PRODUCT RELIABILITY REPORT
FOR

DS80C410, Rev A1

Dallas Semiconductor

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Don Lipps
Staff Reliability Engineer
Dallas Semiconductor
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email: don.lipps@dalsemi.com
ph: 972-371-3739
fax: 972-371-6016
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Dallas Semiconductor products:

DS80C410, Rev A1

In addition, Dallas Semiconductor's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maxim-ic.com/TechSupport/dsreliability.html.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[Af_T = \exp\left(\frac{E_a}{k}\left(\frac{1}{T_U} - \frac{1}{T_S}\right)\right) = \frac{t_u}{t_s} \]
\[Af_T = \text{Acceleration factor due to Temperature} \]
\[t_u = \text{Time at use temperature (e.g. 55°C)} \]
\[t_s = \text{Time at stress temperature (e.g. 125°C)} \]
\[k = \text{Boltzmann's Constant (8.617 x 10^{-5} eV/°K)} \]
\[T_U = \text{Temperature at Use (°K)} \]
\[T_S = \text{Temperature at Stress (°K)} \]
\[E_a = \text{Activation Energy (e.g. 0.7 ev)} \]

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[Af_V = \exp(B\left(V_s - V_u\right)) \]
\[Af_V = \text{Acceleration factor due to Voltage} \]
\[V_s = \text{Stress Voltage (e.g. 7.0 volts)} \]
\[V_u = \text{Maximum Operating Voltage (e.g. 5.5 volts)} \]
\[B = \text{Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)} \]

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, \(Fr \), is related to the acceleration during life test by:

\[Fr = \frac{X}{(t_s \cdot Af_T \cdot Af_V \cdot N \cdot 2)} \]
\[X = \text{Chi-Sq statistical upper limit} \]
\[N = \text{Life test sample size} \]
The calculated failure rate for this device/process is:

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

$$MTTF = \frac{1}{Fr}$$

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

FAILURE RATE: 4.9

MTTF (YRS): 23383

The parameters used to calculate this failure rate are as follows:

- **Cf:** 60%
- **Ea:** 0.7
- **B:** 0
- **Tu:** 25°C
- **Vu:** 5.5 Volts

The reliability data follows. A the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. *** after DATE CODE denotes specific product data.

Device Information:
- **Process:** 1P, 4M, 0.18um, Sal. P1+Act,Ti/TiN M1-M4, BPSG
- **Passivation:** Passivation w/Nov TEOS Oxide-Nitride
- **Die Size:** 133 x 131
- **Number of Transistors:** 1200000
- **Interconnect:** Aluminum / 1% Silicon / 0.5% Copper
- **Gate Oxide Thickness:**

ELECTRICAL CHARACTERIZATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0440 *</td>
<td>EOS/ESD S5.1 HBM 500 VOLTS</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0440 *</td>
<td>EOS/ESD S5.1 HBM 1000 VOLTS</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0440 *</td>
<td>EOS/ESD S5.1 HBM 2000 VOLTS</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0440 *</td>
<td>EOS/ESD S5.1 HBM 4000 VOLTS</td>
<td>PUL'S</td>
<td>3</td>
<td>1</td>
<td>No FA</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0440 *</td>
<td>EOS/ESD S5.1 HBM 8000 VOLTS</td>
<td>PUL'S</td>
<td>3</td>
<td>3</td>
<td>No FA</td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0440 *</td>
<td>JESD78, I-TEST 125C</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0440 *</td>
<td>JESD78, Vsupply TEST 125C</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0238</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0402</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0435</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>0440 *</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

FAILURE RATE: 4.9

MTTF (YRS): 23383

FITS: 4.9