PRODUCT RELIABILITY REPORT
FOR

DS8313, Rev A2

Maxim Integrated Products

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Don Lipps
Manager, Reliability Engineering
Maxim Integrated Products
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email: don.lipps@maxim-ic.com
ph: 972-371-3739
fax: 972-371-6016
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim products:

DS8313, Rev A2

In addition, Maxim's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maxim-ic.com/TechSupport/dsreliability.html.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[\text{AfT} = \exp((Ea/k)*(1/Tu - 1/Ts)) = tu/ts \]

\(\text{AfT} = \) Acceleration factor due to Temperature
\(tu = \) Time at use temperature (e.g. 55°C)
\(ts = \) Time at stress temperature (e.g. 125°C)
\(k = \) Boltzmann's Constant \((8.617 \times 10^{-5} \text{ eV/°K}) \)
\(Tu = \) Temperature at Use (°K)
\(Ts = \) Temperature at Stress (°K)
\(Ea = \) Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[\text{AfV} = \exp(B*(Vs - Vu)) \]

\(\text{AfV} = \) Acceleration factor due to Voltage
\(Vs = \) Stress Voltage (e.g. 7.0 volts)
\(Vu = \) Maximum Operating Voltage (e.g. 5.5 volts)
\(B = \) Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, \(Fr \), is related to the acceleration during life test by:

\[Fr = X/(ts \times \text{AfV} \times \text{AfT} \times N \times 2) \]

\(X = \) Chi-Sq statistical upper limit
\(N = \) Life test sample size
The calculated failure rate for this device/process is:

\[
\text{FAILURE RATE:} \quad \text{MTTF (YRS):} \quad 68697 \quad \text{FITS:} \quad 1.7
\]

Only data from Operating Life or similar stresses are used for this calculation.

The parameters used to calculate this failure rate are as follows:

- \(\text{Cf:} \ 60\% \)
- \(\text{Ea:} \ 0.7 \)
- \(\text{B:} \ 0 \)
- \(\text{Tu:} \ 25 \degree \text{C} \)
- \(\text{Vu:} \ 6 \text{ Volts} \)

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:

- **Process:** B8, San Antonio B8 flow with TMA Topglass.
- **Passivation:** OxyNit LaserNoA&E - Pass/Nov.TEOS/OxyNit -Gen.LaserP
- **Die Size:** 84 x 70
- **Number of Transistors:** 7299
- **Interconnect:** Aluminum / 0.5% Copper
- **Gate Oxide Thickness:** NA

ESD HBM ALL PINS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 500 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 1000 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td>Total:</td>
</tr>
</tbody>
</table>

ESD HBM CARD INTERFACE PINS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 500 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 1000 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 2000 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 4000 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0851 DS8313</td>
<td>QM941961 JESD22-A114 HBM 8000 VOLTS</td>
<td>1 PUL’S</td>
<td>3</td>
<td>0</td>
<td>Total:</td>
</tr>
</tbody>
</table>

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP</td>
<td>0851 DS8313</td>
<td>QM941961 JESD78A, I-TEST 125C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0851 DS8313</td>
<td>QM941961 JESD78, V-SUPPLY TEST 125C</td>
<td>6</td>
<td>0</td>
<td>Total:</td>
<td>0</td>
</tr>
</tbody>
</table>

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[
\text{MTTF} = \frac{1}{\text{Fr}}
\]

NOTE: MTTF is frequently used interchangeably with MTBF.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8007 QN616349</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8007 QN824614</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8007 XN716349C</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8113 QK732036</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8007 QN824614</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8024 QM832036</td>
<td>125C, 6.0 VOLTS</td>
<td>192 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8023 QM840693</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS2413 WJ942402</td>
<td>125C, 5.25 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8007 SN839727A</td>
<td>125C, 6.0 VOLTS</td>
<td>192 HRS</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>DS8313 QM941961</td>
<td>125C, 6.0 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>FITS: 68697</td>
<td>FAILS: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>