RELIABILITY REPORT
FOR
MAX1304ECM+
PLASTIC ENCAPSULATED DEVICES

January 18, 2013

MAXIM INTEGRATED
160 RIO ROBLES
SAN JOSE, CA 95134

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sokhom Chum</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Reliability Engineer</td>
</tr>
</tbody>
</table>
Conclusion

The MAX1304ECM+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

I. Device Description
 A. General

I. Device Description

A. General

The MAX1304-MAX1306/MAX1308-MAX1310/MAX1312-MAX1314 12-bit, analog-to-digital converters (ADCs) offer eight, four, or two independent input channels. Independent track-and-hold (T/H) circuitry provides simultaneous sampling for each channel. The MAX1304/MAX1305/MAX1306 provide a 0 to +5V input range with ±6V fault-tolerant inputs. The MAX1308/MAX1309/MAX1310 provide a ±5V input range with ±16.5V fault-tolerant inputs. The MAX1312/MAX1313/MAX1314 have a ±10V input range with ±16.5V fault-tolerant inputs. These ADCs convert two channels in 0.9µs, and up to eight channels in 1.98µs, with an 8-channel throughput of 456ksps per channel. Other features include a 20MHz T/H input bandwidth, internal clock, internal (+2.5V) or external (+2.0V to +3.0V) reference, and power-saving modes. A 20MHz, 12-bit, bidirectional parallel data bus provides the conversion results and accepts digital inputs that activate each channel individually. All devices operate from a +4.75V to +5.25V analog supply and a +2.7V to +5.25V digital supply and consume 57mA total supply current when fully operational. Each device is available in a 48-pin 7mm x 7mm LQFP package and operates over the extended -40°C to +85°C temperature range.
II. Manufacturing Information

A. Description/Function: 8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges

B. Process: C6Y

C. Number of Device Transistors: 34044

D. Fabrication Location: Japan

E. Assembly Location: Taiwan, Malaysia

F. Date of Initial Production: October 25, 2003

III. Packaging Information

A. Package Type: 48-pin LQFP

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive

E. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-2375

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: N/A°C/W

K. Single Layer Theta Jc: N/A°C/W

L. Multi Layer Theta Ja: 44°C/W

M. Multi Layer Theta Jc: 10°C/W

IV. Die Information

A. Dimensions: 192 X 210 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.6 microns (as drawn)

F. Minimum Metal Spacing: 0.6 microns (as drawn)

G. Bondpad Dimensions: SiO₂

H. Isolation Dielectric: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{MTTF} = \frac{1.83}{500 \times 4340 \times 48 \times 2}$$

(Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 8.8 \times 10^{-9}$$

$$\lambda = 8.8 \text{ F.I.T. (60% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated’s reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the C6Y Process results in a FIT Rate of 0.90 @ 25°C and 15.55 @ 55°C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (ESD lot IHG0FA004D D/C 0522, Latch-up lot IHG0FA004A D/C 0536)

The AC44 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-100mA.
Table 1
Reliability Evaluation Test Results

MAX1304ECM+

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>(Note 1)</td>
<td>Ta = 135°C Biased</td>
<td>DC Parameters & functionality</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.