RELIABILITY REPORT
FOR

DS3231S Rev A3B & A3C

Dallas Semiconductor

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Ken Wendel
Reliability Engineering Manager
Dallas Semiconductor
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email : ken.wendel@dalsemi.com
ph: 972-371-3726
fax: 972-371-6016
mbl: 214-435-6610
Conclusion:
The following Reliability Test successfully meets the quality and reliability standards set forth by this special Temperature Cycle Evaluation:

DS3231S Rev A3B & A3C

Device Description:
A description of the device used in this qualification can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[AfT = \exp((Ea/k) \times (1/Tu - 1/Ts)) = tu/ts \]
AfT = Acceleration factor due to Temperature
tu = Time at use temperature (e.g. 55°C)
Ts = Time at stress temperature (e.g. 125°C)
k = Boltzmann’s Constant (8.617 x 10-5 eV/°K)
Tu = Temperature at Use (°K)
Ts = Temperature at Stress (°K)
Ea = Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[AfV = \exp(B \times (Vs - Vu)) \]
AfV = Acceleration factor due to Voltage
Vs = Stress Voltage (e.g. 7.0 volts)
Vu = Maximum Operating Voltage (e.g. 5.5 volts)
B = Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage.
Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, Fr, is related to the acceleration during life test by:

\[Fr = \frac{X}{(ts \times AfV \times AfT \times N \times 2)} \]
X = Chi-Sq statistical upper limit
N = Life test sample size
Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[
MTTF = \frac{1}{Fr}
\]

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process/assembly is:

FAILURE RATE: FITS: 21.6
MTTF (YRS): 5288

The parameters used to calculate this failure rate are as follows:

<table>
<thead>
<tr>
<th>Cf</th>
<th>Ea</th>
<th>B</th>
<th>Tu</th>
<th>Vu</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>0.7</td>
<td>0</td>
<td>25</td>
<td>5.5</td>
</tr>
</tbody>
</table>

The reliability data follows. At the start of this data is the device information. This is a description of the device for this report. Following this is the assembly information. This section includes a description of the assembly vehicle used to generate this reliability data for both qualifications and monitors. The next section is the detailed reliability data for each stress found in the qualification / monitor. If there are additional assemblies used as part of this report, a description of each will follow which includes the respective reliability data for that assembly. The reliability data section includes the latest data available.

Device Information:
- **Device:** DS3231S
- **Process:** E6E-2P2M, HPVt, EPROM, LV-NRDSD
- **Passivation:** Passivation w/Nov TEOS Oxide-OxyNitride
- **Die Size:** 89 x 141
- **Number of Transistors:** 0
- **Interconnect:** Aluminum / 1% Silicon / 0.5% Copper
- **Gate Oxide Thickness:** 150 Å

Assembly Information:
- **Qualification Vehicle:** DS3231S
- **Assembly Site:** ATP (Amkor, PI)
- **Pin Count:** 16
- **Package Type:** SOIC w/Soldered Crystal
- **Body Size:** 300x2.3
- **Mold Compound:** Sumitomo G600
- **Lead Frame:** Etched Copper CDA194
- **Lead Finish:** SnPb Plate
- **Die Attach:** 84-1 LMISR4 Epoxy Silverfilled Ablebond
- **Bond Wire / Size:** Au / 1.0 mil
- **Flammability:** UL 94-V0
- **Moisture Sensitivity (JEDEC J-STD20A):** Level 3
- **Date Code Range:** 0453 to 0453

ELECTRICAL CHARACTERIZATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE</th>
<th>CONDITION</th>
<th>READPOINT</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0453</td>
<td>EOS/ESD S5.1 HBM 500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0453</td>
<td>EOS/ESD S5.1 HBM 1000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0453</td>
<td>EOS/ESD S5.1 HBM 1500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>Date Code</td>
<td>Condition</td>
<td>Readpoint</td>
<td>QTY</td>
<td>Fails</td>
<td>FA#</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0453</td>
<td>EOS/ESD S5.1 HBM 1800 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0453</td>
<td>EOS/ESD S5.1 HBM 2000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0453</td>
<td>JESD78, I-TEST 85C</td>
<td>2</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>LATCH-UP</td>
<td>0453</td>
<td>JESD78, Vsupply TEST 125C</td>
<td>2</td>
<td>DYS</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING LIFE

<table>
<thead>
<tr>
<th>Description</th>
<th>Date Code</th>
<th>Condition</th>
<th>Readpoint</th>
<th>QTY</th>
<th>Fails</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>0453</td>
<td>125C, 5.5 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

STORAGE LIFE

<table>
<thead>
<tr>
<th>Description</th>
<th>Date Code</th>
<th>Condition</th>
<th>Readpoint</th>
<th>QTY</th>
<th>Fails</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE LIFE</td>
<td>0453</td>
<td>125C</td>
<td>1000 HRS</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

FAILURE RATE:

- MTTF (YRS): 5288
- FITS: 21.6
- FITS: 21.6