Single-Supply Integrated Optical Module for HR and SpO2 Measurement

Low Power Integrated In-Ear Heart Rate Monitor

Please check latest availability status for a specific part variant.


The MAXM86161 is an ultra-low-power, completely integrated, optical data-acquisition system. On the transmitter side, the MAXM86161 has three programmable high-current LED drivers. On the receiver side, MAXM86161 consists of a high efficiency PIN photo-diode and an optical readout channel. The optical readout has a low-noise signal conditioning analog front-end (AFE), including 19-bit ADC, an industry-lead ambient light cancellation (ALC) circuit, and a picket fence detect and replace algorithm. Due to the low power consumption, compact size, easy, flexible-to-use, and industry lead ambient light rejection capability of the MAXM86161, the device is ideal for a wide variety of optical sensing applications such as heart rate detection and pulse oximetry.

The MAXM86161 operates on a 3.0V to 5.5V VLED single supply voltage. It supports a standard compatible interface and fully autonomous operation. Each device has a large 128-word built-in FIFO. The MAXM86161 is available in compact 2.9mm x 4.3mm x 1.4mm, 14-pin OLGA package.

MAXM86161: Simplified Block Diagram MAXM86161: Simplified Block Diagram Enlarge+

Key Features

  • Complete Single-Channel Optical Data Acquisition System
  • Built-In Algorithm Further Enhances Rejection of Fast Ambient Transients
  • Optimized Architecture for Reflective Heart Rate and SpO2 Monitoring
  • Low Dark Current Noise of < 50pA RMS (Sample-to-Sample Variance)
  • Lower Effective Dark Current Noise Achievable through Multiple Sample Modes and On-Chip Averaging
  • High-Resolution 19-bit Charge Integrating ADC
  • Three Low-Noise 8-Bit LED Current DACs
  • Excellent Dynamic Range > 89dB in White Card Loop-Back Test (Sample-to-Sample Variance)
  • Excellent Ambient Range and Rejection Capability
    • > 100μA Ambient Photodetector Current
    • > 70dB Ambient Rejection at 120Hz
  • Ultra-Low-Power Operation for Wearable Devices
    • Low-Power Operation, Optical Readout Channel < 10μA, Typical at 25sps
    • Short Exposure Integration Period of 14.8μs, 29.4μs, 58.7μs, 117.3μs
    • Low Shutdown Current = 1.6μA (typ)
  • Miniature 2.9mm x 4.3mm x 1.4mm, 14-pin OLGA Package
  • -40°C to +85°C Operating Temperature Range


  • Optimized for In-Ear Applications
  • Miniature Package for Mobile Applications
  • Optimized Performance to Detect:
  • Continuous Monitoring for HRV
  • Optical Heart Rate
  • Oxygen Saturation (SpO2)

Pricing Notes:
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific and version-specific prices and delivery, please see the price and availability page or contact an authorized distributor.

MAXM86161EVSYS: Evaluation System for the MAXM86161
Request Reliability Report for: MAXM86161 
Device   Fab Process   Technology   Sample size   Rejects   FIT at 25°C   FIT at 55°C   Material Composition  

Note : The failure rates are summarized by technology and mapped to the associated material part numbers. The failure rates are highly dependent on the number of units tested.

Quality Management System >
Environmental Management System >


Related Resources

Complete Optical Biosensing Module with Ultra-Low-Power Biometric Sensor Hub

  • Complete Biometric Sensor Hub
  • World-Class Algorithm for Wearable Applications

±0.25°C Accurate I2C Temperature Sensor

  • High Accuracy
  • Long Battery Life
  • Small Size

1-Wire® Temperature Sensor with ±1ºC Accuracy

  • 1-Wire Interface Requires Only One Port Pin for Communication
  • Unique 64-bit Serial Code Stored in an On-Board ROM
  • External Resistor Selects Address for Location Identification