RELIABILITY REPORT
FOR
MAX11205AEUB+T
PLASTIC ENCAPSULATED DEVICES

May 23, 2012

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer
Conclusion

The MAX11205AEUB+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
 A. General

II. Manufacturing Information

III. Packaging Information

IV. Die Information

V. Quality Assurance Information

VI. Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX11205 is an ultra-low-power (< 300µA max active current), high-resolution, serial output ADC. This device provides the highest resolution per unit power in the industry and is optimized for applications that require very high dynamic range with low power such as sensors on a 4mA to 20mA industrial control loop. The MAX11205 provides a high-accuracy internal oscillator that requires no external components. When used with the specified data rates, the internal digital filter provides more than 80dB rejection of 50Hz or 60Hz line noise. The MAX11205 provides a simple 2-wire serial interface in the space-saving, 10-pin µMAX® package. The MAX11205 operates over the -40°C to +85°C temperature range.
II. Manufacturing Information

A. Description/Function: 16-Bit, Single-Channel, Ultra-Low Power, Delta-Sigma ADC with 2-Wire Serial Interface

B. Process: TS18

C. Number of Device Transistors: 148241

D. Fabrication Location: Taiwan

E. Assembly Location: Thailand

F. Date of Initial Production: April 23, 2010

III. Packaging Information

A. Package Type: uMAX 3.00x3.00 mm

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin

D. Die Attach: Conductive

E. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-9000-4019 / B

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 180°C/W

K. Single Layer Theta Jc: 36°C/W

L. Multi Layer Theta Ja: 113.1°C/W

M. Multi Layer Theta Jc: 36°C/W

IV. Die Information

A. Dimensions: 48.5 X 76.5 mils

B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.18µm

F. Minimum Metal Spacing: 0.18µm

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO2

I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Richard Aburano (Manager, Reliability Engineering)
 Don Lipps (Manager, Reliability Engineering)
 Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 \[
 \chi = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 93 \times 2} \quad \text{(Chi square value for MTTF upper limit)}
 \]

 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

 \[
 \chi = 11.8 \times 10^{-9}
 \]

 \[
 \lambda = 11.8 \text{ F.I.T. (60% confidence level @ 25°C)}
 \]

 The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the TS18 Process results in a FIT Rate of 0.24 @ 25C and 4.14 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot QYYZCQ002B D/C 1013)

 The AC84 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.
Table 1
Reliability Evaluation Test Results

<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C</td>
<td>DC Parameters</td>
<td>45</td>
<td>0</td>
<td>QYYZCQ002J, D/C 1013</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td>& functionality</td>
<td>48</td>
<td>0</td>
<td>NWWBCA010A, D/C 0504</td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.