PRODUCT RELIABILITY REPORT
FOR

DS1843, Rev A1

Maxim Integrated Products

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Don Lipps
Manager, Reliability Engineering
Maxim Integrated Products
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email: don.lipps@maxim-ic.com
ph: 972-371-3739
fax: 972-371-6016
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim products:

DS1843, Rev A1

In addition, Maxim's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maxim-ic.com/TechSupport/dsreliability.html.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[AfT = \exp\left(\frac{(Ea/k) \times (1/Tu - 1/Ts)}{ts} \right) = \frac{tu}{ts} \]

\(AfT = \) Acceleration factor due to Temperature
\(tu = \) Time at use temperature (e.g. 55°C)
\(ts = \) Time at stress temperature (e.g. 125°C)
\(k = \) Boltzmann's Constant (8.617 x 10^{-5} eV/°K)
\(Tu = \) Temperature at Use (°K)
\(Ts = \) Temperature at Stress (°K)
\(Ea = \) Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[AfV = \exp\left(B \times (Vs - Vu)\right) \]

\(AfV = \) Acceleration factor due to Voltage
\(Vs = \) Stress Voltage (e.g. 7.0 volts)
\(Vu = \) Maximum Operating Voltage (e.g. 5.5 volts)
\(B = \) Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, \(Fr \), is related to the acceleration during life test by:

\[Fr = \frac{X}{(ts \times AfV \times AfT \times N \times 2)} \]

\(X = \) Chi-Sq statistical upper limit
\(N = \) Life test sample size
The calculated failure rate for this device/process is:

\[
\text{MTTF} = \frac{1}{\text{Fits}}
\]

NOTE: MTTF is frequently used interchangeably with MTBF.

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[
\text{MTTF} = \frac{1}{\text{Fits}}
\]

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:
- **Process:** E6H-2P2M, HPVt, PF-Ring, TCZ, ALOCOS: GOI
- **Passivation:** Passivation w/Nov TEOS Oxide-Nitride
- **Die Size:** 44.88189 x 38.976378
- **Number of Transistors:** 717
- **Interconnect:** Aluminum / 0.5% Copper
- **Gate Oxide Thickness:** 150 Å

ESD HBM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAI LS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD22-A114 HBM 500 VOLTS</td>
<td>PUL’S</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD22-A114 HBM 1000 VOLTS</td>
<td>PUL’S</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD22-A114 HBM 2000 VOLTS</td>
<td>PUL’S</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD22-A114 HBM 4000 VOLTS</td>
<td>PUL’S</td>
<td>1</td>
<td>3</td>
<td>1 No FA</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD22-A114 HBM 8000 VOLTS</td>
<td>PUL’S</td>
<td>1</td>
<td>3</td>
<td>3 No FA</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAI LS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD78A, I-TEST 125C</td>
<td></td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LATCH-UP V</td>
<td>0840 DS1843 QU904638A</td>
<td>JESD78A, V-SUPPLY TEST 125C</td>
<td></td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAI LS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>0704 DS3205 QJ718179BB</td>
<td>125C, 5.5 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rev B, 1/3/08
<table>
<thead>
<tr>
<th>Device ID</th>
<th>Part Number</th>
<th>Description</th>
<th>Hours</th>
<th>Volts</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0722</td>
<td>DS1311</td>
<td>QJ718603BB 125C, 5.5 VOLTS</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0722</td>
<td>DS1337C</td>
<td>VH717021AB 125C, 5.5 VOLTS</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0723</td>
<td>DS1372</td>
<td>QD728621BA 125C, 5.5 VOLTS</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0729</td>
<td>DS4412</td>
<td>QD743601AB 125C, 5.5V (PSA) & 3.0V (PSB)</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0806</td>
<td>DS2710</td>
<td>QJ751638CC 125C, 5.5 VOLTS</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0824</td>
<td>DS2482-101</td>
<td>QJ840074AE 125C, 5.5 VOLTS</td>
<td>1000</td>
<td>1000</td>
<td>5.5V</td>
</tr>
<tr>
<td>0840</td>
<td>DS1843</td>
<td>QU904638A 125C, 5.5 VOLTS</td>
<td>192</td>
<td>192</td>
<td>5.5V</td>
</tr>
</tbody>
</table>

Total:

- **Failure Rate:** 0
- **MTTF (YRS):** 45549
- **FITS:** 2.5
- **Device Hours:** 365609300
- **Fails:** 0

Rev B, 1/3/08