RELIABILITY REPORT
FOR
MAX14948EWE+T
PLASTIC ENCAPSULATED DEVICES

September 17, 2016

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

Approved by

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Wright</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Reliability Engineer</td>
</tr>
</tbody>
</table>
Conclusion

The MAX14948EWE+T successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I. Device Description
II. Manufacturing Information
III. Packaging Information
IV. Die Information
V. Quality Assurance Information
VI. Reliability Evaluation

I. Device Description

A. General

The MAX14948 isolated RS-485/RS-422 transceiver provides 5000VRMS (60s) of galvanic isolation between the cable-side (RS-485/RS-422 driver/receiver side) and the UART-side of the device. Isolation improves communication by breaking ground loops and reduces noise when there are large differences in ground potential between ports. This device allows for robust communication up to 500kbps. The MAX14948 includes one half-duplex drive/receive channel. The receiver is 1/8-unit load, allowing up to 256 transceivers on a common bus. Integrated true fail-safe circuitry ensures a logic-high on the receiver output when inputs are shorted or open. Undervoltage lockout disables the driver when cable-side or UART-side power supplies are below functional levels. The driver outputs/receiver inputs are protected from ±30kV electrostatic discharge (ESD) to GND on the cable side, as specified by the Human Body Model (HBM). The MAX14948 is available in a wide body 16-pin SO package and operates over the -40°C to +85°C temperature range.
II. Manufacturing Information

A. Description/Function: 5kV RS-485/RS-422 Transceiver with ±30kV ESD Protection

B. Process: S18

C. Fabrication Location: USA

D. Assembly Location: Taiwan

E. Date of Initial Production: June 29, 2016

III. Packaging Information

A. Package Type: 16-pin SOIC hybrid

B. Lead Frame: Copper

C. Lead Finish: 100 matte Tin

D. Die Attach: Conductive

E. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #31-4925

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1

J. Single Layer Theta Ja: N/A°C/W

K. Single Layer Theta Jc: N/A°C/W

L. Multi Layer Theta Ja: 71°C/W

M. Multi Layer Theta Jc: 23°C/W

IV. Die Information

A. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)

B. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

C. Backside Metallization: None

D. Minimum Metal Width: 0.23 microns (as drawn)

E. Minimum Metal Spacing: 0.23 microns (as drawn)

F. Bondpad Dimensions:

G. Isolation Dielectric: SiO2

H. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Eric Wright (Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \)) is calculated as follows:

 \[
 \lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 80 \times 2} \quad \text{(Chi square value for MTTF upper limit)}
 \]

 \[
 \lambda = 13.7 \times 10^{-9} \quad \text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}
 \]

 \[
 \lambda = 13.7 \text{ F.I.T. (60% confidence level @ 25°C)}
 \]

 The following failure rate represents data collected from Maxim Integrated’s reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S18 Process results in a FIT Rate of 0.06@25C and 0.93@55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing

 The RU84-0 die type has been found to have all pins able to withstand an HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
Table 1
Reliability Evaluation Test Results
MAX14948EWE+T

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test (Note 1)</td>
<td>Ta = 135°C</td>
<td>DC Parameters</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.