Conclusion:
The following Reliability Test successfully meets the quality and reliability standards set forth by this special Temperature Cycle Evaluation:

DS80C400, Rev B1

Device Description:
A description of the device used in this qualification can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[\text{AfT} = \exp\left(\frac{E_a}{k}(\frac{1}{T_u} - \frac{1}{T_s})\right) = \frac{t_u}{t_s} \]

\(\text{AfT} = \text{Acceleration factor due to Temperature} \)
\(t_u = \text{Time at use temperature (e.g. } 55^\circ\text{C)} \)
\(t_s = \text{Time at stress temperature (e.g. } 125^\circ\text{C)} \)
\(k = \text{Boltzmann's Constant } (8.617 \times 10^{-5} \text{ eV/°K}) \)
\(T_u = \text{Temperature at Use (°K)} \)
\(T_s = \text{Temperature at Stress (°K)} \)
\(E_a = \text{Activation Energy (e.g. } 0.7 \text{ ev)} \)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[\text{AfV} = \exp(B(V_s - V_u)) \]

\(\text{AfV} = \text{Acceleration factor due to Voltage} \)
\(V_s = \text{Stress Voltage (e.g. } 7.0 \text{ volts)} \)
\(V_u = \text{Maximum Operating Voltage (e.g. } 5.5 \text{ volts)} \)
\(B = \text{Constant related to failure mechanism type (e.g. } 1.0, 2.4, 2.7, \text{ etc.)} \)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage.

Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, \(F_r \), is related to the acceleration during life test by:

\[F_r = \frac{X}{t_s \times \text{AfV} \times \text{AfT} \times N \times 2} \]

\(X = \text{Chi-Sq statistical upper limit} \)
\(N = \text{Life test sample size} \)
Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[\text{MTTF} = \frac{1}{\text{Fr}} \]

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process/assembly is:

FAILURE RATE: 4.9 FITS

The parameters used to calculate this failure rate are as follows:

- \(\text{Cf}: 60\% \)
- \(\text{Ea}: 0.7 \)
- \(\text{B}: 0 \)
- \(\text{Tu}: 25 \, \degree\text{C} \)
- \(\text{Vu}: 5.5 \, \text{Volts} \)

The reliability data follows. The start of this data is the device information. This is a description of the device for this report. Following this is the assembly information. This section includes a description of the assembly vehicle used to generate this reliability data for both qualifications and monitors. The next section is the detailed reliability data for each stress found in the qualification / monitor. If there are additional assemblies used as part of this report, a description of each will follow which includes the respective reliability data for that assembly. The reliability data section includes the latest data available.

Device Information:

- Device: DS80C400
- Process: 1P, 4M, 0.18um, Sal. P1+Act,Ti/TiN M1-M4, BPSG
- Passivation: Passivation w/Nov TEOS Oxide-Nitride
- Die Size: 133 x 131
- Number of Transistors: 1200000
- Interconnect: Aluminum / 1% Silicon / 0.5% Copper

Assembly Information:

- Qualification Vehicle: DS80C400
- Assembly Site: ATP (Amkor, PI)
- Pin Count: 100
- Package Type: LQFP
- Body Size: 14x14x1.4
- Mold Compound: Sumitomo 7320CR
- Lead Frame: EFTEC 64T w/Ag Spot
- Lead Finish: SnPb Plate
- Die Attach: M2500 Ag Polymer
- Bond Wire / Size: Au / 1.2 mil
- Theta JA:
- Theta JC:
- Flammability: UL 94-V0
- Moisture Sensitivity (JEDEC J-STD20A): Level 4
- Date Code Range: 0238 to 0435

CONSTRUCTION ANALYSIS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIE, FAB PROCESS</td>
<td>0238</td>
<td>TO BE DONE BY F/A</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3000870</td>
</tr>
</tbody>
</table>

Total: 0
ELECTRICAL CHARACTERIZATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0238</td>
<td>EOS/ESD S5.1 HBM 500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0238</td>
<td>EOS/ESD S5.1 HBM 1000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0238</td>
<td>EOS/ESD S5.1 HBM 2000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0238</td>
<td>JESD78, I-TEST 125C</td>
<td>2</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0238</td>
<td>JESD78, Vsupply TEST 125C</td>
<td>2</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: 4

OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0238</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0402</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH VOLTAGE LIFE</td>
<td>0435</td>
<td>125C, 5.5V (PSA) & 3.3V (PSB)</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 4

TEMPERATURE CYCLE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP CYCLE</td>
<td>0238</td>
<td>-55C TO 125C</td>
<td>1000 CYS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TEMP CYCLE</td>
<td>0402</td>
<td>-55C TO 125C</td>
<td>1000 CYS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TEMP CYCLE</td>
<td>0435</td>
<td>-55C TO 125C</td>
<td>1000 CYS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

TEMPERATURE HUMIDITY BIAS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAST</td>
<td>0238</td>
<td>130C, 85% R.H., 3.5v</td>
<td>96 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HAST</td>
<td>0402</td>
<td>130C, 85% R.H., 3.5v</td>
<td>96 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HAST</td>
<td>0435</td>
<td>130C, 85% R.H., 3.5v</td>
<td>96 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

UNBIASED MOISTURE RESISTANCE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAST, NO BIAS</td>
<td>0238</td>
<td>130C, 85% R.H.</td>
<td>200 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HAST, NO BIAS</td>
<td>0402</td>
<td>130C, 85% R.H.</td>
<td>200 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HAST, NO BIAS</td>
<td>0435</td>
<td>130C, 85% R.H.</td>
<td>200 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

FAILURE RATE:

MTTF (YRS): 23383

FITS: 4.9