17 @ 25°C and 3.00 @ 55°C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PX06-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-400 V per Mil-Std 883 Method 3015.7.Latch-Up testing has shown that this device withstands a current of +/-250 mA.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C Biased</td>
<td>DC Parameters & functionality</td>
<td>318</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing</td>
<td>Ta = 130°C RH = 85%</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 96hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress</td>
<td>Temperature -65°C/150°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cycle 1000 Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic Package/Process data