

Maxim Integrated Page 1 of 26

MAX32663 Secure Bootloader
User Guide
UG7232; Rev 0; 9/20

Abstract
The MAX32663 secure bootloader user guide provides flow charts; timing diagrams; GPIOs/pin
usage; I2C interface protocols, and an annotated trace between the host microcontroller;
MAX32663 bootloader protocol definitions; and the MAX32663 for in-application programming
(IAP).

Maxim Integrated Page 2 of 26

Table of Contents
Overview .. 5
Detailed Description ... 6
MAX32663 Bootloader Memory Map ... 8
Bootloader Pin Definitions .. 8
Activating the Bootloader ... 9

Entering Bootloader Mode from Application Mode .. 9
Host Serial Command Using Power-On or Hard Reset ... 9
Without Using the RSTN Pin or GPIO Pins ... 9
Using the Enter Bootloader GPIO Pin and the RSTN Pin .. 9

Entering Application Mode from Bootloader Mode ...10
A Valid Application Is Programmed ..10
Using the EBL GPIO Pin and the RSTN Pin ...10

Configuring the Bootloader ...11
Bootloader Configuration Parameters ..11

EBL Pin Check (1 bit) ...11
EBL Pin Assignment (4 Bits) ..11
EBL GPIO Pin Polarity (1 Bit) ...11
Timeout Mode (2 Bits) ..12
Timeout Window (8 Bits) ..12

Bootloader Interfaces ..13

I2C Interface ..13

I2C Bit Transfer Process ..13

I2C Write ..14

I2C Read..15
Communicating with the Bootloader ..16

MAX32663 Bootloader Message Protocol Definitions ..16
MAX32663 In-Application Programming, Annotated Trace ..20

Appendix A: Maxim Special Bootloader (.msbl) File Format ..22
Appendix B: Converting the .bin File to the .msbl File Format ...24
Appendix C: Entering Download Mode in Application ..25
Revision History ..26

Maxim Integrated Page 3 of 26

List of Figures

Figure 1. MAX32663 bootloader top-level flow chart. ... 6

Figure 2. MAX32663 bootloader application loader flow chart. ... 7

Figure 3. MAX32663 bootloader memory map. .. 8

Figure 4. Entering bootloader mode through the EBL GPIO and RSTN pins. 9

Figure 5. Entering application mode through the EBL GPIO and RSTN pins.10

Figure 6. I2C write/read data transfer from host microcontroller. ...13

Figure 7. Hex header data in the .msbl. ..22

Maxim Integrated Page 4 of 26

List of Tables

Table 1. GPIO and RSTN Pin Descriptions .. 8
Table 2. Read Status Byte Values...14
Table 3. MAX32663 Bootloader Message Protocol Definitions ..16
Table 4. Application Programming Example by Using the .msbl File ...20
Table 5. Example .msbl File Format ..23

Maxim Integrated Page 5 of 26

Overview
The MAX32663 secure bootloader is embedded firmware that gives the MAX32663 the ability to
update application code provided by a host microcontroller. The bootloader can be accessed
through the I2C interface. These interfaces provide the data channel and the control channel for
communicating between the host microcontroller and the MAX32663. The bootloader application
load mode is enabled and disabled by either a serial command or hardware connectivity. The
serial command is interpreted by the user application, which configures the device to enter
bootloader mode. When using the hardware connectivity option, a single GPIO pin and the RSTN
pin on the MAX32663 can be configured to allow the MAX32663 to enter bootloader mode.

Maxim Integrated Page 6 of 26

Detailed Description
Figure 1 and Figure 2 show the program flow for the bootloader.

Figure 1. MAX32663 bootloader top-level flow chart.

HAS A VALID
APPLICATION BEEN FLASHED

INTO
THE DEVICE?

HAS THE DEVICE RECEIVED
THE ENTER BOOTLOADER COMMAND

SINCE RESTART?
(0x01, 0x00, 0x08)

NO

YES

IS THE
ENTER_BL_CHECK

 ENABLED?

CHECK
EXIT_BL_MODE

DECREMENT TIMEOUT BY 1ms

HAS THE DEVICE RECEIVED THE
FOLLOWING COMMANDS SINCE RESTART?

(0x01, 0x00, 0x08)

TIMEOUT = 0?

NO

NO

WAIT UNTIL TIMEOUT ENDS

DOES THE EBL PIN MATCH
WITH EBL_POL?

YES

YES

NO

REMAIN IN BOOTLOADER

NO

BY DEFAULT,
ENTER_BL_CHECK

IS DISABLED

YES

NO

YES

JUMP IMMEDIATELY

DEVICE IS
NOW IN

APPLICATION
MODE

DEVICE IS
NOW IN

BOOTLOADER
MODE

DEVICE IS
NOW IN

BOOTLOADER
MODE

DEVICE IS
NOW IN

BOOTLOADER
MODE

EITHER A POWER-ON
CYCLE OR RSTN

DEVICE PIN
ASSERTION

 BEGINS
 THE POWER-UP

SEQUENCE
OF THE DEVICE

DEVICE POWER-ON

ASSERT RSTN PIN

WAIT 10ms

DEASSERT RSTN PIN

HAS 20ms PASSED
OR IS THE ENTER BOOTLOADER

COMMAND RECEIVED?

NO

YES

Maxim Integrated Page 7 of 26

Figure 2. MAX32663 bootloader application loader flow chart.

Maxim Integrated Page 8 of 26

MAX32663 Bootloader Memory Map
The MAX32663 bootloader uses the first two pages of MAX32663 flash memory and 64 bytes at
the end of the flash memory for bootloader data starting from 0x3FFC0, as shown in Figure 3.
The application start address is 0x4000 and the maximum size of an application that can be
programmed is 245696 bytes.

Figure 3. MAX32663 bootloader memory map.

Bootloader Pin Definitions
Table 1 lists the descriptions for the GPIO and RSTN pins of the MAX32663 bootloader.

Table 1. GPIO and RSTN Pin Descriptions
MAX32663 DESCRIPTION DIRECTION FROM MAX32663 SIDE
Pin RSTN Reset_N Input
GPIO P0.0 SWDIO Input/Output
GPIO P0.1 SWDCLK Input
GPIO P0.2 I2C0_SCL Input
GPIO P0.3 I2C0_SDA Input/Output

Maxim Integrated Page 9 of 26

Activating the Bootloader

Entering Bootloader Mode from Application Mode
This section defines several methods for entering bootloader mode from application mode.

Host Serial Command Using Power-On or Hard Reset
The MAX32663 can enter bootloader mode by performing the following steps:

1. Power cycle the MAX32663 or perform a hard reset with the RSTN pin.

2. The host microcontroller sends the command 0x01, 0x00, 0x08 over the selected interface
to the MAX32663 within 20ms of the reset operation. This is a signal to the cold boot
process to enter bootloader mode.

Without Using the RSTN Pin or GPIO Pins
“Boot_mode” is a 4-byte flag located at 0x3FFCC. Change the “boot_mode” flag in the flash
memory to 0xAAAAAAAA for staying in the bootloader even when there is a valid application in
the memory. The number of write cycles to flash the memory is limited to 10,000 cycles.
Consequently, this method should be not be used frequently. In addition, the bootloader firmware
can become inoperable if power is lost during this operation or if the code is not correctly
implemented.

Using the Enter Bootloader GPIO Pin and the RSTN Pin
Another method for entering bootloader mode is to use the enter bootloader (EBL) GPIO pin and
the RSTN pin. The EBL pin is disabled in the bootloader by default and can be enabled by
command. The MAX32663 enters bootloader mode based on the sequencing of the RSTN pin
and the EBL pin.
The sequence to enter bootloader mode using the EBL GPIO pin and the RSTN pin is as follows:

1. Set the RSTN pin low for 10ms.

2. During that time, set the EBL GPIO pin to low. This polarity is configurable and active-low
for bootloader mode by default.

3. After 10ms, set the RSTN pin high.

4. After an additional 20ms, the MAX32663 is in bootloader mode.

Figure 4. Entering bootloader mode through the EBL GPIO and RSTN pins.

Maxim Integrated Page 10 of 26

Entering Application Mode from Bootloader Mode
This section discusses various methods of entering application mode from bootloader mode.

A Valid Application Is Programmed
If a valid application is programmed into the MAX32663 using in-application programming (IAP),
the bootloader automatically runs the application code (assuming that the EBL GPIO pin is
disabled) after reset.

Using the EBL GPIO Pin and the RSTN Pin
The MAX32663 enters application mode based on the sequencing of the EBL GPIO pin and the
RSTN pin if there is a programmed valid application. The EBL GPIO pin is disabled in the
bootloader by default and can be enabled by the serial commands.
The sequence to enter application mode using the EBL GPIO pin and the RSTN pin is as follows:

1. Set the RSTN pin low for 10ms.

2. During that time, set the EBL GPIO pin to high. This polarity is configurable and active-
low for bootloader mode by default.

3. After 10ms, set the RSTN pin high.

4. After an additional 20ms, the MAX32663 is in application mode.

Figure 5. Entering application mode through the EBL GPIO and RSTN pins.

Maxim Integrated Page 11 of 26

Configuring the Bootloader

Bootloader Configuration Parameters
Bootloader configuration parameters are used to enable and disable some functions of the
bootloader. These parameters are located at the memory address 0x3FFD0. The bootloader
configuration can be changed by the serial commands. Definitions and default values for the bit
fields are provided as follows:

EBL Pin Check (1 bit)
According to the enter_bl_check bit, the bootloader checks the status of the EBL GPIO pin at
startup. If the EBL pin is left floating after the EBL pin check is enabled, this can lead to
unexpected behavior such as getting stuck in bootloader mode even if there is a valid application.

BIT VALUE OPERATION
0 Do not check EBL pin (Default)
1 Check EBL pin

EBL Pin Assignment (4 Bits)
The ebl_pin bits are used to choose the EBL GPIO pin. The selected pin is checked at bootloader
startup to make a decision to stay in the bootloader or jump to the application if the EBL GPIO pin
check is enabled by the enter_bl_check bit.

BIT VALUE OPERATION
0b0000 P0.0
0b0001 P0.1 (Default)
0b0010 P0.2
0b0011 P0.3
0b0100 P0.4
0b0101 P0.5
0b0110 P0.6
0b0111 P0.7
0b1000 P0.8
0b1001 P0.9
0b1010 P0.10
0b1011 P0.11
0b1100 P0.12
0b1101 —
0b1110 —
0b1111 —

EBL GPIO Pin Polarity (1 Bit)
The EBL GPIO pin is used to keep the device at bootloader mode after reset if enter_bl_check is
enabled. The ebl_pol bit defines whether the polarity EBL GPIO pin enters bootloader mode.

BIT VALUE OPERATION

0 Active-low signal puts the device in bootloader
mode (Default)

1 Active-high signal puts the device in bootloader
mode

Maxim Integrated Page 12 of 26

Timeout Mode (2 Bits)
The exit_bl_mode bits define timeout mode for the bootloader.

BIT VALUE OPERATION
0b00 Jump after 20ms
0b01 Wait for programmable delay (ebl_timeout) (Default)
0b10 Remain in bootloader mode until exit command is received
0b11 —

Timeout Window (8 Bits)
The timeout window is the time to wait for a serial command from a host to stay in bootloader
mode before jumping to a valid application. The wait time is calculated according to the following
formula:
tWAIT = 20ms + (EBL_TIMEOUT x10)ms

Maxim Integrated Page 13 of 26

Bootloader Interfaces

I2C Interface
The I2C bus expects SCL and SDA to be open-drain signals and that the SDA and SCL pad
circuits are automatically configured as open-drain outputs for the MAX32663 bootloader. The
I2C interface supports transfer rates up to 400kbit/s (fast mode). The I2C slave address is 0xAA
at default/

I2C Bit Transfer Process
The SDA and SCL signals are open-drain circuits. Each has an external pullup resistor that
ensures each circuit is high when idle. The I2C specification states that during data transfer, the
SDA line can change state only when the SCL is low, and when the SCL is high, the SDA is stable
and able to be read. Typical I2C write/read transactions are shown in Figure 6.

Figure 6. I2C write/read data transfer from host microcontroller.

The read status byte indicates the success or failure of the write transaction. The read status
byte must be accessed after each write transaction to the device to ensure that the write
transaction process is understood and any errors in the device command
d handling can be corrected. The read status byte value is summarized in Table 2.

START 1 0 1 0 1 0 1 0

LSB

SLAVE
ACK FAMILY BYTE

LSB

SLAVE
ACK

COMMAND
INDEX BYTE

LSB

SLAVE
ACK

WRITE BYTE
0

LSB

SLAVE
ACK

WRITE DATA
BYTE N

(IF NECESSARY)

LSB

SLAVE
ACK STOP

START 1 0 1 0 1 0 1 1

LSB

SLAVE
ACK

READ STATUS
BYTE

LSB

MASTER
NACK

WAIT CMD DELAY FOR
DATA READY STOP

TYPICAL I2C WRITE TRANSACTION
MSB MSB

SLAVE ADDRESS "0"
INDICATES

WRITE

MSB MSB MSB

MSB MSB

SLAVE ADDRESS "1"
INDICATES

READ

START 1 0 1 0 1 0 1 0

LSB

SLAVE
ACK FAMILY BYTE

LSB

SLAVE
ACK

COMMAND
INDEX BYTE

LSB

SLAVE
ACK

WRITE BYTE 0
(IF NECESSARY)

LSB

SLAVE
ACK STOP

START 1 0 1 0 1 0 1 1

LSB

SLAVE
ACK

READ STATUS
BYTE

LSB

MASTER
ACK

WAIT CMD DELAY FOR
DATA READY

READ BYTE N
(IF NECESSARY)

LSB

MASTER
NACK STOPREAD BYTE 0

LSB

MASTER
ACK

TYPICAL I2C READ TRANSACTION

MSB

SLAVE ADDRESS "0"
INDICATES

WRITE

MSB MSB MSB

MSB

SLAVE ADDRESS "1"
INDICATES

READ

MSB MSB MSB

Maxim Integrated Page 14 of 26

Table 2. Read Status Byte Values
READ STATUS BYTE

VALUE DESCRIPTION

0xAA SUCCESS. The write transaction was successful.
0x01 ERR_UNAVAIL_CMD. Illegal Family Byte and/or Command Byte was used.
0x02 ERR_UNAVAIL_FUNC. This function is not implemented.
0x03 ERR_DATA_FORMAT. Incorrect number of bytes sent for the requested Family Byte.
0x04 ERR_INPUT_VALUE. Illegal configuration value was attempted to be set.
0x80 ERR_BTLDR_GENERAL. General error while receiving/flashing a page during the

bootloader sequence.
0x81 ERR_BTLDR_CHECKSUM. Checksum error while decrypting/checking page data.
0x82 ERR_BTLDR_AUTH. Authorization error.
0x83 ERR_BTLDR_INVALID_APP. Application not valid.
0x84 ERR_BTLDR_APP_NOT_ERASED. Application was not erased before trying to flash a new

one.
0xFE ERR_TRY_AGAIN. Device is busy. Try again.
0xFF ERR_UNKNOWN. Unknown error.

I2C Write
The process for an I2C write data transfer is as follows:

1. The bus master indicates a data transfer to the device with a START condition.

2. The master transmits 1 byte with the 7-bit slave address and a single write bit set to zero.
The 8 bits transferred as a slave address for the MAX32663 are 0xAA for a write
transaction.

3. During the next SCL clock that follows the write bit, the master releases SDA. During this
clock period, the device responds with an ACK by pulling SDA low.

4. The master senses the ACK condition and begins to transfer the Family Byte. The master
drives data on the SDA circuit for each of the 8 bits of the Family Byte and then floats SDA
during the ninth bit to allow the device to reply with the ACK indication.

5. The master senses the ACK condition and begins to transfer the Command Index Byte.
The master drives data on the SDA circuit for each of the 8 bits of the Command Index
Byte and then floats SDA during the ninth bit to allow the device to reply with the ACK
indication.

6. The master senses the ACK condition and begins to transfer the Write Data Byte 0. The
master drives data on the SDA circuit for each of the 8 bits of the Write Data Byte 0 and
then floats SDA during the ninth bit to allow the device to reply with the ACK indication.

7. The master senses the ACK condition and can begin to transfer another Write Data Byte
if required. The master drives data on the SDA circuit for each of the 8 bits of the Write
Data Byte and then floats SDA during the ninth bit to allow the device to reply with the
ACK indication. If another Write Data Byte is not required, the master indicates the transfer
is complete by generating a STOP condition. A STOP condition is generated when the
master pulls SDA from a low to high while SCL is high.

8. The master waits for a period of CMD_DELAY (60µs) for the device to have the data
ready.

9. The master indicates a data transfer to the slave with a START condition.

10. The master transmits 1 byte with the 7-bit slave address and a single write bit set to one.
This is an indication from the master to read the device from the previously written location
defined by the Family Byte and the Command Index. The master then floats SDA and

Maxim Integrated Page 15 of 26

allows the device to drive SDA to send the Status Byte. The Status Byte reveals the
success of the previous write sequence. After the Status Byte is read, the master drives
SDA low to signal the end of data to the device.

11. The master indicates the transfer is complete by generating a STOP condition.

12. After the completion of the write data transfer, the Status Byte must be analyzed to
determine if the write sequence was successful and the device has received the intended
command.

I2C Read
The process for an I2C read data transfer is as follows:

1. The bus master indicates a data transfer to the device with a START condition.

2. The master transmits 1 byte with the 7-bit slave address and a single write bit set to zero.
The 8 bits transferred as a slave address for the MAX32663 are 0xAA for a write
transaction. This write transaction precedes the actual read transaction to indicate to the
device which section is to be read.

3. During the next SCL clock that follows the write bit, the master releases SDA. During this
clock period, the device responds with an ACK by pulling SDA low.

4. The master senses the ACK condition and begins to transfer the Family Byte. The master
drives data on the SDA circuit for each of the 8 bits of the Family Byte and then floats SDA
during the ninth bit to allow the device to reply with the ACK indication.

5. The master senses the ACK condition and begins to transfer the Command Index Byte.
The master drives data on the SDA circuit for each of the 8 bits of the Command Index
Byte and then floats SDA during the ninth bit to allow the device to reply with the ACK
indication.

6. The master senses the ACK condition and begins to transfer the Write Data Byte if
necessary for the read instruction. The master drives data on the SDA circuit for each of
the 8 bits of the Write Data Byte and then floats SDA during the ninth bit to allow the device
to reply with the ACK indication.

7. The master indicates the transfer is complete by generating a STOP condition.

8. The master waits for a period of CMD_DELAY (60µs) for the device to have its data ready.

9. The master indicates a data transfer to the slave with a START condition.

10. The master transmits 1 byte with the 7-bit slave address and a single write bit set to 1.
This is an indication from the master to read the device from the previously written location
defined by the Family Byte and the Command Index. The master then floats SDA and
allows the device to drive SDA to send the Status Byte. The Status Byte reveals the
success of the previous write sequence. After the Status Byte is read, the master drives
SDA low to acknowledge the byte.

11. The master floats SDA and allows the device to drive SDA to send Read Data Byte 0.
After Read Data Byte 0 is read, the master drives SDA low to acknowledge the byte.

12. The master floats SDA and allows the device to drive SDA to send the Read Data Byte N.
After Read Data Byte N is read, the master drives SDA low to acknowledge the byte. This
process continues until the device has provided all the data that the master expects based
upon the Family Byte and Command Index Byte definition.

13. The master indicates the transfer is complete by generating a STOP condition.

Maxim Integrated Page 16 of 26

Communicating with the Bootloader

MAX32663 Bootloader Message Protocol Definitions
Table 3 lists the MAX32663 bootloader message protocol definitions.

Table 3. MAX32663 Bootloader Message Protocol Definitions
HOST COMMAND MAX32663 BOOTLOADER

FAMILY
NAME DESCRIPTION FAMILY

BYTE
INDEX
BYTE WRITE BYTES RESPONSE BYTES

Device Mode Select the device
operating mode.

0x01 0x00 0x00: Exit bootloader
mode.
0x02: Reset. (The
application must
implement this.)
0x08: Enter bootloader
mode. (The application
must implement this. See
section Host Serial
Command Using Power-
On or Hard Reset.)

—

Device Mode Read the device
operating mode.

0x02 0x00 (The application must
implement this.)

0x00: Application operating
mode.
0x08: Bootloader operating
mode.

Bootloader
Flash

Set the initialization
vector bytes.
This is not required
for a non-secure
bootloader.

0x80 0x00 Use the 11 bytes 0x28 to
0x32 from the .msbl file.

—

Bootloader
Flash

Set the
authentication
bytes.
This is not required
for a non-secure
bootloader.

0x80 0x01 Use the 16 bytes 0x34 to
0x43 from the .msbl file.

—

Bootloader
Flash

Set the number of
pages.

0x80 0x02 0x00: Number of pages
specified by byte 0x44 from
the .msbl file. (Total of 2
bytes)

—

Bootloader
Flash

Erase the
application flash
memory.

0x80 0x03 — —

Bootloader
Flash

Send the page
values.

0x80 0x04 The first page is specified
by byte 0x4C from
the .msbl file. The total
bytes for each message
protocol are the page size
+ 16 bytes (consisting of
the page CRC32 and 12
dummy bytes).

—

Bootloader
Flash

Erase Page
Memory

0x80 0x05 0x00: Number of pages to
be erased (Total of 2
bytes).

—

Bootloader
Information

Get the bootloader
version.

0x81 0x00 — Major version byte, minor
version byte, revision byte

Bootloader
Information

Get the page size
in bytes.

0x81 0x01 — Upper byte of page size, lower
byte of page size

Maxim Integrated Page 17 of 26

HOST COMMAND MAX32663 BOOTLOADER
FAMILY
NAME DESCRIPTION FAMILY

BYTE
INDEX
BYTE WRITE BYTES RESPONSE BYTES

Bootloader
Configuration

Save bootloader
configurations.
Write this
command after
changes are made
to any of the
Bootloader
Configuration
settings. The
bootloader should
be restarted for the
new configuration
to be active.

0x82 0x00 — —

Bootloader
Configuration

Select
enter_bl_check.
Configure the
device to check the
state of the EBL
GPIO pin to decide
whether to enter
bootloader mode.

0x82 0x01 0x00, 0x00: The device
does not check the state of
the EBL GPIO pin.
(Default)
0x00, 0x01: The device
checks the state of the EBL
GPIO pin before entering
bootloader mode.

—

Bootloader
Configuration

Select the EBL
GPIO pin (ebl_pin).
Select which pin to
use as the EBL
GPIO pin. This
command is only
used if the
Bootloader
Configuration enter
bootloader check is
set to 1 (0x82 0x01
0x00 0x01).

0x82 0x01 0x01, 0x00–0x09:
Acceptable range for the
16-bump WLP package.
0x01, 0x00–0x0B:
Acceptable range for the
20-pin TQFN-EP and the
24-pin TQFN-EP.

—

Bootloader
Configuration

Select the active
state for the EBL
GPIO pin (ebl_pol).
This command is
only used if the
Bootloader
Configuration enter
bootloader check is
set to 1 (0x82 0x01
0x00 0x01).

0x82 0x01 0x02, 0x00: Active-low.
The device enters
bootloader mode if the EBL
GPIO pin is held low during
power-on or during a RSTN
device pin cycle (Default)
0x02, 0x01: Active-high.
The device enters
bootloader mode if the EBL
GPIO pin is held high
during power-on or during
a RSTN device pin cycle.

—

Maxim Integrated Page 18 of 26

HOST COMMAND MAX32663 BOOTLOADER
FAMILY
NAME DESCRIPTION FAMILY

BYTE
INDEX
BYTE WRITE BYTES RESPONSE BYTES

Bootloader
Configuration

Exit bootloader
mode
(exit_bl_mode).
Determines how
the bootloader
enters application
mode.

0x82 0x02 0x00, 0x00: Enter
application mode if an
application is present and
valid. If EBL GPIO pin was
used to enter bootloader
mode, the jump does not
occur until the EBL GPIO
pin is in a non-active state
(Default).
0x00, 0x01: Wait for a
programmable delay. If no
commands are received
and a valid application is
present, enter application
mode.
0x00, 0x02: Stay in
bootloader mode.

—

Bootloader
Configuration

Configure timeout
exit (ebl_timeout).
Set the length of
the additional
programmable
timeout to use
when the
Bootloader
Configuration exit
bootloader mode is
set to 1 (AA 82 02
01).
The system
requires a 20ms
non-programmable
delay to switch to
application mode.

0x82 0x02 0x01,0x00–0xFF: Timeout
Note: Timeout is cancelled
if any commands are
received during this
period.

—

Bootloader
Configuration

Read bootloader
check configuration
(enter_bl_check).
Read the device
configuration to
check the state of
the EBL GPIO pin
to decide whether
to enter bootloader
mode.

0x83 0x01 0x00 0x00: The device does not
check the state of the EBL
GPIO pin.
0x01: The device checks the
state of the EBL GPIO pin
before entering bootloader
mode.

Bootloader
Configuration

Read the EBL
GPIO pin (ebl_pin).
Read which pin is
used as the EBL
GPIO pin. This
command is only
used if the
Bootloader
Configuration enter
bootloader check is
set to 1 (AA 82 01
00 01).

0x83 0x01 0x01 0x00–0x09: Expected range
for the 16-bump WLP
package.
0x00–0x0B: Expected range
for the 20-pin TQFN-EP and
the 24-pin TQFN-EP

Maxim Integrated Page 19 of 26

HOST COMMAND MAX32663 BOOTLOADER
FAMILY
NAME DESCRIPTION FAMILY

BYTE
INDEX
BYTE WRITE BYTES RESPONSE BYTES

Bootloader
Configuration

Read the active
state for the EBL
GPIO pin (ebl_pol).

0x83 0x01 0x02 0x00: Active-low. The device
enters bootloader mode if the
EBL GPIO pin is held low
during power-on or during a
RSTN device pin cycle.
0x01: Active-high. The device
enters bootloader mode if the
EBL GPIO pin is held high
during power-on or during a
RSTN device pin cycle.

Bootloader
Configuration

Read exit
bootloader mode
configuration.
Read how the
bootloader enters
application mode.

0x83 0x02 0x00 0x00: If an application is
present and valid, enter
application mode. If the EBL
GPIO pin was used to enter
bootloader mode, the jump
does not occur until the EBL
GPIO pin is in a non-active
state (Default).
0x01: Wait for a
programmable delay. If no
commands are received and a
valid application is present,
enter application mode.
0x02: Stay in bootloader
mode.

Bootloader
Configuration

Read exit timeout
configuration
(ebl_timeout).
Read the timeout to
use when the
Bootloader
Configuration exit
bootloader mode is
set to 1 (AA 82 02
01).
Timeout is
cancelled if any
commands are
received during this
period.

0x83 0x02 0x01 0x00–0xFF: Timeout.

Identity Read the MCU
type.

0xFF 0x00 — 0x00: MAX32625.
0x01: MAX32660/MAX32663.

Maxim Integrated Page 20 of 26

MAX32663 In-Application Programming, Annotated Trace
The MAX32663 bootloader firmware supports IAP.
This section shows the necessary commands to flash the application to MAX32663. Each
8192-byte page data is appended with 4-byte CRC32 of the page and 12 bytes of 0x00, therefore
payload of the bootloader flash page message is 8208 bytes for each page. The number of pages
can be found by computing:

binary _ size
1

8192

+

Necessary commands to flash an application image of 25922 (0x6542) bytes are shown in the
following example, where the number of pages is calculated as:

25922 1 5
8192

 + =

Table 4 shows how to download the application by using the .msbl file. See Appendix A for more
details about the .msbl file.

Table 4. Application Programming Example by Using the .msbl File

HOST COMMAND COMMAND DESCRIPTION
MAX32663

BOOTLOADER
RESPONSE

RESPONSE
DESCRIPTION

0x01 0x00 0x08* Set mode to 0x08 for bootloader
mode.
Note that this is one of the
alternative methods for entering
bootloader mode. If this command
is used, the EBL pin is not
necessary See the Entering
Bootloader Mode from the
Application Mode section for
alternative ways to enter bootloader
mode.

0xAA No error.

0x02 0x00* Read mode. 0xAA 0x08 No error. Mode is
bootloader.

0xFF 0x00+ Get ID and MCU type. 0xAA 0x01 No error. MCU is
MAX32660/MAX32663.

0x81 0x00 Read bootloader firmware version. 0xAA 0xXX
0xXX 0xXX

No error. Version is
XX.XX.XX

0x81 0x01 Read bootloader page size. 0x00 0x20 0x00 No error. Page size is
8192.

0x80 0x02 0x00 0x05* Bootloader flash. Set the number of
pages to 5 based on byte 0x44 from
the application .msbl file, which is
created from the user
application .bin file.

0xAA No error.

0x80 0x03* Bootloader flash. Erase application. 0xAA No error.
0x80 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00

Bootloader flash. Set Initialization
Vector based on the bytes 0x28 to
0x32 from the application .msbl file,
which is created from the user
application .bin file.

0xAA No error.

Maxim Integrated Page 21 of 26

HOST COMMAND COMMAND DESCRIPTION
MAX32663

BOOTLOADER
RESPONSE

RESPONSE
DESCRIPTION

0x80 0x01 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00

Bootloader flash. Set
Authentication based on the bytes
0x34 to 0x43 from the
application .msbl file, which is
created from the user
application .bin file.

0xAA No error.

0x80 0x04 0x00 0x80 0x01 ... 0x00
0x00 0x00*

Bootloader flash. Send first page
bytes 0x4C to 0x205B from
the .msbl file.

0xAA No error.

…

0x80 0x04 0x01 0x21 0x00 ... 0x00
0x00 0x00*

Bootloader flash. Send second
page bytes 0x205C to 0x406B from
the .msbl file.

0xAA No error.

0x80 0x04 0x02 0x02 0xC1 ... 0x00
0x00 0x00*

Bootloader flash. Send third page
bytes 0x406C to 0607B from
the .msbl file.

0xAA No error.

0x80 0x04 0xEO 0x6C 0x1C ... 0x00
0x00 0x00*

Bootloader flash. Send fourth page
bytes 0x607C to 0x808B from
the .msbl file.

0xAA No error.

0x80 0x04 0xFF 0xC3 0x0D ... 0x00
0x00 0x00*

Bootloader flash. Send fifth page
bytes 0x808C to 0XA09B from
the .msbl file.

0xAA No error.

0x01 0x00 0x00* Exit bootloader mode and jump to
application.
Note: Sending the bootloader
command is not mandatory. The
microcontroller can be reset and the
EBL pin can be set to reverse the
polarity to jump on the application.

0xAA No error.

*Mandatory.
+Recommended.

Maxim Integrated Page 22 of 26

Appendix A: Maxim Special Bootloader (.msbl) File Format
The .msbl file is a special binary file format that is generated from the application update .bin file
by using the MAX32663 bootloader. The .msbl file has the following sections:

• Header

The header consists of the following:

o 4-byte magic value (.msbl)

o 4-byte RFU

o 16-byte target type (e.g., MAX32663)

o 16-byte Encryption Algorithm (e.g., AES-192)

o 11-byte Initialization Vector

o 1-byte RFU

o 16-byte Authentication Data

o 2-byte number of pages (LSB first) (e.g., 0x05 0x00 means there are six pages)

Number of pages =
bin file size

1
page size

+

 (for sending application information)

o 2-byte page size (LSB first) (e.g., 0x00 0x20 means the page size is 8192)

o 1-byte CRC byte size (0x04 means 4 bytes and denotes CRC32)

o 3-byte RFU

Figure 7 shows an example of the format of the raw hex header data in the .msbl file.

Figure 7. Hex header data in the .msbl.

• (Number of pages – 1) × Page Data:

o Page Data 1: First 8192-byte data from the .bin file + 4-byte CRC32 of the first
8192-byte data + 12-byte dummy data (0x00)

o Page Data 2: Second 8192-byte data from the .bin file + 4-byte CRC32 of the first
8192-byte data + 12-byte dummy data (0x00)

o Page Data 3: Third 8192-byte data from the .bin file + 4-byte CRC32 of the first
8192-byte data + 12-byte dummy data (0x00)

Maxim Integrated Page 23 of 26

…

o Page Data (Number of pages – 1): (Number of pages – 1)th 8192-byte data from the
.bin file + 4-byte CRC32 of the first 8192-byte data + 12-byte dummy data (0x00)

• Application information: 4-byte CRC32 of the application + 4-byte length of the application
+ 8184-byte dummy data (0x00) + 4-byte CRC32 + 12-byte dummy data (0x00)

• 4-byte CRC32 of the .msbl file which is the CRC32 value of the total .msbl file

Table 5 shows the .msbl file format for an application with a size of 17384 bytes.

Table 5. Example .msbl File Format
ADDRESS LENGTH

(bytes) NAME DESCRIPTION

0x0000 4 Magic (.msbl) A marker that indicates the beginning of the .msbl file
0x0004 4 RFU Reserved for future use (Fill 0x00)
0x0008 16 Target Type Target microcontroller. For example, MAX32663 with zeros

appended.
0x0018 16 Encryption Algorithm Defines used Encryption Algorithm (e.g., AES-192)
0x0028 11 Initialization Vector Initialization Vector used for encryption algorithm
0x0033 1 RFU Reserved for future use (Fill 0x00)
0x0034 16 Authentication Data Authentication Data of the all image
0x0044 2 Number of pages Number of pages (0x04 for this application)
0x0046 2 Page size Number of bytes per page. Always 0x2000 (8192 as a

decimal).
0x0048 1 CRC byte size 0x04 bytes denoting CRC32
0x0049 3 RFU Reserved for future use (Fill 0x00)
0x004C 8192 First 8192 bytes of the .bin file The first page of application data
0x204C 4 CRC32 of the first page Calculated CRC32 value for the first page of application data
0x2050 12 RFU Reserved for future use (Fill 0x00)
0x205C 8192 Second 8192 bytes of the .bin file Second page of application data
0x405C 4 CRC32 of the second page Calculated CRC32 value for the second page of application

data appended with 0x00
0x4060 12 RFU Reserved for future use (Fill 0x00)
0x406C 8192 Last 1000 bytes of the .bin file

appended with 7192 bytes of 0x00
The last page of application data

0x606C 4 CRC32 of the last page Calculated CRC32 value for the last page of application data
0x6070 12 RFU Reserved for future use (Fill 0x00)
0x607C 4 CRC32 of complete .bin file CRC32 of application
0x6080 4 Length of .bin file Length of .bin file (0xE8, 0x43, 0x00, 0x00) (17384 as

decimal)
0x6084 8184 RFU Reserved for future use (Fill 0x00)
0x807C 4 CRC32 of application data Calculated CRC32 value of 8192 bytes starting from 0x607C
0x8080 12 RFU Reserved for future use (Fill 0x00)
0x808C 4 CRC32 of .msbl file CRC32 of all data up to this point in the .msbl file

Maxim Integrated Page 24 of 26

Appendix B: Converting the .bin File to the .msbl File Format
The .msbl file is generated automatically by using a .msbl generator.
Enter the following command in a MinGW® window to convert the .bin application program to
a .msbl file:
msblGen.exe myapplication.bin MAX32663 8192 key.txt
Be sure that the correct linker file is used for generating the .bin file. A sample linker file,
max32663.ld, can be found under the Hello_World example folder.

MinGW is a registered trademark of Software in the Public Interest, Inc.

Maxim Integrated Page 25 of 26

Appendix C: Entering Download Mode in Application
Under normal circumstances, the bootloader checks the boot memory section on flash and jumps
to the application, if valid. However, there is a special pattern in the boot memory section to make
the bootloader stay in bootloader mode after reboot. This special pattern can be used as a signal
from an application to make the device enter download mode. The provided pseudo code snippet
shows a usage example of boot memory to enter download mode. Actual implementation of the
set_boot_mode_and_reset function can be found in the Enter Bootloader example source code.

/* Application code listening for enter download mode command */
application_main()
{
 wait_for_cmd();
 if (enter_download_cmd_received()){
 set_boot_mode_and_reset();
 }
}

/* Host code for entering download mode and flashing */
flash_application()
{
 send_enter_download_cmd();
 wait_for_reboot();
 flash_msbl_file();
 /* If flashed successfully, boot_mode will be cleared to jump to app */
}

Maxim Integrated Page 26 of 26

Revision History
REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED

0 9/20 Initial release —

©2020 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED
PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME
LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has
been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim
Integrated Products, Inc. All other product or service names are the property of their respective owners.

