

MAX32670/MAX32671 User Guide

UG7202; Rev 4; 09/23

Abstract: This user guide provides application developers information on how to use the memory and peripherals of the MAX32670/MAX32671 microcontroller. Detailed information for all registers and fields in the device are covered. Guidance is given for managing all the peripherals, clocks, power and startup for the device family.

MAX32670/MAX32671 User Guide

Table of Contents

MAX32670/MAX32671 User Guide	2
1. Introduction	21
1.1 Related Documentation	21
1.2 Document Conventions	21
1.2.1 Number Notations	21
1.2.2 Register and Field Access Definitions	
1.2.3 Register Lists	
1.2.4 Register Detail Tables	
2. Overview	23
2.1 Block Diagram	24
3. Memory, Register Mapping, and Access	25
3.1 Memory, Register Mapping, and Access Overview	25
3.2 Device Memory Regions and Instances	28
3.2.1 Code Space	28
3.2.1 Instruction Cache Memory	
3.2.2 Information Block Flash Memory	
3.2.3 SRAM Space	
3.2.4 AES Key and Working Space Memory	
3.2.5 Peripheral Space	
3.2.6 External RAM Space	
3.2.8 System Area (Private Peripheral Bus)	
3.2.9 System Area (Vendor Defined)	
3.3 AHB Interfaces	
3.3.1 Core AHB Interfaces	30
3.3.1.1 I-Code	30
3.3.1.2 D-Code	31
3.3.1.3 System	31
3.3.2 AHB Controller	31
3.3.3 Standard DMA	
3.4 Peripheral Register Map	31
3.4.1 APB Peripheral Base Address Map	31
4. System, Power, Clocks, Reset	
4.1 Core Operating Voltage Range Selection	33
4.1.1 Setting the Operating Voltage Range	33
4.1.2 Flash Wait States	34
4.2 Oscillator Sources and Clock Switching	37
4.2.1 Oscillator Implementation	39
4.2.2 100MHz Internal Primary Oscillator (IPO)	39

4.2.2.1 IPO Calibration	39
4.2.3 16MHz to 32MHz External Radio Frequency Oscillator (ERFO)	
4.2.4 7.3728MHz Internal Baud Rate Oscillator (IBRO)	41
4.2.5 32.768kHz External Real-Time Clock Oscillator (ERTCO)	
4.2.6 80kHz Ultra-Low-Power Internal Nanoring Oscillator (INRO)	41 41
4.3.1 ACTIVE	
4.3.2 SLEEP	
4.3.2.1 Entering SLEEP	42
4.3.3 DEEPSLEEP	42
4.3.3.1 Entering DEEPSLEEP	
4.3.4 BACKUP	42
4.3.4.1 Entering BACKUP	
4.3.5 STORAGE	47
4.3.5.1 Entering STORAGE	
4.4 Shutdown State	49
4.5 Device Resets	
4.5.1 Peripheral Reset	
4.5.2 Soft Reset	
4.5.4 Power-On Reset (POR)	
4.6 Internal Cache Controller (ICC)	52
4.6.1 Enabling ICC	52
4.6.2 Disabling ICC	52
4.6.3 Invalidating ICC Cache	
4.7 ICC Registers	
4.7.1 Register Details	
4.8 RAM Memory Management	54
4.8.1 On-Chip Cache Management	
4.8.2 RAM Zeroization	5 <i>2</i>
4.8.3 RAM Low-Power Modes	
4.8.3.2 RAM Shutdown	
4.9 Miscellaneous Control Registers (MCR)	55
4.9.1 Registers Details	
4.10 Power Sequencer and Always-On Domain Registers (PWRSEQ)	57
4.10.1 Register Details	
4.11 Global Control Registers (GCR)	64
4.11.1 Register Details	
4.12 Error Correction Coding Enable Register (ECC)	79
4.12.1 Register Details	
4.13 System Initialization Registers (SIR)	79

	gister Detailson Control Registers (FCR)	
	rister Details	
	nd Exceptions	
•		
·	Vector Table	
6. General-Pur	pose I/O (GPIO) and Alternate Function Pins	86
6.1 Instances		86
6.2 Configuro	ıtion	87
6.2.1 Per	ipheral Clock Enable	87
	ver-On-Reset Configuration	
6.2.3 Ser	ial Wire Debug Configuration	87
	ut Mode Configuration	
	tput Mode Configuration	
	O Drive Strength	
	ernate Function Usage ng GPIO (External) Interrupts	
	O Interrupt Handlingng GPIO for Wake-Up from Low-Power Modes	
	ng GPIO for Wake-Up from Low-Power Modes ng GPIOWAKE for Wake-Up from DEEPSLEEP, BACKUP, and STORAGE	
	isters	
_	gister Details	
	bller (FLC)	
3		
	ck Configuration	
	k Protectionsh Write Width	
	sh Writesh write width	
	ge Erase	
	ss Erase	
	isters	
7.3.1 Reg	rister Details	107
8. Standard DN	MA (DMA)	112
8.1 Instances		112
	nnel Operation (DMA_CH)	
	A Channel Arbitration and DMA Bursts	
	A Channel Arbitration and Divia Bursts	
	a Movement from Source to DMA	
	a Movement from DMA to Destination	
8.4 Count-To	-Zero (CTZ) Condition	117
	Buffers	
-	rrupts	
8.6 DMA Inte	IIUDIS	119

	8.7	Channel Timeout Detect	119
	8.8	Memory-to-Memory DMA	120
	8.9	DMA Registers	120
	8.9	9.1 Register Details	120
	8.10		
	8.11	DMA Channel Registers	123
	8.1	11.1 Register Details	121
9.	. Ur	niversal Asynchronous Receiver/Transmitter (UART)	
	9.1	Instances	128
	9.2	DMA	129
	9.3	UART Frame	129
	9.4	FIFOs	
		4.1 Transmit FIFO Operation	
		4.1 Receive FIFO Operation	
		4.3 Flushing	
	9.5	Interrupt Events	131
	9.5	5.1 Frame Error	131
	9.5	5.2 Parity Error	133
	9.5	5.3 CTS Signal Change	
	9.5	5.4 Overrun	
		5.5 Receive FIFO Threshold	
		5.6 Transmit FIFO Half-Empty	
		5.7 Transmit FIFO Almost Empty	
	9.6	Inactive State	
	9.7	Receive Sampling	133
	9.8	Baud Rate Generation	134
	9.8	8.1 UART Clock Sources	
	9.8	8.2 Baud Rate Calculation	
	9.9	Low-Power Receiver Operation	135
	9.9	9.1 Low-Power UART Wake-Up Conditions	136
	9.10	Hardware Flow Control	137
	9.1	10.1 Automated HFC	137
	9.1	10.2 Software-Controlled HFC	138
		9.10.2.1 RTC/CTS Handling for Application-Controlled HFC	138
	9.11	UART Registers	139
	9.1	11.1 Register Details	139
10	0.	I ² C Controller/Target Serial Communications Peripheral	
	10.1	I ² C Controller/Target Features	146
	10.2	Instances	
	10.3	1 ² C Overview	
		D.3.1 I ² C Bus Terminology D.3.2 I ² C Transfer Protocol Operation	
		D.3.3 START and STOP Conditions	

10.3.4 Controller Operation	
10.3.5 Acknowledge and Not Acknowledge	
10.3.6 Bit Transfer Process	
10.4 Configuration and Usage	149
10.4.1 SCL and SDA Bus Drivers	149
10.4.2 SCL Clock Configurations	
10.4.3 SCL Clock Generation for Standard, Fast and Fast-Plus Modes	149
10.4.4 SCL Clock Generation for Hs-Mode	
10.4.4.1 Hs-Mode Timing	150
10.4.4.2 Hs-Mode Clock Configuration	150
10.4.5 Controller Mode Addressing	151
10.4.6 Controller Mode Operation	· 151
10.4.6.1 I ² C Controller Mode Receiver Operation	153
10.4.6.2 I ² C Controller Mode Transmitter Operation	153
10.4.6.3 I ² C Multicontroller Operation	153
10.4.7 Target Mode Operation	154
10.4.7.1 Target Transmitter	
10.4.7.1.1 Just-in-Time Target Transmitter	156
10.4.7.1.2 Preload Mode Target Transmit	158
10.4.7.2 Target Receivers	159
10.4.8 Interrupt Sources	160
10.4.9 Transmit FIFO and Receive FIFO	
10.4.10 Transmit FIFO Preloading	161
10.4.11 Interactive Receive Mode (IRXM)	162
10.4.12 Clock Stretching	
10.4.13 Bus Timeout	
10.4.14 DMA Control	
10.5 Registers	
10.5.1 Register Details	
11. Inter-Integrated Sound Interface (I ² S)	180
11.1 Instances	180
11.1.1 I ² S Bus Lines and Definitions	180
11.2 Details	181
11.3 Controller and Target Mode Configuration	182
11.4 Clocking	182
11.4.1 BCLK Generation for Controller Mode	183
11.4.2 LRCLK Period Calculation	
11.5 Data Formatting	184
11.5.1 Sample Size	184
11.5.2 Word Select Polarity	
11.5.3 First Bit Location Control	184
11.5.4 Sample Adjustment	
11.5.5 Stereo/Mono Configuration	
11.6 Transmit and Receive FIFOs	187
11.6.1 FIFO Data Width	187

11.6.2	Transmit FIFO	
11.6.3	Receive FIFO	
11.6.4	FIFO Word Control	
11.6.5	FIFO Data Alignment Typical Audio Configurations	
11.6.6 11.7 In	terrupt Events	
	,	
11.7.1	Receive FIFO Overrun	
11.7.2	Receive FIFO Threshold Transmit FIFO Half-Empty	
11.7.3 11.7.4	Transmit FIFO One Entry Remaining	
	rect Memory Access	
	ock Operation	
	egisters	
11.10.1	Register Details	
	al Peripheral Interface (SPI)	
	stances	
12.2 Fo	ormats	199
12.2.1	Four-Wire SPI	100
12.2.1	Three-Wire SPI	
	n Configuration	
12.3.1	SPI Alternate Function Mapping	200
12.3.2	Four-Wire Format Configuration	
12.3.3	Three-Wire Format Configuration	
12.3.4	Dual-Mode Format Configuration	201
12.3.5	Quad-Mode Format Pin Configuration	
12.4 Co	onfiguration	202
12.4.1	Serial Clock	202
12.4.2	Peripheral Clock	
12.4.3	Controller Mode Serial Clock Generation	
12.4.4	Clock Phase and Polarity Control	
12.4.5	Target Select Configuration	
12.4.6	Transmit and Receive FIFOs Interrupts and Wakeups	
12.4.7 12.5 Re	interrupts and wakeups egisters	
12.5.1	Register Details	
	ers (TMR/LPTMR)	
	stances	
	asic Timer Operation	
	2-Bit Single / 32-Bit Cascade / Dual 16-Bit	
	mer Clock Sources	
	mer Pin Functionality	
	rncr + m + unctionality akeup Events	
	PTMR Wakeup Events	
•	perating Modes	
13.8.1	One-Shot Mode (0)	22 ⁻

13.8.2 Continuous Mode (1)	
13.8.3 Counter Mode (2)	
13.8.4 PWM Mode (3)	
13.8.5 Capture Mode (4)	
13.8.5.1 Capture Event	
13.8.5.2 Rollover Event	235
13.8.6 Compare Mode (5)	
13.8.7 Gated Mode (6)	
13.8.8 Capture/Compare Mode (7)	
13.8.9 Dual-Edge Capture Mode (8)	
13.8.10 Inactive Gated Mode (14)	
13.9 Registers	
13.9.1 Register Details	
L4. Watchdog Timer (WDT)	252
14.1 Instances	253
14.2 Usage	254
14.2.1 Using the WDT as a Long-Interval Timer	254
14.2.2 Using the WDT as a Long-Interval Wake-up Timer	
14.3 WDT Protection Sequence	255
14.3.1 WDT Feed Sequence	255
14.3.2 WDT Enable Sequence	
14.3.3 WDT Disable Sequence	255
14.4 WDT Events	255
14.4.1 WDT Early Reset	
14.4.2 WDT Early Interrupt	
14.4.3 WDT Late Reset	
14.4.4 WDT Late Interrupt	
14.5 Initializing the WDT	
14.6 Resets	259
14.7 Registers	259
14.7.1 Register Details	
L5. Real-Time Clock (RTC)	264
15.1 Overview	264
15.2 Instances	265
15.3 Register Access Control	265
15.3.1 RTC_SEC and RTC_SSEC Read Access Control	
15.3.2 RTC Write Access Control	
15.4 RTC Alarm Functions	
15.4.1 Time-of-Day Alarm	266
15.4.2 Sub-Second Alarm	
15.4.3 RTC Interrupt and Wakeup Configuration	
15.5 Square Wave Output	
15.6 RTC Calibration	269
15.7 Registers	271
-	
15.7.1 Register Details	//

16.	Cyclic Redundancy Check (CRC)	276
16.1	Instances	276
16.2	Usage	276
16.3	Polynomial Generation	277
16.4	Software CRC Calculations	278
16.5	DMA CRC Calculations	279
16.6		
	5.6.1 Register Details	
17.	AES	
17.1	Instances	282
17.2	AES Key Generation	282
17.3	AES Key Storage	283
17.4	Encryption of 128-Bit Blocks of Data Using FIFO	284
17.5		
17.6		
17.7		
17.8	**	
	7.8.1 Data Output FIFO Overrun	
	7.8.2 Key Zero	287
	7.8.3 Key Change	
17 <i>17.9</i>	7.8.4 Calculation Done	
	-	
17.10	<u> </u>	
	7.10.1 AES KEY Register Details	
18.	TRNG Engine	
18.1	TRNG Registers	292
18	8.1.1 Register Details	292
19.	ROM Bootloader	294
19.1	Instances	294
19.2	Bootloader Operating States	294
19	9.2.1 UNLOCKED	295
	9.2.2 LOCKED	
	9.2.3 PERMLOCKED	
	9.2.4 CHALLENGE (Secure Boot Versions Only)9.2.5 APPVERIFY (Secure Boot Versions Only)	
19.3		
	9.3.1 Procedure for Devices Without the Secure Boot Feature	
	9.3.2 Procedure for Devices with the Secure Boot Feature9.3.2	
19.4		
19.5	Secure Boot	298
10	9.5.1. Secure Boot	298

19.5.2 Secure Challenge/Response Authentication	
19.7 General Commands	300
19.7.1 General Command Details	300
19.8 Secure Commands	310
19.8.1 Secure Command Details	310
19.9 Challenge/Response Commands	317
19.9.1 Challenge/Response Command Details	317
20. Debug Access Port (DAP)	319
20.1 Instances	319
20.2 Access Control	319
20.2.1 Locking the DAP	319
20.2.1.1 Option 1	319
20.2.1.2 Option 2	322
20.3 Pin Configuration	323
20.3.1 Switching Between SWD Alternate Functions	323
21. Silicon Revision Differences	324
21.1 Differences Between the B2 and B1 Revision	324
21.2 Differences Between the B1 and A3 Revision	324
21.3 Differences Between the A3 and A2 Revision	324
21.4 Differences Between the A2 and A1 Revision	324
21.5 Initial Silicon Revision A1	325
22 Revision History	32 <i>6</i>

Table of Figures

Figure 2-1: MAX32670/MAX32671 Block Diagram	24
Figure 3-1: Code Memory Mapping	26
Figure 3-2: Data Memory Mapping	27
Figure 3-3: USN Format	28
Figure 4-1: MAX32670/MAX32671 Clock Block Diagram	
Figure 4-2: ERFO Load Capacitors	
Figure 4-3: MAX32671/MAX32670 SLEEP Clock Control	
Figure 4-4: MAX32670/MAX32671 DEEPSLEEP and BACKUP Clock Control	
Figure 4-5: MAX32670/MAX32671 STORAGE Clock Control	
Figure 8-1: DMA Block-Chaining Flowchart	
Figure 9-1: UART Block Diagram	
Figure 9-2: UART Frame Structure	
Figure 9-3: UART Interrupt Functional Diagram	
Figure 9-4: Oversampling Example	
Figure 9-5: UART Baud Rate Generation	
Figure 9-6: HFC Physical Connection	
Figure 9-7: HFC Signaling for Transmitting to an External Receiver	
Figure 10-1: I ² C Write Data Transfer	
Figure 10-2: I ² C SCL Timing for Standard, Fast and Fast-Plus Modes	
Figure 11-1: I ² S Controller Mode	
Figure 11-1: 13 Controller Mode	
Figure 11-3: Audio Interface I ² S Signal Diagram	
Figure 11-3: Addio Mode with Inverted Word Select Polarity	
Figure 11-5: Audio Controller Mode Left-Justified First Bit Location	
Figure 11-5: MSB Adjustment when Sample Size is Less Than Bits Per Word	
Figure 11-7: LSB Adjustment when Sample Size is Less Than Bits Per Word	
Figure 11-7. LSB Adjustment when Sample Size is less than bits Per Word	
Figure 11-9: I ² S Mono Right Mode Figure 12-1: SPI Block Diagram	
Figure 12-2: 4-Wire SPI Connection Diagram	
Figure 12-3: Generic 3-Wire SPI Controller to Target Connection	
Figure 12-4: Dual Mode SPI Connection Diagram	
Figure 12-5: Quad Mode SPI Connection Diagram	
Figure 12-6: SCK Clock Rate Control	
Figure 12-7: SPI Clock Polarity	
Figure 12-8: Target Select Configuration Using SPIn_SSTIME Register	
Figure 13-1: Timer I/O Signal Naming Conventions	
Figure 13-2: MAX32670/MAX32671 TimerA Output Functionality, Modes 0/1/3/5	
Figure 13-3: MAX32670/MAX32671 TimerA Input Functionality, Modes 2/4/6/7/8/14	
Figure 13-4: One-Shot Mode Diagram	
Figure 13-5: Continuous Mode Diagram	
Figure 13-6: Counter Mode Diagram	
Figure 13-7: PWM Mode Diagram	
Figure 13-8: Capture Mode Diagram	236
Figure 13-9: Compare Mode Diagram	
Figure 13-10: Gated Mode Diagram	
Figure 13-11: Capture/Compare Mode Diagram	242
Figure 14-1: Windowed Watchdog Timer Block Diagram	
Figure 14-2: WDT Early Interrupt and Reset Event Sequencing Details	256
Figure 14-3: WDT Late Interrupt and Reset Event Sequencing Details	257

Figure 15-1: MAX32670/MAX32671 RTC Block Diagram	264
Figure 15-2: RTC Interrupt/Wake-Up Diagram Wake-Up Function	267
Figure 15-3: Internal Implementation of 4kHz Digital Trim	269
Figure 17-1: AES KEY Storage	
Figure 19-1: Combined Bootloader Flow	
Figure 20-1: Locking the DAP to Make it Available for Unlock Later	
Figure 20-2: Unlocking the DAP After Being Locked as in Figure 20-1	321
Figure 20-3: Locking the Debug Access Port Permanently	

List of Tables

Table 1-1: Field Access Definitions	21
Table 1-2: Example Registers	22
Table 1-3: Example Name 0 Register	22
Table 3-1: SRAM Configuration	29
Table 3-2: APB Peripheral Base Address Map	31
Table 4-1: Operating Voltage Range Selection and the Effect on V _{CORE} and SYS OSC	33
Table 4-2: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = fipo, GCR_CLKCTRLipo_div = 1)	
Table 4-3: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = fibro)	
Table 4-4: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = ferfo)	
Table 4-5: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = fext_Clk1)	
Table 4-6: Minimum Flash Wait State Setting for Each OVR Setting (f _{SYSCLK} = f _{INRO})	
Table 4-7: Minimum Flash Wait State Setting for Each OVR Setting (fsysclk = fertco)	
Table 4-8: Reset Sources and Effect on Oscillator Status	
Table 4-9: Reset Sources and Effect on System Oscillator Selection and Prescaler	
Table 4-10: Wake-up Sources	
Table 4-11: RAM Retention By Address Range in BACKUP, System Reset, Watchdog Reset, and External Reset	
Table 4-12: MAX32670/MAX32671 Clock Source and Reset Effects	
Table 4-13: MAX32670/MAX32671 Clock Source and Global Control Register Low-Power Mode Effects	
Table 4-14: MAX32670/MAX32671 Peripheral and CPU Reset Effects	
Table 4-15: MAX32670/MAX32671 Peripheral and CPU Low-Power Mode Effects	
Table 4-16: Internal Cache Controller Register Summary	
Table 4-17: ICC Cache Information Register	
Table 4-18: ICC Memory Size Register	
Table 4-19: ICC Cache Control Register	
· · · · · · · · · · · · · · · · · · ·	
Table 4-20: ICC Invalidate Register	
Table 4-21: Miscellaneous Control Register Summary	
Table 4-22: Reset Control Register	
Table 4-23: Low-Power Peripheral Control Register	
Table 4-24: Clock Disable Register	
Table 4-25: Power Sequencer and Always-On Domain Register Summary	
Table 4-26: Low-Power Control Register	
Table 4-27: GPIOO Low-Power Wake-up Status Flags	
Table 4-28: GPIO0 Low-Power Wake-up Enable Registers	
Table 4-29: GPIO1 Low-Power Wake-up Status Flags	
Table 4-30: GPIO1 Low-Power Wake-up Enable Registers	
Table 4-31: Peripheral Low-Power Wake-up Status Flags	
Table 4-32: Peripheral Low-Power Wake-up Enable Register	
Table 4-33: RAM Shutdown Control Register	
Table 4-34: General Purpose 0 Register	
Table 4-35: General Purpose 1 Register	64
Table 4-36: Global Control Register Summary	64
Table 4-37: System Control Register	65
Table 4-38: Reset Register 0	66
Table 4-39: System Clock Control Register	68
Table 4-40: Power Management Register	70
Table 4-41: Peripheral Clock Divisor Register	71
Table 4-42: Peripheral Clock Disable Register 0	72
Table 4-43: Memory Clock Control Register	
Table 4-44: Memory Zeroization Control Register	
Table 4-45: System Status Flag Register	

Table 4-46: Reset Register 1	75
Table 4-47: Peripheral Clock Disable Register 1	76
Table 4-48: Event Enable Register	77
Table 4-49: Revision Register	78
Table 4-50: System Status Interrupt Enable Register	78
Table 4-51: Error Correction Coding Error Detected Register	78
Table 4-52: Error Correction Coding Correctable Error Detected Register	78
Table 4-53: Error Correction Coding Interrupt Enable Register	78
Table 4-54: Error Correction Coding Address Register	79
Table 4-55: Error Correction Coding Enable Register Summary	79
Table 4-56: Error Correction Coding Enable Register	79
Table 4-57: System Initialization Register Summary	79
Table 4-58: System Initialization Error Status Register	79
Table 4-59: System Initialization Error Address Register	80
Table 4-60: Function Control Register Summary	80
Table 4-61: Function Control 0 Register	80
Table 4-62: Automatic Calibration 0 Register	81
Table 4-63: Automatic Calibration 1 Register	
Table 4-64: Automatic Calibration 2 Register	
Table 5-1: MAX32670/MAX32671 Interrupt Vector Table	
Table 6-1: GPIO Pin Count	
Table 6-2: MAX32670 Input Mode Configuration Summary	88
Table 6-3: Standard GPIO Drive Strength Selection	
Table 6-4: GPIO with I ² C AF Drive Strength Selection	
Table 6-5: MAX32670 GPIO Mode and AF Selection	89
Table 6-6: MAX32670 GPIO Interrupt Enable Settings for Each Supported Operating Mode	90
Table 6-7: MAX32670 GPIO Port Interrupt Vector Mapping	
Table 6-8: GPIO Wakeup Interrupt Vector	
Table 6-9: GPIO Register Summary	
Table 6-10: GPIO AF 0 Select Register	
Table 6-11: GPIO Port n Configuration Enable Atomic Set Bit 0 Register	
Table 6-12: GPIO Port n Configuration Enable Atomic Clear Bit 0 Register	
Table 6-13: GPIO Port n Output Enable Register	
Table 6-14: GPIO Port n Output Enable Atomic Set Register	
Table 6-15: GPIO Port n Output Enable Atomic Clear Register	
Table 6-16: GPIO Port n Output Register	
Table 6-17: GPIO Port n Output Atomic Set Register	
Table 6-18: GPIO Port n Output Atomic Clear Register	
Table 6-19: GPIO Port n Input Register	
Table 6-20: GPIO Port n Interrupt Mode Register	
Table 6-21: GPIO Port n Interrupt Polarity Register	
Table 6-22: GPIO Port n Input Enable Register	
Table 6-23: GPIO Port n Interrupt Enable Registers	
Table 6-24: GPIO Port n Interrupt Enable Atomic Set Register	
Table 6-25: GPIO Port n Interrupt Enable Atomic Clear Register	
Table 6-26: GPIO Interrupt Status Register	
Table 6-27: GPIO Port n Interrupt Clear Register	
Table 6-28: GPIO Port n Wakeup Enable Register	
Table 6-29: GPIO Port n Wakeup Enable Atomic Set Register	
Table 6-30: GPIO Port n Wakeup Enable Atomic Clear Register	
Table 6-31: GPIO Port n Interrupt Dual Edge Mode Register	
Table 6-32: GPIO Port n Pad Control 0 Register	
Table 6-33: GPIO Port n Pad Control 1 Register	90

Table 6-34: GPIO Port n Configuration Enable Bit 1 Register	100
Table 6-35: GPIO Port n Configuration Enable Atomic Set Bit 1 Register	100
Table 6-36: GPIO Port n Configuration Enable Atomic Clear Bit 1 Register	100
Table 6-37: GPIO Port n Configuration Enable Bit 2 Register	100
Table 6-38: GPIO Port n Configuration Enable Atomic Set Bit 2 Register	101
Table 6-39: GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	101
Table 6-40: GPIO Port n Input Hysteresis Enable Register	101
Table 6-41: GPIO Port n Slew Rate Enable Register	101
Table 6-42: GPIO Port n Output Drive Strength Bit 0 Register	102
Table 6-43: GPIO Port n Output Drive Strength Bit 1 Register	102
Table 6-44: GPIO Port n Pulldown/Pullup Strength Select Register	102
Table 6-45: GPIO Port n Voltage Select Register	103
Table 7-1: MAX32670/MAX32671 Internal Flash Memory Organization	104
Table 7-2: Flash Controller Register Summary	107
Table 7-3: Flash Controller Address Pointer Register	107
Table 7-4: Flash Controller Clock Divisor Register	107
Table 7-5: Flash Controller Control Register	108
Table 7-6: Flash Controller Interrupt Register	109
Table 7-7: Flash Controller ECC Data Register	109
Table 7-8: Flash Controller Data 0 Register	110
Table 7-9: Flash Controller Data Register 1	110
Table 7-10: Flash Controller Data Register 2	110
Table 7-11: Flash Controller Data Register 3	110
Table 7-12: Flash Controller Access Control Register	110
Table 7-13: Flash Controller Write/Erase Lock Register 0	110
Table 7-14: Flash Controller Write/Erase Lock Register 1	111
Table 7-15: Flash Controller Read Lock Register 0	111
Table 7-16: Flash Controller Read Lock Register 1	111
Table 8-1: MAX32670/MAX32671 DMA and Channel Instances	112
Table 8-2: MAX32670/MAX32671 DMA Source and Destination by Peripheral	114
Table 8-3: Data Movement from Source to DMA FIFO	115
Table 8-4: Data Movement from the DMA FIFO to Destination	115
Table 8-5: DMA Channel Timeout Configuration	119
Table 8-6: DMA Register Summary	120
Table 8-7: DMA Interrupt Enable Register	120
Table 8-8: DMA Interrupt Enable Register	120
Table 8-9: Standard DMA Channel 0 to Channel 7 Register Summary	121
Table 8-10: DMA Channel Registers Summary	121
Table 8-11: DMA Channel n Control Register	121
Table 8-12: DMA Status Register	123
Table 8-13: DMA Channel n Source Register	124
Table 8-14: DMA Channel n Destination Register	125
Table 8-15: DMA Channel n Count Register	125
Table 8-16: DMA Channel n Source Reload Register	125
Table 8-17: DMA Channel n Destination Reload Register	125
Table 8-18: DMA Channel n Count Reload Register	125
Table 9-1: MAX32670/MAX32671 UART/LPUART Instances	
Table 9-2: MAX32670/MAX32671 Interrupt Events	131
Table 9-3: Frame Error Detection for Standard UARTs and LPUART	132
Table 9-4: Frame Error Detection for LPUARTs with UARTn_CTRL.fdm = 1 and UARTn_CTRL.dpfe_en = 1	132
Table 9-5: Slow Baud Rate Generation Example (FDM = 1)	
Table 9-6: MAX32670/MAX32671 Wakeup Events	
Table 9-7· HART/I PHART Register Summary	130

Table 9-8: UART Control Register	139
Table 9-9: UART Status Register	141
Table 9-10: UART Interrupt Enable Register	
Table 9-11: UART Interrupt Flag Register	142
Table 9-12: UART Clock Divisor Register	
Table 9-13: UART Oversampling Control Register	143
Table 9-14: UART Transmit FIFO Register	144
Table 9-15: UART Pin Control Register	144
Table 9-16: UART Data Register	144
Table 9-17: UART DMA Register	144
Table 9-18: UART Wake-up Enable	145
Table 9-19: UART Wake-up Flag Register	145
Table 10-1: MAX32670/MAX32671 I ² C Peripheral Pins	146
Table 10-2: I ² C Bus Terminology	147
Table 10-3: Calculated I ² C Bus Clock Frequencies	151
Table 10-4: I ² C Target Address Format	151
Table 10-5: Register Summary	165
Table 10-6: I ² C Control Register	165
Table 10-7: I ² C Status Register	167
Table 10-8: I ² C Interrupt Flag 0 Register	
Table 10-9: I ² C Interrupt Enable 0 Register	
Table 10-10: I ² C Interrupt Flag 1 Register	171
Table 10-11: I ² C Interrupt Enable 1 Register	
Table 10-12: I ² C FIFO Length Register	
Table 10-13: I ² C Receive Control 0 Register	
Table 10-14: I ² C Receive Control 1 Register	
Table 10-15: I ² C Transmit Control 0 Register	
Table 10-16: I ² C Transmit Control 1 Register	
Table 10-17: I ² C Data Register	
Table 10-18: I ² C Controller Control Register	
Table 10-19: I ² C SCL Low Control Register	
Table 10-20: I ² C SCL High Control Register	
Table 10-21: I ² C Hs-Mode Clock Control Register	
Table 10-22: I ² C Timeout Register	
Table 10-23: I ² C Target Address 0 Register	
Table 10-24: I ² C DMA Register	
Table 11-1: MAX32670/MAX32671 I ² S Instances	
Table 11-2: MAX32670/MAX32671 I ² S Pin Mapping	
Table 11-3: I ² S Mode Configuration	
Table 11-4: Data Ordering for Byte Data Size (Stereo Mode)	
Table 11-5: Data Ordering for Half-Word Data Size (Stereo Mode)	
Table 11-6: Data Ordering for Word Data Size (Stereo Mode)	
Table 11-7: Configuration for Typical Audio Width and Samples per WS Clock Cycle	
Table 11-8: I ² S Interrupt Events	
Table 11-9: I ² S Register Summary	
Table 11-10: I ² S Control 0 Register	
Table 11-10: 13 Control o Register	
Table 11-12: I ² S DMA Control Register	
Table 11-13: I ² S FIFO Register	
Table 11-13: I-S FIFO Register	
Table 11-14: I 3 Interrupt Flag Register	
Table 12-1: MAX32670/MAX32671 SPI Instances	
Table 12-2: Four-Wire Format Signals	199

Table 12-3: Three-Wire Format Signals	200
Table 12-4: SPI Modes Clock Phase and Polarity Operation	204
Table 12-5: SPI Register Summary	205
Table 12-6: SPI FIFO32 Register	206
Table 12-7: SPI 16-bit FIFO Register	206
Table 12-8: SPI 8-bit FIFO Register	206
Table 12-9: SPI Control 0 Register	207
Table 12-10: SPI Control 1 Register	208
Table 12-11: SPI Control 2 Register	208
Table 12-12: SPI Target Select Timing Register	210
Table 12-13: SPI Controller Clock Configuration Registers	210
Table 12-14: SPI DMA Control Registers	211
Table 12-15: SPI Interrupt Status Flags Registers	212
Table 12-16: SPI Interrupt Enable Registers	213
Table 12-17: SPI Wakeup Status Flags Registers	215
Table 12-18: SPI Wakeup Enable Registers	215
Table 12-19: SPI Target Select Timing Registers	215
Table 13-1: MAX32670/MAX32671 TMR/LPTMR	218
Table 13-2: MAX32670/MAX32671 TMR/LPTMR Instances Capture Events	218
Table 13-3: TimerA/TimerB 32-Bit Field Allocations	219
Table 13-4: MAX32670/MAX32671 Low-Power Timer Pin Configuration for DEEPSLEEP and BACKUP	222
Table 13-5: MAX32670/MAX32671 Low-Power Timer Wake-up Events	
Table 13-6: MAX32670/MAX32671 Operating Mode Signals for Timer 0 through Timer 3	
Table 13-7: MAX32670/MAX32671 Operating Mode Signals for Low-Power Timer 0 (TMR4) and Low-Power T	
Table 13-8: Timer Register Summary	
Table 13-9: Timer Count Register	
Table 13-10: Timer Compare Register	
Table 13-11: Timer PWM Register	
Table 13-12: Timer Interrupt Register	
Table 13-13: Timer Control 0 Register	
Table 13-14: Timer Non-Overlapping Compare Register	
Table 13-15: Timer Control 1 Register	
Table 13-16: Timer Wake-up Status Register	
Table 14-1: MAX32670/MAX32671 WDT Instances Summary	
Table 14-2: WDT Event Summary	
Table 14-3: WDT Register Summary	
Table 14-4: WDT Control Register	
Table 14-5: WDT Reset Register	
Table 14-6: WDT Clock Source Select Register	
Table 14-7: WDT Count Register	
Table 15-1: RTC Seconds, Sub-Seconds, Time-of-Day Alarm, and Sub-Second Alarm Register Details	
Table 15-2: RTC Register Access	
Table 15-2: MC Register Access Table 15-3: MAX32670/MAX32671 RTC Square Wave Output Configuration	
Table 15-4: RTC Register Summary	
Table 15-5: RTC Seconds Counter Register	
Table 15-6: RTC Sub-Second Counter Register	
Table 15-7: RTC Time-of-Day Alarm Register	
Table 15-7. RTC Time-of-Day Alarm Register	
Table 15-9: RTC Control Register	
Table 15-10: RTC 32KHz Oscillator Digital Trim Register	
Table 15-11: RTC 32KHz Oscillator Control Register	
Table 16-1: MAX32670/MAX32671 CRC Instances	275 276

Table 16-2: Organization of Calculated Result in the CRC_VAL.value Field	277
Table 16-3: Common CRC Polynomials	277
Table 16-4: CRC Register Summary	279
Table 16-5: CRC Control Register	280
Table 16-6: CRC 8-Bit Data Input Register	280
Table 16-7: CRC 16-Bit Data Input Register	280
Table 16-8: CRC 32-Bit Data Input Register	281
Table 16-9: CRC Polynomial Register	281
Table 16-10: CRC Value Register	281
Table 17-1: MAX32670/MAX32671 AES Instances	282
Table 17-2: Interrupt Events	286
Table 17-3: AES Register Summary	287
Table 17-4: AES Control Register	287
Table 17-5: AES Status Register	288
Table 17-6: AES Interrupt Flag Register	
Table 17-7: AES Interrupt Enable Register	
Table 17-8: AES FIFO Register	
Table 17-9: AES Register Summary	290
Table 17-10: AES Key 0 Register	
Table 17-11: AES Key 1 Register	
Table 17-12: AES Key 2 Register	
Table 17-13: AES Key 3 Register	
Table 17-14: AES Key 4 Register	
Table 17-15: AES Key 5 Register	
Table 17-16: AES Key 6 Register	
Table 17-17: AES Key 7 Register	
Table 18-1: TRNG Register Summary	
Table 18-2: TRNG Control Register	
Table 18-3: TRNG Status Register	
Table 18-4: TRNG Data Register	
Table 19-1: MAX32670/MAX32671 Bootloader Instances	
Table 19-2: Bootloader Operating States and Prompts	
Table 19-3: CHALLENGE Command Summary	
Table 19-4: General Command Summary	
Table 19-5: P – Page Erase	
Table 19-6: V – Verify	
Table 19-7: LOCK – Lock Device	
Table 19-8: PLOCK – Permanent Lock	
Table 19-9: UNLOCK – Unlock Device	
Table 19-10: H – Check Device	
Table 19-11: I – Get ID	
Table 19-12: S – Status	
Table 19-13: Q – Quit	
Table 19-14: Secure Command Summary	
Table 19-15: LK – Load Application Key	
Table 19-16: LK – Load Challenge Key	
Table 19-17: VK – Verify Application Key	
Table 19-18: VC – Verify Application Rey	
Table 19-19: AK – Activate Application Key	
Table 19-19: AC – Activate Application Rey	
Table 19-21: WL – Write Code Length	
Table 19-22: Challenge/Response Command Summary	
Table 19-23: GC – Get Challenge	
TUDIC 10 20. GC GERGIERE	

Table 19-24: SR – Send Response	318
Table 20-1: MAX32670/MAX32671 DAP Instances	310

Analog Devices Page 19 of 327

Table of Equations

Equation 4-1: System Clock Scaling (SYS_CLK)	37
Equation 4-2: AHB Clock (HCLK)	37
Equation 4-3: APB Clock (PCLK)	37
Equation 4-4: AoD Clock (AOD_CLK)	37
Equation 4-5: Load Capacitance Calculation	
Equation 7-1: FLC Clock Frequency	104
Equation 9-1: UART Transmit FIFO Half-Empty Condition	133
Equation 9-2: UART Baud Rate Equation (UARTn_CTRL.fdm = 0)	135
Equation 9-3: Low-Power UART Baud Rate Equation With FDM Enabled (UARTn_CTRL.fdm = 1)	135
Equation 10-1: I ² C Clock Frequency	149
Equation 10-2: I ² C Clock High Time Calculation	149
Equation 10-3: I ² C Clock Low Time Calculation	149
Equation 10-4: I ² C Target SCL Frequency	150
Equation 10-5: Determining the I2Cn_HSCLK.lo Register Value	150
Equation 10-6: Determining the I2Cn_HSCLK.hi Register Value	151
Equation 10-7: The Calculated Frequency of the I ² C Bus Clock Using the Results of Equation 10-5 and Equation 10-6	151
Equation 10-8: I ² C Timeout Maximum	163
Equation 10-9: I ² C Timeout Minimum	163
Equation 10-10: DMA Burst Size Calculation for I ² C Transmit	164
Equation 10-11: DMA Burst Size Calculation for I ² C Receive	164
Equation 11-1: CD Audio Bit Frequency Calculation	183
Equation 11-2: Calculating the Bit Clock Frequency for Audio	183
Equation 11-3: Controller Mode BCLK Generation Using the I ² S External Clock	183
Equation 11-4: Controller Mode Clock Divisor Calculation for a Target Bit Clock Frequency	183
Equation 11-5: Bits Per Word Calculation	183
Equation 11-6: LRCLK Frequency Calculation	184
Equation 11-7: Sample Size Relationship Bits per Word	189
Equation 11-8: Transmit FIFO Half-Empty Condition	190
Equation 12-1: SPI Peripheral Clock	202
Equation 12-2: SCK High Time	203
Equation 12-3: SCK Low Time	203
Equation 13-1: Timer Peripheral Clock Equation	219
Equation 13-2: One-Shot Mode Timer Period	225
Equation 13-3: Continuous Mode Timer Period	227
Equation 13-4: Counter Mode Maximum Clock Frequency	229
Equation 13-5: Counter Mode Timer Input Transitions	230
Equation 13-6: Timer PWM Period	233
Equation 13-7: Timer PWM Output High Time Ratio with Polarity 0	233
Equation 13-8: Timer PWM Output High Time Ratio with Polarity 1	233
Equation 13-9: Capture Mode Elapsed Time Calculation in Seconds	
Equation 13-10: Capture Mode Elapsed Time Calculation in Seconds	237
Equation 13-11: Compare Mode Timer Period	237
Equation 13-12: Capture Mode Flapsed Time	241

1. Introduction

For ordering information, mechanical and electrical characteristics for the MAX32670/MAX32671 family of devices please refer to the data sheet.

1.1 Related Documentation

The MAX32670/MAX32671 data sheet and errata are available from the Analog Devices website.

1.2 Document Conventions

1.2.1 Number Notations

Notation	Description		
0xNN	Hexadecimal (Base 16) numbers are preceded by the prefix 0x.		
0bNN	Binary (Base 2) numbers are preceded by the prefix 0b.		
NN	Decimal (Base 10) numbers are represented using no additional prefix or suffix.		
V[X:Y]	Bit field representation of a register, field, or value (V) covering Bit X to Bit Y.		
Bit N	Bits are numbered in little-endian format; that is, the least significant bit of a number is referred to as Bit 0.		
[0xNNNN]	An address offset from a base address is shown in bracket form.		

1.2.2 Register and Field Access Definitions

All the fields that are accessible by user software have distinct access capabilities. Each register table contained in this user guide has an access type defined for each field. The definition of each field access type is presented in *Table 1-1*.

Table 1-1: Field Access Definitions

Access Type	Definition			
RO	Reserved This access type is reserved for static fields. Reads of this field return the reset value. Writes are ignored.			
DNM	Reserved. Do Not Modify Software must first read this field and write the same value whenever writing to this register.			
R	Read Only Reads of this field return a value. Writes to the field do not affect device operation.			
W	Write Only Reads of this field return indeterminate values. Writes to the field change the field's state to the value written and can affect device operation.			
R/W	Unrestricted Read/Write Reads of this field return a value. Writes to the field change the field's state to the value written and can affect device operation.			
RC	Read to Clear Reading this field clears the field to 0. Writes to the field do not affect device operation.			
RS	Read to Set Reading this field sets the field to 1. Writes to the field do not affect device operation.			
R/W0O	Read/Write 0 Only Writing 0 to this field set the field to 0. Writing 1 to the field does not affect device operation.			

Analog Devices Page 21 of 327

Access Type	Definition
R/W10	Read/Write 1 Only Writing 1 to this field sets the field to 1. Writing 0 to the field does not affect device operation.
R/W1C	Read/Write 1 to Clear Writing 1 to this field clears this field to 0. Writing 0 to the field does not affect device operation.
R/W0S	Read/Write 0 to Set Writing 0 to this field sets this field to 1. Writing 1 to the field does not affect device operation.

1.2.3 Register Lists

Each peripheral includes a table listing all of the peripheral's registers. The register table includes the offset, register name, and description of each register. The offset shown in the table must be added to the peripheral's base address in *Table 3-2* to get the register's absolute address.

Table 1-2: Example Registers

Offset	Register Name	Description
[0x0000]	REG_NAME0	Name 0 Register

1.2.4 Register Detail Tables

Each register in a peripheral includes a detailed register table, as shown in *Table 1-3*. The first row of the register detail table includes the register's description, the register's name, and the register's offset from the base peripheral address. The second row of the table is the header for the bit fields represented in the register. The third and subsequent rows of the table include the bit or bit range, the field name, the bit's or field's access, the reset value, and a description of the field. All registers are 32-bits unless specified otherwise. Reserved bits and fields are shown as **Reserved** in the description column. See *Table 1-1* for a list of all access types for each bit and field.

Table 1-3: Example Name 0 Register

Name 0				REG_NAMEO [0x0000]		
Bits	Field	Access	Reset	Description		
31:16	-	RO	-	Reserved		
15:0	field_name	R/W	0	Field name description Description of field_name.		

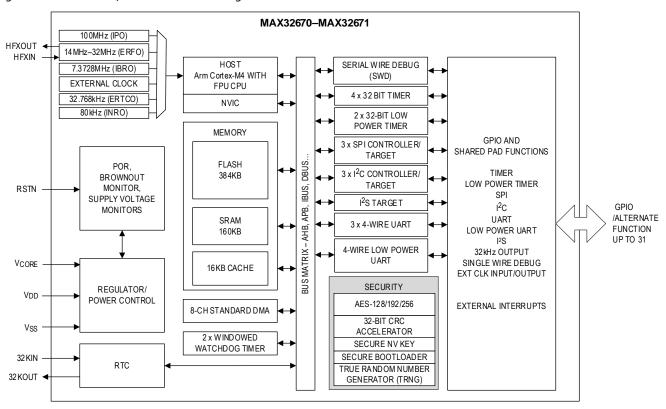
Analog Devices Page 22 of 327

2. Overview

The MAX32670/MAX32671 is an ultra-low-power, cost-effective, high reliability 32-bit microcontroller enabling designs with complex sensor processing without compromising battery life. It combines a flexible and versatile power management unit with the powerful Arm Cortex-M4 core with FPU. It also offers legacy designs an easy and cost optimal upgrade path from 8- or 16-bit microcontrollers. The device integrates up to 384KB of flash memory and 160KB of SRAM to accommodate application and sensor code.

The device features five powerful and flexible power modes. It can operate from a single-supply battery or a dual-supply typically provided by a PMIC. The I²C ports support standard, fast, fast-plus, and high-speed modes, operating up to 3400kbps. The SPI ports can run up to 48MHz in both controller and target mode, and three standard UARTs and one low power UART. Four general-purpose 32-bit timers, two low power 32-bit timers, two windowed watchdog timers, and a real-time clock (RTC) are also provided. An I²S interface provides digital audio streaming to a codec.

The high-level block diagram	for the MAX32670/MAX32671	is shown in Figure 2-1
The high-level block diagram	TOT THE IVIANSZUTU/IVIANSZUTI	is shown in rigure 2-1.


Arm is a registered trademark and registered service mark of Arm Limited. Cortex is a registered trademark of Arm Limited.

Analog Devices Page 23 of 327

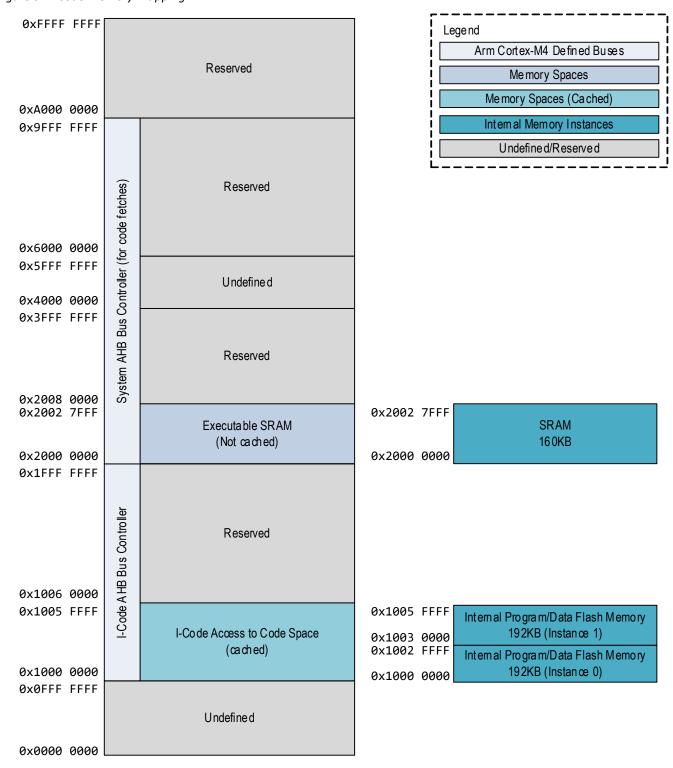
2.1 Block Diagram

Figure 2-1: MAX32670/MAX32671 Block Diagram

Analog Devices Page 24 of 327

3. Memory, Register Mapping, and Access

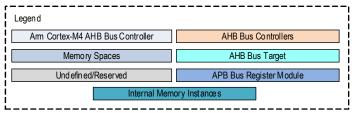
3.1 Memory, Register Mapping, and Access Overview

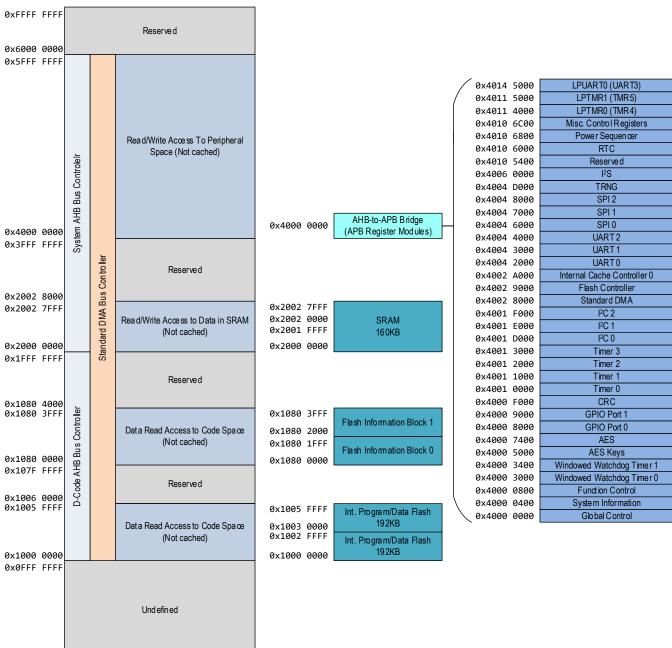

The Arm Cortex-M4 architecture defines a standard memory space for unified code and data access. This memory space is addressed in units of single bytes but is most typically accessed in 32-bit (4 byte) units. It may also be accessed, depending on the implementation, in 8-bit (1 byte) or 16-bit (2 byte) widths. The total range of the memory space is 32 bits wide (4GB addressable total), from addresses 0x0000 0000 to 0xFFFF FFFF.

It is important to note, however, that the architectural definition does not require the entire 4GB memory range to be populated with addressable memory instances.

Analog Devices Page 25 of 327

Figure 3-1: Code Memory Mapping




Analog Devices Page 26 of 327

0x0000 0000

Figure 3-2: Data Memory Mapping

Analog Devices Page 27 of 327

3.2 Device Memory Regions and Instances

Several standard memory regions are defined for the Arm Cortex-M4 architecture. The use of many of these is optional for the system integrator. At a minimum, the MAX32670/MAX32671 must contain some code and data memory for software and variable/stack use, as well as certain components which are part of the instantiated core. This section details physical memory instances on the MAX32670/MAX32671 (including internal flash memory and SRAM instances) that are accessible as standalone memory regions using either the AHB or APB bus matrix. Memory areas which are only accessible through FIFO interfaces, or memory areas consisting of only a few registers for a specific peripheral, are not covered here.

3.2.1 Code Space

The code space area of memory is designed to contain the primary memory used for code execution by the device. This memory area is defined from byte address range 0x0000 0000 to 0x1FFF FFFF (0.5GB maximum). Two different standard core bus controllers are used by the Cortex-M4 core and Arm debugger to access this memory area. The I-Code AHB bus controller is used for instruction decode fetching from code memory, while the D-Code AHB bus controller is used for data fetches from code memory. This is arranged so that data fetches avoid interfering with instruction execution.

The MAX32670/MAX32671 code memory mapping is illustrated in *Figure 3-1*. The code space memory area contains the main internal flash memory, which holds most of the instruction code that will be executed on the device. The internal flash memory is mapped into both code and data space from 0x1000 0000 to 0x1005 FFFF. It is partitioned as two 192KB blocks of usable flash.

Note: The last page of flash (address 0x1005 E000 to 0x1005 FFFF) is reserved and cannot be used by software.

This program memory area must also contain the default system vector table and the initial settings for all system exception handlers and interrupt handlers. The reset vector for the device is 0x0000 0000. After execution of ROM code that is not user accessible, execution is transferred to location 0x1000 0000.

The code space memory on the MAX32670/MAX32671 also contains the mapping for the flash information block, from 0x1080 0000 to 0x1080 3FFF. However, this mapping is generally only present during Analog Devices production test; it is disabled once the information block has been loaded with valid data and the info block lockout option has been set. This memory is accessible for data reads only and cannot be used for code execution. The flash information block is user read only accessible and contains the USN.

3.2.1 Instruction Cache Memory

This internal flash memory instruction cache controller (ICC) is 16,384 Bytes in size and is used to cache instructions fetched using the I-Code bus, including instructions fetched from the internal flash memory. This instruction cache controller is referred to as ICC throughout this document.

3.2.2 Information Block Flash Memory

The information block 0 is a separate flash instance of 16KB that is used to store trim settings (option configuration and analog trim) as well as other nonvolatile device-specific information. The information block 0 also contains the USN. The USN is a 104 bit field.

Figure 3-3: USN Format

			Bit Position																														
		31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																														
	0x10800000	USN bits 16 - 0									х	х	х	х	х	х	х	х	х	х	х	х	х	Х	х								
	0x10800004	0	0 USN bits 47-17																														
ess	0x10800008								USNI	its 6	4 - 48								х	х	х	х	х	х	х	х	х	х	х	х	х	Х	х
Address	0x1080000C	0														ı	USNI	its 9	5 - 65														
	0x10800010	х	х	х	х	х	х	х	х	Х		USN bits 103 - 96								х													
	0x10800014	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х

Analog Devices Page 28 of 327

Read the USN by reading from the addresses shown in *Figure 3-3*.

3.2.3 SRAM Space

The SRAM area of memory is intended to contain the primary SRAM data memory of the device and is defined from byte address range 0x2000 0000 to 0x3FFF FFFF (0.5GB maximum). This memory can be used for general purpose variable and data storage, code execution, and the Arm Cortex-M4 stack.

The MAX32670/MAX32671 data memory mapping is illustrated in *Figure 3-2* and the SRAM configuration is defined in *Table 3-1*. This memory area contains the main system SRAM. The size of the internal SRAM is 160KB.

The entirety of the SRAM memory space on the MAX32670/MAX32671 is contained within the dedicated Arm Cortex-M4 SRAM bit-banding region from 0x2000 0000 to 0x200F FFFF (1MB maximum for bit-banding). This means that the CPU can access the entire SRAM either using standard byte/word/doubleword access or using bit-banding operations. The bit-banding mechanism allows any single bit of any given SRAM byte address location to be set, cleared, or read individually by reading from or writing to a corresponding doubleword (32-bit wide) location in the bit-banding alias area.

The alias area for the SRAM bit-banding is located beginning at 0x2200 0000 and is a total of 32MB maximum, which allows the entire 160KB bit banding area to be accessed. Each 32-bit (4 byte aligned) address location in the bit-banding alias area translates into a single bit access (read or write) in the bit-banding primary area. Reading from the location performs a single bit read, while writing either a 1 or 0 to the location performs a single bit set or clear.

Note: The Arm Cortex-M4 core translates the access in the bit-banding alias area into the appropriate read cycle (for a single bit read) or a read-modify-write cycle (for a single bit set or clear) of the bit-banding primary area. This means that bit-banding is a core function (i.e., not a function of the SRAM memory interface layer or the AHB bus layer), and thus is only applicable to accesses generated by the core itself. Reads/writes to the bit-banding alias area by other (non-Arm-core) bus controllers does not trigger a bit-banding operation and will instead result in an AHB bus error.

The SRAM area on the MAX32670/MAX32671 can be used to contain executable code. Code stored in the SRAM is accessed directly for execution (using the system bus) and is not cached. The SRAM is also where the Arm Cortex-M4 stack must be located, as it is the only general-purpose SRAM memory on the device. A valid stack location inside the SRAM must be set by the system exception table (which is, by default, stored at the beginning of the internal flash memory).

The MAX32670/MAX32671 specific AHB bus controllers can access the SRAM to use as general storage or working space.

System RAM Block #	Size	Start Address	End Address
sysram0	16KB	0x2000 0000	0x2000 3FFF
sysram1	16KB	0x2000 4000	0x2000 7FFF
sysram2	32KB	0x2000 8000	0x2000 FFFF
sysram3	64KB	0x2001 0000	0x2001 FFFF
sysram4	4KB	0x2002 0000	0x2002 0FFF
sysram5	4KB	0x2002 1000	0x2002 1FFF
sysram6	8KB	0x2001 2000	0x2002 3FFF
sysram7	16KB	0x2002 4000	0x2002 7FFF

Table 3-1: SRAM Configuration

3.2.4 AES Key and Working Space Memory

The AES key memory and working space for AES operations (including input and output parameters) are in a dedicated register file memory tied to the AES engine block. This AES memory is mapped into AHB space for rapid software access.

3.2.5 Peripheral Space

The peripheral space area of memory is intended for mapping of control registers, internal buffers/working space, and other features needed for the software control of non-core peripherals. It is defined from byte address range 0x4000 0000 to 0x5FFF FFFF (0.5GB maximum). On the MAX32670/MAX32671, all device-specific module registers are mapped to this memory area, as well as any local memory buffers or FIFOs which are required by modules.

Analog Devices Page 29 of 327

As with the SRAM region, there is a dedicated 1MB area at the bottom of this memory region (from 0x4000 0000 to 0x400F FFFF) that is used for bit-banding operations by the Arm core. Four-byte-aligned read/write operations in the peripheral bit-banding alias area (32MB in length, from 0x4200 0000 to 0x43FF FFFF) are translated by the core into read/mask/shift or read/modify/write operation sequences to the appropriate byte location in the bit-banding area.

Note: The bit-banding operation within peripheral memory space is, like bit-banding function in SRAM space, a core remapping function. As such, it is only applicable to operations performed directly by the Arm core. If another memory bus controller accesses the peripheral bit-banding alias region, the bit-banding remapping operation will not take place. In this case, the bit-banding alias region will appear to be a non-implemented memory area (causing an AHB bus error).

On the MAX32670/MAX32671, access to the region that contains most peripheral registers (0x4000 0000 to 0x400F FFFF) goes from the AHB bus through an AHB-to-APB bridge. This allows the peripheral modules to operate on the lower power APB bus matrix. This also ensures that peripherals with slower response times do not tie up bandwidth on the AHB bus, which must necessarily have a faster response time since it handles main application instruction and data fetching.

3.2.6 External RAM Space

The external RAM space area of memory is intended for use in mapping off-chip external memory and is defined from byte address range 0x6000 0000 to 0x9FFF FFFF (1GB maximum). The MAX32670/MAX32671 does not implement this memory area.

3.2.7 External Device Space

The external device space area of memory is intended for use in mapping off-chip device control functions onto the AHB bus. This memory space is defined from byte address range 0xA000 0000 to 0xDFFF FFFF (1GB maximum). The MAX32670/MAX32671 does not implement this memory area.

3.2.8 System Area (Private Peripheral Bus)

The system area (private peripheral bus) memory space contains register areas for functions that are only accessible by the Arm core itself (and the Arm debugger, in certain instances). It is defined from byte address range 0xE000 0000 to 0xE00F FFFF. This APB bus is restricted and can only be accessed by the Arm core and core-internal functions. It cannot be accessed by other modules which implement AHB memory controllers, such as the DMA interface.

In addition to being restricted to the core, software is only allowed to access this area when running in the privileged execution mode (instead of the standard user thread execution mode). This helps ensure that critical system settings controlled in this area are not altered inadvertently or by errant code that should not have access to this area.

Core functions controlled by registers mapped to this area include the SysTick timer, debug and tracing functions, the NVIC (interrupt handler) controller, and the Flash Breakpoint controller.

3.2.9 System Area (Vendor Defined)

The system area (vendor defined) memory space is reserved for vendor (system integrator) specific functions that are not handled by another memory area. It is defined from byte address range 0xE010 0000 to 0xFFFF FFFF. The MAX32670/MAX32671 does not implement this memory region.

3.3 AHB Interfaces

This section details memory accessibility on the AHB and the organization of AHB controller and target instances.

3.3.1 Core AHB Interfaces

3.3.1.1 *I-Code*

This AHB controller is used by the Arm core for instruction fetching from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. This bus controller is used to fetch instructions from the internal flash memory. Instructions fetched by this bus controller are returned by the instruction cache, which in turn triggers a cache line fill cycle to fetch instructions from the internal flash memory when a cache miss occurs.

Analog Devices Page 30 of 327

3.3.1.2 D-Code

This AHB controller is used by the Arm core for data fetches from memory instances located in code space from byte addresses 0x0000 0000 to 0x1FFF FFFF. This bus controller has access to the internal flash memory and the information block.

3.3.1.3 System

This AHB controller is used by the Arm core for all instruction fetches and data read and write operations involving the SRAM data cache. The APB mapped peripherals (through the AHB-to-APB bridge) and AHB mapped peripheral and memory areas are also accessed using this bus controller.

3.3.2 AHB Controller

3.3.3 Standard DMA

The standard DMA bus controller has access to all off-core memory areas accessible by the System bus. It does not have access to the Arm Private Peripheral Bus area.

3.4 Peripheral Register Map

3.4.1 APB Peripheral Base Address Map

Table 3-2 contains the base address for each of the APB mapped peripherals. The base address for a given peripheral is the start of the register map for the peripheral. For a given peripheral, the address for a register within the peripheral is defined as the APB peripheral base address plus the registers offset.

Table 3-2: APB Peripheral Base Address Map

Peripheral Register Name	Register Prefix	APB Base Address	APB End Address
Global Control	GCR_	0x4000 0000	0x4000 03FF
System Interface	SIR_	0x4000 0400	0x4000 07FF
Function Control	FCR_	0x4000 0800	0x4000 0BFF
Watchdog Timer 0	WDT0_	0x4000 3000	0x4000 33FF
Watchdog Timer 1	WDT1_	0x4000 3400	0x4000 37FF
AES Keys	AESK_	0x4000 5000	0x4000 53FF
AES	AES_	0x4000 7400	0x4000 77FF
GPIO Port 0	GPIO0_	0x4000 8000	0x4000 8FFF
GPIO Port 1	GPIO1_	0x4000 9000	0x4000 9FFF
CRC	CRC_	0x4000 F000	0x4000 FFFF
Timer 0	TMR0_	0x4001 0000	0x4001 0FFF
Timer 1	TMR1_	0x4001 1000	0x4001 1FFF
Timer 2	TMR2_	0x4001 2000	0x4001 2FFF
Timer 3	TMR3_	0x4001 3000	0x4001 3FFF
I2C 0	12C0_	0x4001 D000	0x4001 DFFF
I2C 1	I2C1_	0x4001 E000	0x4001 EFFF
12C 2	12C2_	0x4001 F000	0x4001 FFFF
Standard DMA	DMA_	0x4002 8000	0x4002 8FFF
Flash Controller 0	FLCO_	0x4002 9000	0x4002 93FF
Internal Cache Controller	ICC_	0x4002 A000	0x4002 A3FF

Analog Devices Page 31 of 327

Peripheral Register Name	Register Prefix	APB Base Address	APB End Address
UART 0	UARTO_	0x4004 2000	0x4004 2FFF
UART 1	UART1_	0x4004 3000	0x4004 3FFF
UART 2	UART2_	0x4004 4000	0x4004 4FFF
SPI0	SPIO_	0x4004 6000	0x4004 6FFF
SPI1	SPI1_	0x4004 7000	0x4004 7FFF
SPI2	SPI2_	0x4004 8000	0x4004 8FFF
TRNG	TRNG_	0x4004 D000	0x4004 DFFF
I ² S	I2S_	0x4006 0000	0x4006 0FFF
Real-Time Clock	RTC_	0x4010 6000	0x4101 63FF
Power Sequencer	PWRSEQ_	0x4010 6800	0x4010 6BFF
Miscellaneous Control	MCR_	0x4010 6C00	0x4010 6FFF
Timer 4 (Low-Power Timer 0)	TMR4_	0x4011 4000	0x4011 4FFF
Timer 5 (Low-Power Timer 1)	TMR5_	0x4011 5000	0x4011 5FFF
UART 3 (Low Power UART 0)	UART3_	0x4014 5000	0x4014 5FFF

Analog Devices Page 32 of 327

4. System, Power, Clocks, Reset

Different peripherals and subsystems support several possible clocks. These clocks are highly configurable by software, allowing developers to select the combination of application performance and power savings required for the target systems. Support for selectable core operating voltage is provided, and the internal primary oscillator (IPO) frequency is scaled based on the specific core operating voltage range selected.

The selected system oscillator (SYS_OSC) is the clock source for most internal blocks. Select SYS_OSC from the following clock sources:

- 100MHz Internal Primary Oscillator (IPO)
- 7.3728MHz Internal Baud Rate Oscillator (IBRO)
- 80kHz Internal Nanoring Oscillator (INRO)
- 32.768kHz External RTC Crystal Oscillator (ERTCO)
 - Clock Source for the Real-Time Clock (RTC)
- 16MHz to 32MHz External RF Crystal Oscillator (ERFO)
- EXT_CLK1 P0.12 AF4

4.1 Core Operating Voltage Range Selection

The MAX32670/MAX32671 supports three selections for the core operating voltage range (OVR). In single-supply operation, changing the OVR sets the output of the internal LDO regulator to the voltage shown in *Table 4-1*. In a dual-supply design, setting the OVR allows an external PMIC to provide the required V_{CORE} voltage dynamically. Changing the OVR also reduces the output frequency of the IPO, further reducing power consumption.

PWRSEQ_LPCN.ovr and FLC_CTRL.lve do not affect the frequency of any of the oscillators other than IPO. The setting of these bit fields must correlate to any of the clock sources used as SYS_OSC, as shown in Table 4-1.

Changes to the OVR affect the access time of the internal flash memory, and the application software must set the flash wait states for each OVR setting as outlined in the section *Flash Wait States*. Changing the core operating voltage immediately reduces the output frequency of the IPO, as shown in *Table 4-1*. Operating the device using dual external supplies requires special considerations and must be handled carefully in software.

Table 4-1: Operatina	Valtage Dan	an Calantian	and the Effect	t an 1/	and CVC OCC
TUDIE 4-1. ODETALITA	voituue Kuii	ie seiection	unu ine Eneci	L UII V CORE	unu sis USC

		V _{CORE}			SYS_	osc		
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Typical (V)	f _{IPO} (MHz)	f _{iBRO} (MHz)	f _{ERFO} (MHz)	<i>f</i> _{EXT_CLK1} (МНz)	f _{INRO} (kHz)	f _{ERTCO} (kHz)
0	1	0.9	12	7.3728	32 (Max)	50 (Max)	80	32.768
1	1	1.0	50	7.3728	32 (Max)	50 (Max)	80	32.768
2	0	1.1	100	7.3728	32 (Max)	50 (Max)	80	32.768

4.1.1 Setting the Operating Voltage Range

The OVR selection is controlled using the power sequencer low-power control register $PWRSEQ_LPCN.ovr$ which is only reset by a POR. These bits should be checked after every reset to determine the correct clock speed and flash wait states. Adjusting the OVR setting affects the frequency of the IPO. Before adjusting the OVR settings, it is required to set the system clock to either the INRO, IBRO, or ERTCO. The device coordinates the OVR change between the internal LDO and the IPO set frequency. When changing the OVR setting, the device must be operating from the internal LDO. In a system using an external supply for V_{CORE} , software must transition to the internal LDO before changing the OVR setting.

Analog Devices Page 33 of 327

The following steps describe how to change the OVR for devices that use the IPO as the default SYS_OSC:

- 1. Set PWRSEQ LPCN.Ido dis to 0 to ensure the device is operating from the internal LDO for VCORE.
 - a. If using an external supply for V_{CORE} , ensure the external supply is set to the same voltage as the current OVR setting. The external supply must be equal to or greater than the set OVR voltage.
- 2. Set either the ERTCO or INRO as the system clock source.
 - a. See the Oscillator Sources and Clock Switching section for details on system clock selection.
- 3. Set GCR MEMCTRL.fws = 5 to ensure flash operation at any frequency.
- 4. Set PWRSEQ LPCN.ovr to either 0, 1, or 2, as shown in Table 4-2.
- 5. Set FLC CTRL.Ive to either 0 or 1 according to the OVR setting set in step 4.
- 6. If desired, set the system clock source to the IPO and update the system clock prescaler to the desired value.
 - a. Set GCR_CLKCTRL.sysclk_sel = 0.
 - b. Wait for the system clock ready bit, GCR_CLKCTRL.sysclk_rdy, to read 1.
 - c. Set GCR_CLKCTRL.sysclk_div to the desired prescaler value.
- 7. Set GCR MEMCTRL.fws to the minimum value shown for the selected OVR and system clock.
- 8. Set GCR_RSTO.periph = 1 to perform a peripheral reset.

On each subsequent non-POR reset event:

- 1. Set the flash low voltage enable bit to 1 (FLC_CTRL.lve) to match the setting of PWRSEQ_LPCN.ovr since PWRSEQ_LPCN.ovr is not reset.
 - Note: Setting the FLC_CTRL.lve to 1 should be done in the reset vector in RAM to ensure the low-voltage enable is set prior to accessing any code in the flash memory.
- 2. Set the clock prescaler, GCR_CLKCTRL.sysclk_div, as needed by the system.
- 3. Set the number of flash wait states, GCR MEMCTRL.fws, as needed based on the OVR settings using Table 4-2.

4.1.2 Flash Wait States

For devices that use the IPO as the default SYS_OSC (see section *Silicon Revision Differences* for details), the setting for the number of flash wait states affects performance, and it is critical to set it correctly based on the *PWRSEQ_LPCN.ovr* settings and the SYS_CLK frequency. Set the number of flash wait states using the field *GCR_MEMCTRL.fws* per *Table 4-2*. The *GCR_MEMCTRL.fws* field should always be set to the default POR reset value of 5 before changing the *PWRSEQ_LPCN.ovr* settings. POR, system reset, and watchdog reset all reset the flash wait state field, *GCR_MEMCTRL.fws*, to the POR default setting of 5. When changing the system clock prescaler *GCR_CLKCTRL.sysclk_div* to move from a slower system clock frequency to a faster system clock frequency, always set *GCR_MEMCTRL.fws* to the minimum required for the faster system clock frequency before changing the system oscillator prescaler *GCR_CLKCTRL.sysclk_div*. After a system reset or watchdog reset, the *PWRSEQ_LPCN.ovr* setting overrides the default setting of the IPO frequency to prevent system lockup. The *FLC_CTRL.lve* setting must be restored by software after any reset.

Important: Flash reads may fail and result in unknown instruction execution if the GCR_MEMCTRL.fws setting is lower than the minimum required for a given PWRSEQ_LPCN.ovr setting and the selected system clock frequency.

Analog Devices Page 34 of 327

Table 4-2: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{IPO}$, $GCR_CLKCTRL$.ipo_div = 1)

Core Operating Voltag	e Range Setting	Core Voltage Range	f IPO	System Clock Prescaler	System Clock	Minimum Flash Wait State Setting
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	V _{CORE} (V)	(MHz)	GCR_CLKCTRL.sysclk_div	f _{SYS_CLK} (MHz)	GCR_MEMCTRL.fws
0	1	0.9	12	0	12	0
				1	6	0
1	1	1.0	50	0	50	1
				1	25	0
2	0	1.1	100	0	100	2
				1	50	1
				2	25	0

Table 4-3: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{IBRO}$)

Core Operating Voltag	e Range Setting	Core Voltage	f_{IBRO}	System Clock Prescaler	System Clock	Minimum Flash
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Range V _{CORE} (V)	(MHz)	GCR_CLKCTRL.sysclk_div	f _{SYS_CLK} (MHz)	Wait State Setting GCR_MEMCTRL.fws
0	1	0.9	7.3728	0	7.3728	0
				1	3.6864	0
1	1	1.0	7.3728	0	7.3728	0
				1	3.6864	0
2	0	1.1	7.3728	0	7.3728	0
				1	3.6864	0
				2	1.8432	0

Table 4-4: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{ERFO}$)

Core Operating Voltag	e Range Setting	Core Voltage	f erfo	System Clock Prescaler	System Clock	Minimum Flash
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Range V _{CORE} (V)	(MHz)	GCR_CLKCTRL.sysclk_div	fsys_clk (MHz)	Wait State Setting GCR_MEMCTRL.fws
0	1	0.0	16–20	0	16–20	0
0	1	0.9	16-20	1	8–10	0
1	1	1.0	20–25	0	20–25	0
1	1	1.0	20–25	1	10-12.5	0
				0	25–32	0
2	0	1.1	25–32	1	12.5–16	0
				2	8.33-10.66	0

Analog Devices Page 35 of 327

Table 4-5: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{EXT_CLK1}$)

Core Operating Voltag	e Range Setting	Core Voltage	f ext_clk1	System Clock Prescaler	System Clock	Minimum Flash
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Range V _{CORE} (V)	(MHz)	•	f _{SYS_CLK} (MHz)	Wait State Setting GCR_MEMCTRL.fws
0	1	0.9	1–15	0	1–15	0
U	1	0.9	1–15	1	0.5-7.5	0
1	1	1.0	16–30	0	16–30	0
1	1	1.0	10-30	1	8–15	0
				0	31–45	0
2	0	1.1	31–45	1	15.5–22.5	0
				2	10.33–15	0
				0	46–50	1
2	0	1.1	46–50	1	23–25	0
				2	15.33-16.66	0

Table 4-6: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{INRO}$)

Core Operating Voltag	e Range Setting	Core Voltage	<i>f</i> inro	System Clock Prescaler	System Clock	
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Range V _{CORE} (V)	(kHz)	GCR_CLKCTRL.sysclk_div	fsys_clk (kHz)	Wait State Setting GCR_MEMCTRL.fws
0	1	0.0	00	0	80	0
0	1	0.9	80	1	40	0
1	1	1.0	90	0	80	0
1	1	1.0	80	1	40	0
				0	80	0
2 0 1.1		80	1	40	0	
				2	20	0

Table 4-7: Minimum Flash Wait State Setting for Each OVR Setting ($f_{SYSCLK} = f_{ERTCO}$)

Core Operating Voltage Range Setting		Core Voltage	f ertco	System Clock Prescaler	System Clock	Minimum Flash
PWRSEQ_LPCN.ovr	FLC_CTRL.lve	Range V _{CORE} (V)	(kHz)	GCR_CLKCTRL.sysclk_div	f _{SYS_CLK} (kHz)	Wait State Setting GCR_MEMCTRL.fws
0	1	0.9	32.768	0	32.768	0
				1	16.384	0
1	1	1.0	32.768	0	32.768	0
				1	16.384	0
2	0	1.1	32.768	0	32.768	0
				1	16.384	0
				2	8.192	0

Analog Devices Page 36 of 327

4.2 Oscillator Sources and Clock Switching

The selected SYS_OSC is the input to the system oscillator prescaler to generate the system clock (SYS_CLK). The system oscillator prescaler divides SYS_OSC by a prescaler using the GCR_CLKCTRL.sysclk_div field as shown in Equation 4-1.

Equation 4-1: System Clock Scaling (SYS_CLK)

$$SYS_CLK = \frac{SYS_OSC}{2^{GCR_CLKCTRL.sysclk_div}}$$

Note: GCR CLKCTRL.sysclk div is selectable from 0 to 7, resulting in divisors of 1, 2, 4, 8, 16, 32, 64, or 128.

SYS_CLK drives the Arm Cortex-M4 with FPU core and is used to generate the following internal clocks as shown below:

Equation 4-2: AHB Clock (HCLK)

$$HCLK = SYS_CLK$$

Equation 4-3: APB Clock (PCLK)

•
$$PCLK = \frac{SYS_CLK}{2}$$

Equation 4-4: AoD Clock (AOD CLK)

$$AOD_CLK = \left. \begin{array}{l} PCLK \\ \end{array} \right|_{\begin{subarray}{c} 4 \text{ X } 2^{GCR_PCLKDIV.aon_clkdiv} \end{array}}$$

Note: GCR_PCLKDIV.aon_clkdiv is selectable from 0 to 3 for divisors of 1, 2, 4, or 8.

The RTC uses the ERTCO for its clock source.

All oscillators are reset to their POR reset default state during a POR, system reset, or watchdog reset. Oscillator settings are not reset during a soft reset or peripheral reset. *Table 4-8* shows each oscillator's enabled state for each type of reset source in the MAX32670/MAX32671. *Table 4-9* details the effect each reset source has on the system clock selection and the system clock prescaler settings.

CAUTION: When switching the SYS_OSC or modifying the SYS_OSC prescaler (*GCR_CLKCTRL.sysclk_div*), any device peripherals using SYS_CLK, APB clock, or AHB clock become unstable. The software should understand that all peripherals should be disabled before switching SYS_OSC or touching the SYS_OSC prescaler.

Table 4-8: Reset Sources and Effect on Oscillator Status

	Reset Source				
Oscillator	POR	System	Watchdog	Soft	Peripheral
IPO	See section	Silicon Revision	Retains State	Retains State	
IBRO	See section	Silicon Revision	Retains State	Retains State	
INRO	Enabled	Enabled	Enabled	Enabled	Enabled
ERTCO	Disabled	Retains State	Retains State	Retains State	Retains State

Analog Devices Page 37 of 327

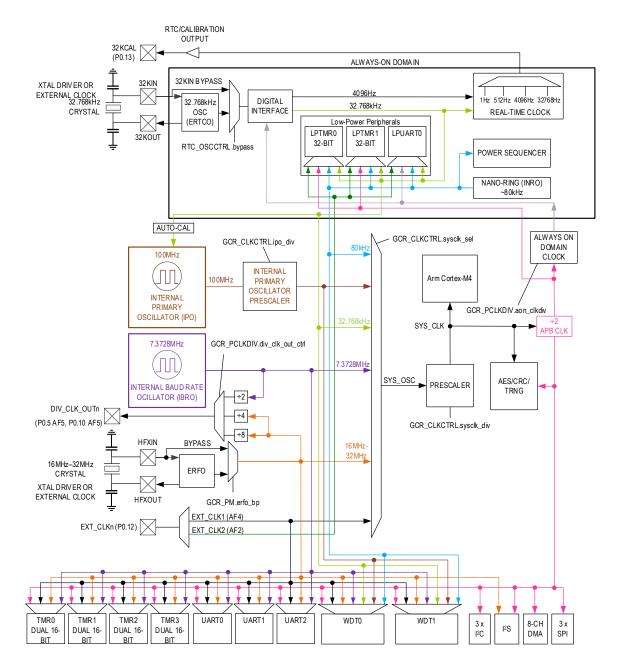


Table 4-9: Reset Sources and Effect on System Oscillator Selection and Prescaler

	Reset Source				
Clock Field	POR System Watchdog		Soft	Peripheral	
System Oscillator GCR_CLKCTRL.sysclk_sel	Default system oscillator. See <i>Silicon Revision Differences</i> for the default oscillator by revision.			Retains State	Retains State
System Clock Prescaler GCR_CLKCTRL.sysclk_div	1	1	1	Retains State	Retains State

Figure 4-1 shows a high-level diagram of the MAX32670/MAX32671 clock tree.

Figure 4-1: MAX32670/MAX32671 Clock Block Diagram

Analog Devices Page 38 of 327

4.2.1 Oscillator Implementation

Following a POR or a system reset, the SYS_OSC defaults to the clock source as defined in the section *Silicon Revision*Differences, and the INRO is also enabled. Before using any oscillator, the desired oscillator must first be enabled by setting the oscillator's enable bit in the GCR_CLKCTRL register. Once an oscillator's enable bit is set, the oscillator's ready bit must read 1 before attempting to use the oscillator as a system oscillator source. The oscillator-ready status flags are contained in the GCR_CLKCTRL register.

Once the corresponding oscillator ready bit is set, the oscillator can be selected as SYS_OSC by configuring the clock source select field (GCR_CLKCTRL.sysclk_sel).

Anytime software changes SYS_OSC by changing GCR_CLKCTRL.sysclk_sel, the clock ready bit GCR_CLKCTRL.sysclk_rdy is automatically cleared to indicate that a system oscillator switchover is in progress. When the switchover is complete, GCR_CLKCTRL.sysclk_rdy is set to 1 by hardware indicating the oscillator selected is ready. Before entering any low-power mode, the software must enable any oscillator needed during the low-power mode.

4.2.2 100MHz Internal Primary Oscillator (IPO)

This oscillator can be selected as SYS_OSC. The 100MHz IPO is the fastest oscillator and draws the most power.

The IPO can be selected as SYS_OSC using the following steps:

- 1. Enable the IPO by setting GCR_CLKCTRL.ipo_en to 1.
- 2. Wait until the GCR_CLKCTRL.ipo_rdy field reads 1, indicating the IPO is operating.
- 3. Set GCR CLKCTRL.sysclk sel to 4.
- 4. Wait until the GCR CLKCTRL.sysclk rdy field reads 1. The IPO is now operating as the SYS OSC.

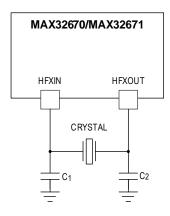
4.2.2.1 IPO Calibration

The IPO can be calibrated to improve accuracy. The calibration circuitry divides down the IPO to a value close to the 32.768kHz ERTCO frequency. The calibration hardware then increments or decrements a trim value to get the divided down frequency as close to the ERTCO frequency as possible. Each trim increment or decrement is approximately 205kHz. The following steps describe how to calibrate the IPO using the ERTCO.

- 1. Enable the ERTCO by setting GCR_CLKCTRL.ertco_en to 1.
- 2. Wait until GCR_CLKCTRL.ertco_rdy reads 1. The ERTCO is now operating.
- 3. Set the FCR AUTOCAL2.div field to 3,051. See the FCR AUTOCAL2.div field for additional information.
- 4. Set the FCR AUTOCAL2.runtime field to 10.
- 5. Set the FCR AUTOCAL1.initial field to 0x100.
- 6. Set the FCR_AUTOCALO.gain field to 4.
- 7. Set the FCR_AUTOCALO.sel, FCR_AUTOCALO.en, and FCR_AUTOCALO.load fields to 1 by performing a bitwise OR of the FCR_AUTOCALO register with 0x7.
- 8. Wait 10ms for the trim to complete.
 - a. The calculated trim is loaded to the FCR_AUTOCALO.gain field and is used by the hardware as long as the FCR_AUTOCALO.sel field is set to 1.
- 9. Set the FCR_AUTOCALO.en field to 0 to stop the calibration.

Analog Devices Page 39 of 327

4.2.3 16MHz to 32MHz External Radio Frequency Oscillator (ERFO)


This oscillator can be selected as SYS_OSC. It is important to use the correct capacitor values on the PCB when connecting the crystal as described in *Calculating the Crystal Load Capacitor*. This oscillator is disabled by default at power-up.

Follow the steps below to use the ERFO as the system oscillator.

- 1. Enable the ERFO by setting GCR_CLKCTRL.erfo_en to 1.
- 2. Wait until GCR_CLKCTRL.erfo_rdy is set, indicating the ERFO is operating.
- 3. Set GCR_CLKCTRL.sysclk_sel to 2 to select the ERFO as the SYS_OSC.
- 4. Wait until GCR_CLKCTRL.sysclk_rdy is set to 1.

4.2.3.1 Calculating the Crystal Load Capacitor

Figure 4-2: ERFO Load Capacitors

Equation 4-5: Load Capacitance Calculation

$$C_L = \frac{\text{C1} \times \text{C2}}{(C1 + C2)} + C_{STRAY}$$

where:

 C_L = the crystal capacitance

 C_{STRAY} = the capacitance of the pins and the parasitics of the board.

Calculate the values of C₁ and C₂ using the following steps:

- 1. The crystal load, C_L, as specified in the device data sheet electrical characteristics table, must be 12pF. See the spec External RF Oscillator in the data sheet. Therefore, the total capacitance seen by the crystal must equal C_L.
- 2. Assume $C_1 = C_2$, Equation 4-5 can be rewritten as:

$$C_1 = C_2 = 2 \times (C_L - C_{STRAY})$$

- 3. The device pin capacitance of the HFXOUT and HFXIN pins, respectively is 4pF each as given in the device data sheet parameter C_{IO} . Assume the circuit board stray capacitance is 0.5pF, resulting in $C_{STRAY} = 4.5$ pF.
- 4. Solve for C₁ and C₂:

$$C_1 = C_2 = 2 \times (12pF - 4.5pF) = 15pF$$

Checking the clock frequency accuracy on each new board design using a frequency counter is recommended. Measure the output frequency by toggling a GPIO pin with the ERFO set as the system oscillator. Adjust the load capacitance as required to adjust the crystal frequency.

Analog Devices Page 40 of 327

4.2.4 7.3728MHz Internal Baud Rate Oscillator (IBRO)

The IBRO is a low-power internal oscillator that can be selected as the system oscillator. Some devices default to the IBRO as the system oscillator after reset. See *Silicon Revision Differences* for details. This clock can optionally be used as a dedicated baud rate clock for the UARTs. This is useful if the SYS OSC selected does not allow the targeted UART baud rate.

The *GCR_CLKCTRL.ibro_vs* field controls the voltage source for the IBRO. The internal CPU 1V LDO core supply voltage is the default option. The V_{CORE} external pin can also be selected.

4.2.5 32.768kHz External Real-Time Clock Oscillator (ERTCO)

The ERTCO is a very low-power external oscillator that can be selected as the system oscillator. This oscillator can optionally use a 32.768kHz input clock instead of an external crystal. The ERTCO is available as an output on GPIO as an alternate function (32KCAL (P0.13)).

This oscillator is the clock source for the RTC. If the RTC is enabled, the ERTCO must be enabled. This oscillator is disabled at power-up.

The ERTCO is disabled by a POR. All other forms of reset do not change the ERTCO enable bit. See *Figure 4-3* and *Figure 4-4* for details on reset sources and the effect on the ERTCO.

4.2.5.1 Enabling the ERTCO

Perform the following steps to enable the ERTCO:

- 1. Power on the ERTCO by setting the PWRSEQ_LPCN.ertco_pd field to 0.
- 2. Enable the ERTCO by setting the GCR_CLKCTRL.ertco_en field to 1.
- 3. Wait until the GCR_CLKCTRL.ertco_rdy field reads 1.
 - a. The ERTCO is now operating.
- 4 If setting the ERTCO as the system oscillator, set GCR_CLKCTRL.sysclk_sel = 6 to select the ERTCO as the SYS_OSC.
 - a. Wait until GCR CLKCTRL.sysclk rdy reads 1.
 - b. The ERTCO is now operating as the SYS OSC.

Enable the ERTCO to operate in all low-power modes by setting PWRSEQ LPCN.ertco en to 1.

4.2.6 80kHz Ultra-Low-Power Internal Nanoring Oscillator (INRO)

The INRO is a low-power internal oscillator that can be selected as SYS_OSC. This oscillator is enabled at power-up and cannot be disabled by software. The INRO is not an accurate clock source and may vary by more than ±50%.

4.3 Operating Modes

The device provides five operating modes, four of which are defined as low-power modes:

- ACTIVE
- Low-Power Modes:
 - SLEEP
 - DEEPSLEEP
 - BACKUP
 - ◆ STORAGE

A wake-up event can wake the device to ACTIVE from a low-power mode, as shown in Table 4-10.

Analog Devices Page 41 of 327

Table 4-10: Wake-up Sources

Low Power Operating Mode	Wake-up Source
SLEEP	Interrupts (GPIO or any active peripheral), RSTN assertion
DEEPSLEEP	Interrupts (RTC and GPIO), RSTN assertion, LPUART, and LPTMR0/1
BACKUP	Interrupts (RTC and GPIO), RSTN assertion, LPUART, and LPTMR0/1
STORAGE	Interrupts (RTC and GPIO), RSTN assertion

4.3.1 ACTIVE

ACTIVE is the highest performance mode. All internal clocks, registers, memory, and peripherals are enabled. The CPU is running and executing software. All oscillators are available.

Dynamic clocking allows software to selectively enable or disable clocks and power to individual peripherals, providing the optimal mix of high-performance and power conservation.

4.3.2 SLEEP

This is a low-power mode that suspends the CPU with a fast wake-up time to *ACTIVE*. It is like *ACTIVE* except the CPU clock is disabled, which prevents the CPU from executing code. All oscillators remain active if enabled, and the always-on domain (AoD) and RAM retention are enabled.

The device returns to ACTIVE from any internal or external interrupt. The device status is as follows:

- The CM4 is sleeping.
- Standard DMA is available for use.
- All enabled peripherals remain on unless explicitly disabled before entering SLEEP.

4.3.2.1 Entering SLEEP

Place the CM4 in SLEEP by performing the following steps:

- 1. Configure any desired wake-up functions. See *Table 4-10* for possible wake-up sources.
- 2. Clear the wake-up status register by writing 0xFFFF FFFF to the *PWRSEQ_LPWKSTO* register.
- 3. Clear the low-power peripheral wake-up status register by writing 0xFFFF FFFF to the *PWRSEQ_LPPWKST* register.
- 4. Set the PWRSEQ_LPCN.vcore_det_bypass bit to 1.
- 5. Set SCR.sleepdeep to 0.
- 6. Perform a wait for interrupt (WFI) or wait for event (WFE) instruction.

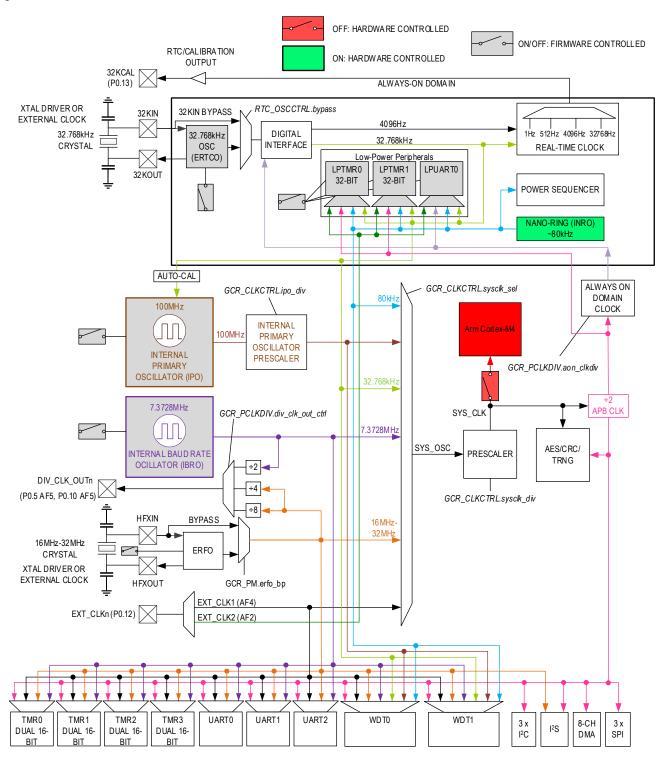

CAUTION: Software must ensure no flash writes or erase operations are in progress before entering a low-power mode.

Table 4-13 and *Table 4-15* show the effects that *SLEEP* has on the various clock sources. *Figure 4-3* shows the clocks available and blocks disabled during *SLEEP*.

Analog Devices Page 42 of 327

Figure 4-3: MAX32671/MAX32670 SLEEP Clock Control

Analog Devices Page 43 of 327

4.3.3 DEEPSLEEP

This mode places the CPU in a static, low-power state. All internal clocks, except the INRO, are gated off. SYS_OSC is gated off, so the two main bus clocks, PCLK and HCLK, are inactive. The CPU state is retained. The ERTCO can be enabled by software.

The low-power peripherals LPUARTO, LPTMRO, and LPTMR1 can be enabled to operate in this mode. The clock source for these peripherals is selectable, but because the main bus clocks PCLK and HCLK are gated off, the clock source choice is limited. See *Low-Power Receiver Operation* for LPUART configuration and see *Wakeup Events* for LPTMR configuration.

The RTC, which has its own independent oscillator, can return the device to *ACTIVE*. The ERTCO remains enabled in *DEEPSLEEP* if it was enabled before entering *DEEPSLEEP*. The watchdog timers are inactive in this mode.

All internal register contents and all RAM contents are preserved. The GPIO pins retain their state in this mode.

Table 4-13 and Table 4-15 show the effects that DEEPSLEEP has on the various clock sources.

Figure 4-4 shows the clock control during DEEPSLEEP.

4.3.3.1 Entering DEEPSLEEP

Place the device in *DEEPSLEEP* by performing the following steps:

- 1. Configure any desired wake-up functions. See *Table 4-10* for possible wake-up sources.
- 2. Clear the wake-up status register by writing 0xFFFF FFFF to each of the PWRSEQ_LPWKSTO register.
- 3. Clear the low-power peripheral wake-up flags and the backup wake-up status flag by writing 0xFFFF FFFF to the *PWRSEQ_LPPWKST* register.
- 4. Set the *PWRSEQ_LPCN.vcore_det_bypass* bit to 1.
- 5. Set SCR.sleepdeep bit to 1.
- 6. Perform a WFI or WFE instruction.

CAUTION: Software must ensure no flash writes or erase operations are in progress before entering a low-power mode.

4.3.4 BACKUP

This mode maintains the system RAM contents. The device status in BACKUP is as follows:

- The CM4 is powered off.
- sysram0 through sysram7 can be independently configured to be state retained, as shown in Table 4-11.
- The low-power peripherals (LPTMR0, LPTMR1, and LPUART0) can be configured for operation and used as wake-up sources.
- The RTC can be configured to remain on and used as a wakeup source.
- All other peripherals are powered off.
- All power sequencer registers retain state, including the PWRSEQ GPO and PWRSEQ GP1 registers.
- The following oscillators are powered down:
 - ◆ IPO
 - ISO
 - IBRO
 - ERFO
- INRO is on.
- The ERTCO is software controlled.

This mode places the CPU in a static, low-power state. SYS_OSC is gated off, so HCLK, PCLK and AOD_CLK are inactive. The CPU state is not maintained.

Analog Devices Page 44 of 327

The low-power peripherals LPUARTO, LPTMRO, and LPTMR1 can be enabled to operate in this mode. The clock source for these peripherals is selectable, but because the main bus clocks PCLK and HCLK are gated off, the clock source choice is limited. See *Low-Power Receiver Operation* for LPUART configuration and see *Wakeup Events* for LPTMR configuration.

Table 4-11: RAM Retention By Address Range in BACKUP, System Reset, Watchdog Reset, and External Reset

System RAM Block	RAM Retention Enable Field	Address Range Retention	Amount of RAM Retained
sysram0	PWRSEQ_LPCN.ram0ret_en	N/A	OKB
sysram1	PWRSEQ_LPCN.ram1ret_en	0x2000 4000 - 0x2000 7FFF	16KB
sysram2	PWRSEQ_LPCN.ram2ret_en	0x2000 8000 – 0x2000 FFFF	32KB
sysram3	PWRSEQ_LPCN.ram3ret_en	0x2001 0000 – 0x2001 FFFF	64KB
sysram4	PWRSEQ_LPCN.ram0ret_en	0x2002 0000 – 0x2002 0FFF	4KB
sysram5	PWRSEQ_LPCN.ram1ret_en	0x2002 1000 – 0x2002 1FFF	4KB
sysram6	PWRSEQ_LPCN.ram2ret_en	0x2001 2000 – 0x2002 3FFF	8KB
sysram7	PWRSEQ_LPCN.ram2ret_en	0x2002 4000 – 0x2002 7FFF	16KB

The RTC has its own independent oscillator and can return the device to ACTIVE. The ERTCO remains enabled in BACKUP if it was enabled before entering BACKUP. The watchdog timers are inactive in this mode.

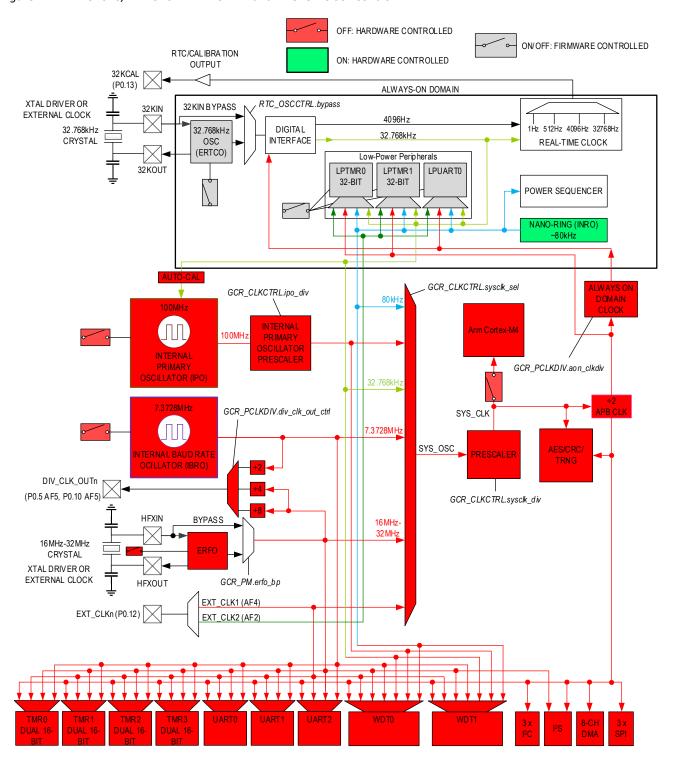
The AoD and RAM retention can optionally be set to automatically disable (and clear) themselves when entering this mode. RAM may be optionally retained. The amount of RAM retained is controlled by setting the PWRSEQ_LPCN.ram0ret_en, and <a href="https://pww.retained.com/PWR

The boot ROM uses *sysram0* during a system reset, watchdog timer reset, an external reset, and an exit from *BACKUP*. The boot ROM uses this RAM to perform system checks and to determine if a bootloader activation pin is asserted. As a result, *sysram0* cannot be retained during an exit from *BACKUP*.

Table 4-13 and *Table 4-15* show the effects that *BACKUP* has on the various clock sources. *Figure 4-4* shows the clock control during *BACKUP*.

4.3.4.1 Entering BACKUP

Place the device in BACKUP by performing the following steps:


- 1. Configure any desired wake-up functions. See *Table 4-10* for possible wake-up sources.
- 2. Configure desired RAM retention. See *Table 4-11* for details.
- 3. Clear the wake-up status register by writing 0xFFFF FFFF to the PWRSEQ_LPWKSTO register.
- 4. Clear the low-power peripheral wake-up flags and the backup wake-up status flag by writing 0xFFFF FFFF to the *PWRSEQ_LPPWKST* register.
- 5. Set the *PWRSEQ_LPCN.vcore_det_bypass* bit to 1.
- 6. Set GCR PM.pm to 4 (BACKUP).
- 7. When the device wakes from BACKUP, it resumes operation from the reset vector.

CAUTION: Software must ensure no flash writes or erase operations are in progress before entering a low-power mode.

Analog Devices Page 45 of 327

Figure 4-4: MAX32670/MAX32671 DEEPSLEEP and BACKUP Clock Control

Analog Devices Page 46 of 327

4.3.5 STORAGE

This mode is like BACKUP with the following exceptions:

- No SRAM can be retained.
- LPUARTO, LPTMRO, and LPTMR1 are disabled.
- The ERTCO remains enabled in STORAGE if it was enabled before entering STORAGE.

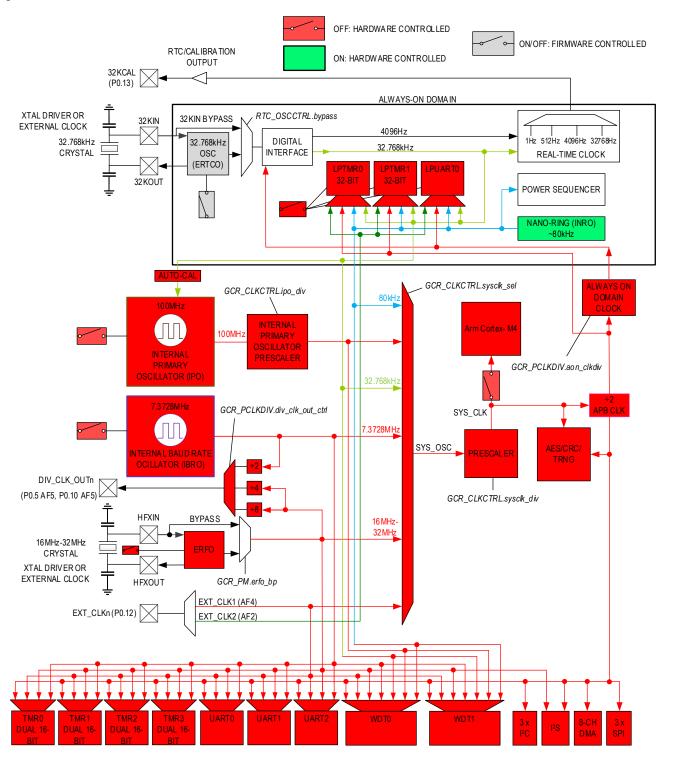
The ERTCO remains enabled in STORAGE if it was enabled before entering STORAGE.

Table 4-13 and Table 4-15 show the effects that STORAGE has on the various clock sources.

Figure 4-5 shows the clock control during STORAGE.

4.3.5.1 Entering STORAGE

Place the device in STORAGE by performing the following steps:


- 1. Configure any desired wake-up functions. See *Table 4-10* for possible wake-up sources.
- 2. Clear the wake-up status registers by writing 0xFFFF FFFF to the PWRSEQ_LPWKSTO register.
- 3. Clear the low-power peripheral wake-up flags and the backup wake-up status flag by writing 0xFFFF FFFF to the *PWRSEQ_LPPWKST* register.
- 4. Set the *PWRSEQ_LPCN.vcore_det_bypass* bit to 1.
- 5. Set the PWRSEQ LPCN.storage en bit to 1.
- 6. Set GCR_PM.pm to 4 (BACKUP).
- 7. When the device wakes from STORAGE, it resumes operation from the reset vector.

CAUTION: Software must ensure no flash writes or erase operations are in progress before entering a low-power mode.

Analog Devices Page 47 of 327

Figure 4-5: MAX32670/MAX32671 STORAGE Clock Control

Analog Devices Page 48 of 327

4.4 Shutdown State

Shutdown state is not a low-power mode. It is intended to zeroize all volatile memory in the device.

In the shutdown state, internal power, including the AoD, is gated off. There is no data or register retention. Power is removed from the RAM, effectively zeroizing the RAM contents in this mode. All wake-up sources, wake-up logic, and interrupts are disabled. The device only exits this state through a POR, which reinitializes the device.

Setting GCR PM.mode = 7 results in the device immediately entering shutdown state.

4.5 Device Resets

Four device resets are available:

- Peripheral Reset
- Soft Reset
- System Reset (includes external and watchdog reset)
- POR

On completion of any of the four resets, all peripherals are reset. On completion of any reset cycle, HCLK and PCLK are operational, the CPU core receives clocks and power, and the device is in *ACTIVE*. Program execution begins at the reset vector address.

Contents of the AoD are reset only upon power cycling VDD and VCORE.

Each on-chip peripheral can also be reset to its POR default state using the two reset registers GCR_RSTO and GCR_RST1.

Table 4-12, Table 4-13, Table 4-14, and *Table 4-15* show the effects on the system of the four reset types and the five power modes.

Analog Devices Page 49 of 327

Table 4-12: MAX32670/MAX32671 Clock Source and Reset Effects

	Peripheral Reset ⁴	Soft Reset ⁴	System Reset ⁴	POR
GCR	-	-	Reset	Reset
INRO	On	On	On	On
ERTCO	со		-	Off
IBRO	-	-	See section Silicon Revision Differences	
ERFO	-	-	Off	Off
IPO	-	-	See section Silicon Revision Differe	
SYS_CLK	On	On	On	On
CPU Clock	On	On	On	On

Table key:

SW = Controlled by software

On = Enabled by hardware (Cannot be disabled)

Off = Disabled by hardware (Cannot be enabled)

- = No Effect

R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.

- 1: AoD is only reset upon power cycling VDD and VCORE.
- 2: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
- 3: Peripheral, soft, and system resets are initiated by software though the GCR_RSTO register. A system reset is also triggered by the RSTN device pin and watchdog reset.

Table 4-13: MAX32670/MAX32671 Clock Source and Global Control Register Low-Power Mode Effects

	ACTIVE	SLEEP	DEEPSLEEP	BACKUP	STORAGE
GCR	R	-	-	-	-
INRO	On	On	On	On	On
ERTCO	SW	SW	SW	SW	SW
IBRO	R	-	Off	Off	Off
ERFO	R	-	Off	Off	Off
IPO	R	-	Off	Off	Off
SYS_CLK	On	On	Off	Off	Off
CPU Clock	On	Off	Off	Off	Off

Table key:

SW = Controlled by software

On = Enabled by hardware (Cannot be disabled)

Off = Disabled by hardware (Cannot be enabled)

- = No Effect
- R = Restored to previous *ACTIVE* setting when exiting *DEEPSLEEP*; restored to system reset state when exiting *BACKUP* or *STORAGE*.
- 1: AoD is only reset upon power cycling $V_{\text{\tiny DD}}$ and $V_{\text{\tiny CORE}}.$
- 2: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
- 3: Peripheral, soft, and system resets are initiated by software though the GCR_RSTO register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Analog Devices Page 50 of 327

Table 4-14: MAX32670/MAX32671 Peripheral and CPU Reset Effects

	Peripheral Reset ⁴	Soft Reset ⁴	System Reset ⁴	POR
RTC	-	-	-	Reset
CPU	-	-	Reset	Reset
WDT0/1	-	-	Reset	Reset
GPIO	-	Reset	Reset	Reset
Low-Power Peripherals	Reset	Reset	Reset	Reset
Other Peripherals	Reset	Reset	Reset	Reset
Always-On Domain ¹	-	-	-	Reset
RAM Retention	-	-	-	Reset

Table key:

SW = Controlled by software

On = Enabled by hardware (Cannot be disabled)

Off = Disabled by hardware (Cannot be enabled)

- = No Effect

R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.

- 1: AoD is only reset upon power cycling V_{DD} and V_{CORE} .
- 2: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
- 3: Peripheral, soft, and system resets are initiated by software though the GCR_RSTO register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Table 4-15: MAX32670/MAX32671 Peripheral and CPU Low-Power Mode Effects

	ACTIVE	SLEEP	DEEPSLEEP	BACKUP	STORAGE
RTC	SW	SW	SW	SW	SW
СРИ	R	Off	Off	Off	Off
WDT0/1	R	-	Off	Off	Off
GPIO	R	-	-	-	-
Low-Power Peripherals	SW	SW	SW	SW	Off
Other Peripherals	R	-	Off	Off	Off
Always-On Domain ¹	-	-	-	-	-
RAM Retention	-	-	On	SW	Off

Table key:

SW = Controlled by software

On = Enabled by hardware (Cannot be disabled)

Off = Disabled by hardware (Cannot be enabled)

- = No Effect
- R = Restored to previous ACTIVE setting when exiting DEEPSLEEP; restored to system reset state when exiting BACKUP or STORAGE.
- 1: AoD is only reset upon power cycling V_{DD} and V_{CORE} .
- 2: A system reset occurs when exiting BACKUP or STORAGE low-power mode. The system reset does not affect the low-power peripherals.
- 3: Peripheral, soft, and system resets are initiated by software though the GCR_RSTO register. System reset can also be triggered by the RSTN device pin or watchdog reset.

Analog Devices Page 51 of 327

4.5.1 Peripheral Reset

As shown in *Table 4-12* and *Table 4-14*, peripheral reset performs a reset for all peripherals. The CPU retains its state. The GPIO, watchdog timers, AoD, RAM retention, and general control registers (GCR), including the clock configuration, are unaffected.

To start a peripheral reset, set GCR RSTO.periph = 1. The reset is completed immediately.

4.5.2 Soft Reset

As shown in *Table 4-12* and *Table 4-14*, a soft reset is the same as a peripheral reset except that it also resets the GPIO to the POR state.

To perform a soft reset, set GCR_RSTO.soft to 1. The reset is completed immediately upon setting GCR_RSTO.soft to 1.

4.5.3 System Reset

As shown in *Table 4-12* and *Table 4-14*, a system reset is the same as a soft reset, except it also resets all GCR, resetting the clocks to their default state. The CPU state is reset as well as the watchdog timers. The AoD and RAM are unaffected.

An external reset and watchdog timer reset event initiates a system reset. To perform a system reset from software, set *GCR_RSTO.sys* to 1.

4.5.4 Power-On Reset (POR)

As shown in Table 4-12 and Table 4-14, a POR resets everything in the device to its default state.

4.6 Internal Cache Controller (ICC)

ICC is the cache controller used for the internal flash memory. ICC includes a line buffer, tag RAM, and a 16KB two-way set associative data RAM.

4.6.1 Enabling ICC

Perform the following steps to enable ICC:

- 1. Invalidate the flash by writing 1 to the ICC_INVALIDATE register.
- 2. Set ICC CTRL.en to 1.
- 3. Read ICC CTRL.rdy until it returns 1.

4.6.2 Disabling ICC

Disable ICC by setting ICC_CTRL.en to 0.

4.6.3 Invalidating ICC Cache

The system configuration register (*GCR_SYSCTRL*) includes a field for flushing the ICC cache. Setting *GCR_SYSCTRL.iccO_flush* to 1 flushes the ICC cache and the tag RAM. Setting the *ICC_INVALIDATE* register to 1 invalidates the ICC cache and forces a cache flush. Read the *ICC_CTRL.rdy* field until it returns 1 to determine when the flush is completed.

4.7 ICC Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 4-16: Internal Cache Controller Register Summary

Offset	Register	Description
[0x0000]	ICC_INFO	Cache ID Register

Analog Devices Page 52 of 327

Offset	Register	Description		
[0x0004]	ICC_SZ	Cache Memory Size Register		
[0x0100]	ICC_CTRL	Internal Cache Control Register		
[0x0700]	ICC_INVALIDATE	Internal Cache Controller Invalidate Register		

4.7.1 Register Details

Table 4-17: ICC Cache Information Register

ICC Cache	Information			ICC_INFO	[0x0000]	
Bits	Field	Access	Reset	Description		
31:16	-	RO	0	Reserved		
15:10	id	R	*	* Cache ID		
				Returns the ID for this cache instan	ce.	
9:6	partnum	R	*	* Cache Part Number		
				Returns the part number indicator for this cache instance.		
5:0	relnum	R	*	Cache Release Number		
				Returns the release number for this	s cache instance.	

Table 4-18: ICC Memory Size Register

ICC Memo	ory Size			ICC_SZ	[0x0004]	
Bits	Field	Access	Reset	set Description		
31:16	mem	R	*	Addressable Memory Size Indicates the size of addressable memory by this cache controller instance in 128KB units.		
15:0	cch	R	*	Cache Size Returns the size of the cache RAM memory in 1KB units. 16: Cache RAM		

Table 4-19: ICC Cache Control Register

ICC Cache Control				ICC_CTRL	[0x0100]	
Bits	Field	Access	Reset	Description		
31:17	-	RO	-	Reserved		
16	rdy	R	1	Ready		
				This field is cleared by hardware anytime the cache as a whole is invalidated (including a POR). Hardware automatically sets this field to 1 when the invalidate operation is complete and the cache is ready.		
				0: Cache invalidation in process. 1: Cache is ready.		
				Note: While this field reads 0, the cathe line fill buffer.	che is bypassed and reads come directly from	
15:1	-	RO	-	Reserved		

Analog Devices Page 53 of 327

ICC Cache Control				ICC_CTRL	[0x0100]
Bits	Field	Access	Reset	Description	
0	en	R/W	-		e. Setting this field to 0 automatically eads are handled by the line fill buffer.

Table 4-20: ICC Invalidate Register

ICC Invalidate				ICC_INVALIDATE	[0x0700]
Bits	Field	Access	Reset	Description	
31:0	invalid	W	0	Invalidate Writing any value to this register inv	validates the cache.

4.8 RAM Memory Management

This device has many features for managing the on-chip RAM. The on-chip RAM includes data RAM, internal cache.

4.8.1 On-Chip Cache Management

The internal cache controller fetches code from the flash memory. The cache can be enabled, disabled, and zeroized and the cache clock can be disabled by placing it in light sleep. See the *Internal Cache Controller* section for details.

4.8.2 RAM Zeroization

The GCR memory zeroize register, *GCR_MEMZ*, allows clearing memory for software or security reasons. Zeroization writes all zeros to the specified memory.

The following RAM memories can be zeroized:

- Internal System RAM
 - The entire system RAM can be zeroized by setting the GCR_MEMZ.ram field to 1.
- ICC 16KB Cache
 - ◆ Write 1 to GCR_MEMZ.icc0

4.8.3 RAM Low-Power Modes

RAM low-power modes and shutdown are controlled on a bank basis. The system RAM banks are shown with corresponding bank sizes and base addresses in *Table 3-1*.

4.8.3.1 RAM LIGHTSLEEP

RAM can be placed in a low-power mode, referred to as LIGHTSLEEP, using the memory lock control register, *GCR_MEMCTRL*. LIGHTSLEEP gates off the clock to the RAM and makes the RAM unavailable for read/write operations while memory contents are retained, thus reducing power consumption. LIGHTSLEEP is available for the four data RAM blocks and the ICC RAM.

4.8.3.2 RAM Shutdown

Analog Devices Page 54 of 327

4.9 Miscellaneous Control Registers (MCR)

This set of control registers provides reset and clock control for AoD peripherals LPUARTO, LPTMRO, and LPTMR1. See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 4-21: Miscellaneous Control Register Summary

Offset	Register	Description
[0x0004]	MCR_RST	Reset Control Register
[0x0010]	MCR_LPPIOCTRL	Low-Power Peripheral Control Register
[0x0024]	MCR_CLKDIS	Clock Disable Register

4.9.1 Registers Details

Table 4-22: Reset Control Register

Reset Con	Reset Control			MCR_RST	[0x0004]
Bits	Field	Access	Reset	Description	
31:3	=	RO	0	Reserved	
3	rtc	R/W10		RTC Reset Write 1 to reset. This field is automat complete. See the Device Resets section for add	ically cleared by hardware when the reset is itional information.
2	lpuart0	R/W10	0	LPUARTO Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. See the Device Resets section for additional information.	
1	lptmr1	R/W10	0	LPTMR1 Reset Write 1 to reset. This field is cleared by hardware when the reset is complete. See the Device Resets section for additional information.	
0	lptmr0	R/W10	0	LPTMR0 Reset Write 1 to reset. This field is cleared I See the Device Resets section for add	by hardware when the reset is complete. itional information.

Table 4-23: Low-Power Peripheral Control Register

Low-Pow	Low-Power Peripheral Control			MCR_LPPIOCTRL	[0x0010]
Bits	Field	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7	lpuart0_rts	R/W	0	LPUARTO RTS Enable If the LPUARTO peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
6	lpuart0_cts	R/W	0	LPUARTO CTS Enable If the LPUARTO peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	

Analog Devices Page 55 of 327

Low-Pow	er Peripheral Co	ntrol		MCR_LPPIOCTRL	[0x0010]
Bits	Field	Access	Reset	Description	
5	lpuart0_tx	R/W	0	LPUARTO Transmit Enable If the LPUARTO peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
4	lpuart0_rx	R/W	0	LPUARTO Receive Enable If the LPUARTO peripheral clock is enabled (MCR_CLKDIS.lpuart0 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
3	lptmr1_o	R/W	0	LPTMR1 Output Enable If the LPTMR1 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
2	lptmr1_i	R/W	0	LPTMR1 Input Enable If the LPTMR1 peripheral clock is enabled (MCR_CLKDIS.Iptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
1	lptmr0_o	R/W	0	LPTMR0 Output Enable If the LPTMR0 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	
0	lptmr0_i	R/W	0	LPTMR0 Input Enable If the LPTMR0 peripheral clock is enabled (MCR_CLKDIS.lptmr1 = 0) and this field is set to 1, the peripheral controls the associated GPIO, otherwise the associated GPIO is controlled using the GPIO registers.	

Table 4-24: Clock Disable Register

Clock Disa	able			MCR_CLKDIS	[0x0024]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	lpuart0	R/W	1	LPUARTO Clock Disable	
				Disabling a clock disables functionality while also saving power. Reads and writes to peripheral registers are disabled. Peripheral register states are retained. For <i>DEEPSLEE</i> and <i>BACKUP</i> operation, see the <i>DEEPSLEEP</i> .	
				0: Enabled 1: Disable	
1	lptmr1	R/W	1	LPTMR1 Clock Disable	
				Disabling a clock disables functionalit peripheral registers are disabled. Per	ty while also saving power. Reads and writes to ipheral register states are retained.
				0: Enabled 1: Disabled	
0	lptmr0	R/W	1	LPTMR0 Clock Disable	
				Disabling a clock disables functionalit peripheral registers are disabled. Per	ty while also saving power. Reads and writes to ipheral register states are retained.
				0: Enabled 1: Disabled	

Analog Devices Page 56 of 327

4.10 Power Sequencer and Always-On Domain Registers (PWRSEQ)

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Note: The PWRSEQ registers are reset only on a POR. System reset, soft reset, and peripheral reset do not affect the PWRSEQ register values.

Table 4-25: Power Sequencer and Always-On Domain Register Summary

Offset	Register	Description	
[0x0000]	PWRSEQ_LPCN	Low-Power Control Register	
[0x0004]	PWRSEQ_LPWKST0	GPIOO Low-Power Wake-up Status Flags	
[0x0008]	PWRSEQ_LPWKEN0	GPIO0 Low-Power Wake-up Enable Register	
[0x000C]	PWRSEQ_LPWKST1	GPIO1 Low-Power Wake-up Status Flags	
[0x0010]	PWRSEQ_LPWKEN1	GPIO1 Low-Power Wake-up Enable Register	
[0x0030]	PWRSEQ_LPPWKST	Peripheral Low-Power Wake-up Status Flags	
[0x0034]	PWRSEQ_LPPWKEN	Peripheral Low-Power Wake-up Enable Register	
[0x0040]	PWRSEQ_LPMEMSD	RAM Shutdown Control Register	
[0x0048]	PWRSEQ_GP0	General Purpose 0 Register	
[0x004C]	PWRSEQ_GP1	General Purpose 1 Register	

4.10.1 Register Details

Table 4-26: Low-Power Control Register

Low-Power Control				PWRSEQ_LPCN	[0x0000]
Bits	Field	Access	Reset	Description	
31	ertco_pd	R/W	1	ERTCO Oscillator Power Down	
				Set this field to 0 to power on the	32KHz oscillator circuitry.
				0: 32KHz oscillator powered on. 1: 32KHz oscillator powered dov	
30	-	RO	0	Reserved.	
29	ertco_en	R/W	0	ERTCO Low-Power Mode Control	
				Set this field to enable the ERTCO	in low-power modes.
				0: ERTCO state controlled by po 1: ERTCO enabled during low-po	·
				Note: If PWRSEQ_LPCN.storage_e off.	n is 1 this field is ignored and INRO is powered
28	inro_en	R/W	0	INRO Low-Power Mode Control	
				This bit allows control of the INRC	for low-power modes.
				0: INRO controlled by power sequencer. 1: INRO enabled in low-power modes.	
				Note: If PWRSEQ_LPCN.storage_e off.	n is 1 this field is ignored and INRO is powered
27:26	-	RO	0	Reserved	

Analog Devices Page 57 of 327

Low-Powe	Low-Power Control			PWRSEQ_LPCN	[0x0000]	
Bits	Field	Access	Reset	Description		
25	porvddmon_dis	R/W	0	V _{DDIO} Supply POR Monitor Disable Setting this field to 1 disables the V _{DDIO} supply monitor in all operating modes. 0: Enabled. 1: Disabled.		
24:23	-	RO	0	Reserved		
22	vddamon_dis	R/W	0	V _{DDA} Analog Supply Power Monitor Disable Set this field to 1 to disable the V _{DDA} supply monitor. 0: Enabled.		
24		20		1: Disabled.		
21	-	RO	0	Reserved		
20	vcoremon_dis	R/W	0	V _{CORE} Supply Power Monitor Disable Set this field to 1 to disable the V _{CORE} supply monitor. This field is ignored if PWRSEQ_LPCN.bg_dis = 1. Setting this field to 1 also disables the IBRO. 0: Enabled.		
				1: Disabled.	and in devices with IRRO as the default assillator	
				Note: This field cannot be modified in devices with IBRO as the default oscillator.		
19:18	-	RO	0	Reserved		
17	vcore_ext	R/W	0	V_{CORE} 1V Supply Setting this bit allows the V_{CORE} device pin to be used as the 1V supply.		
16	ldo_dis	R/W	1	LDO Disable This field initializes to 1 on a POR until the hardware determines if an external power source is connected to the V_{CORE} device pin. If no power supply is connected, this bit is set to 0 by the hardware. If a power supply is connected to the V_{CORE} device pin, the bit remains set to 1. Set this field to 1 to manually disable the LDO.		
				0: Enabled. 1: Disabled.		
15:13	-	RO	0	Reserved		
12	vcorepor_dis	R/W	1	DEEPSLEEP or BACKUP operation. during DEEPSLEEP and BACKUP power while the device is in DEEPSLEEP to 0: POR signal is connected to the	R signal to the core when the device is in Disconnecting the POR signal from the core revents the core from detecting a POR event	
				modes.		
11	bg_dis	R/W	1	Bandgap Disable for DEEPSLEEP		
				Setting this field to 1 turns off the 0: Enabled. 1: Disabled.	e bandgap during <i>DEEPSLEEP</i> .	

Analog Devices Page 58 of 327

Low-Pow	er Control			PWRSEQ_LPCN	[0x0000]
Bits	Field	Access	Reset	Description	
10	fastwk_en	R/W	0	Fast Wake-up Enable for DEEPSLEEP Set to 1 to enable fast wake-up from DEEPSLEEP. When enabled, the system exit: DEEPSLEEP faster by: • Bypassing the INRO warmup. • Reducing the warmup time for the IPO. • Reducing the warmup time for the LDO. • Resuming code execution at the next instruction after the DEEPSLEEP entry. When this field is 0, the device exits DEEPSLEEP as if a system reset occurred. Software executes from the reset vector.	
				0: Disabled. 1: Enabled.	
9	storage_en	R/W	0	STORAGE Enable 0: Disabled. 1: Enabled. Note: Setting this bit causes the device to enter STORAGE when setting GCR_PM.mode to BACKUP.	
8	retreg_en	R/W	1		to retain the RAM contents during <i>BACKUP</i> ets the V _{DD} supply for RAM retention during
				of the internal SRAM as configures of the internal SRAM as configures of the pwrseq_LPCN.ram1ret_en, if the pwrseq_LPCN.ram2ret_en for the pwrseq_LPCN.ram6 with the pwrseq_LPCN.ram6	bled. The V _{DD} supply is used to retain the state gured by the <i>PWRSEQ_LPCN.ram0ret_en</i> , <i>PWRSEQ_LPCN.ram2ret_en</i> , and ields. bled. RAM retention in <i>BACKUP</i> is configured <i>Oret_en</i> , <i>PWRSEQ_LPCN.ram1ret_en</i> , and <i>PWRSEQ_LPCN.ram3ret_en</i> fields.
7	-	RO	0	Reserved	
6	vcore_det_bypass	R/W	0	Bypass V _{CORE} External Supply Detection Set this field to 1 if the system runs from a single supply only and V _{CORE} is not connected to an external supply. Bypassing the hardware detection of an external supply on V _{CORE} enables a faster wake-up time. 0: Enabled. 1: Disabled.	

Analog Devices Page 59 of 327

.ow-Pow	ow-Power Control			PWRSEQ_LPCN	[0x0000]
Bits	Field	Access	Reset	Description	<u>'</u>
5:4	ovr	R/W	0b10	Output Voltage Range for Intern	al Regulator
				selection of the internal core ope	t voltage of the internal regulator, allowing rating voltage and the frequency of the IPO. On atput $\pm~10\%$ with the $\rm f_{IPO}$ = 100MHz.
					external supply voltage, this field should be the input voltage on V _{CORE} . The external supply this field setting indication.
				Dual-Supply Operation:	
				0b00: $V_{CORE} = 0.9V$, $f_{IPO} = 12MH$: 0b01: $V_{CORE} = 1.0V$, $f_{IPO} = 50MH$: 0b10: $V_{CORE} = 1.1V$, $f_{IPO} = 100MH$: 0b11: Reserved.	Z.
				Single-Supply Operation (V _{CORE} =	GND)
				0b00: $V_{LDO} = 0.9V$, $f_{IPO} = 12MHz$ 0b01: $V_{LDO} = 1.0V$, $f_{IPO} = 50MHz$ 0b10: $V_{LDO} = 1.1V$, $f_{IPO} = 100MH$ 0b11: Reserved.	
3	ram3ret en	R/W	0	Sysram3 and Sysram7 Data Rete	ntion Enable for BACKUP
J			· ·		etention for sysram3 and sysram7. See Table
				0: Disabled.	
				1: Enabled.	tion with DIMPSEC I DCM retrop on to control
				RAM retention.	tion with PWRSEQ_LPCN.retreg_en to control
2	ram2ret_en	R/W	0	Sysram2 and Sysram6 Data Rete	ntion Enable for <i>BACKUP</i>
				Set this field to 1 to enable data r 3-1 for system RAM configuration	etention for <i>sysram2</i> and <i>sysram6</i> . See <i>Table</i> n.
				0: Disabled.	
				1: Enabled. Note: This field is used in conjunction	tion with PWRSEQ_LPCN.retreg_en to control
				RAM retention.	tion with wiseq_trevileteg_th to control
1	ram1ret_en	R/W	0	Sysram1 and Sysram5 Data Rete	ntion Enable for BACKUP
				Set this field to 1 to enable data r 3-1 for system RAM configuration	etention for sysram1 and sysram5. See Table n.
				0: Disabled. 1: Enabled.	
					tion with PWRSEQ_LPCN.retreg_en to control
0	ram0ret_en	R/W	0	Sysram0 and Sysram4 Data Rete	ntion Enable for <i>BACKUP</i>
	_				etention for sysram0 and sysram4. See Table
				0: Disabled. 1: Enabled.	
				RAM retention.	tion with PWRSEQ_LPCN.retreg_en to control
				Note: Sysram0 is used by the boo	tloader on exit from BACKUP and is not retained

Analog Devices Page 60 of 327

Table 4-27: GPIO0 Low-Power Wake-up Status Flags

GPIO0 Lov	GPIO0 Low-Power Wake-up Status Flags			PWRSEQ_LPWKST0	[0x0004]
Bits	Field	Access	Reset	Description	
31:0	st	R/W1C	0	GPIO0 Pin Wake-up Status Flag	
				high-to-low, the corresponding bi The device transitions from a low	-power mode to ACTIVE if the corresponding SEQ_LPWKENO. This register should be cleared
				,	ented in all devices. The bits associated with be changed from their default value.

Table 4-28: GPIO0 Low-Power Wake-up Enable Registers

GPIO0 Low-Power Wake-up Enable				PWRSEQ_LPWKEN0	[8000x0]
Bits	Field	Access	Reset	Description	
31:0	en	R/W	0	0 GPIO0 Pin Wake-up Interrupt Enable	
				device from any low-power mode	s an interrupt to be generated and wakes up the to <i>ACTIVE</i> if the corresponding bit in the . Bits corresponding to unimplemented GPIO
				are ignored. Note: To enable the device to wake-up from a low-power mode on a GPIO pin transition, first set the "GPIO Wake-up enable" register bit GCR_PM.gpio_we Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	

Table 4-29: GPIO1 Low-Power Wake-up Status Flags

GPIO1 Low-Power Wake-up Status Flags				PWRSEQ_LPWKST1	[0x000C]
Bits	Field	Access	Reset	Description	
31:0	en	R/W	0	GPIO1 Pin Wake-up Status Flag	
				high-to-low, the corresponding bi The device transitions from a low	-power mode to ACTIVE if the corresponding SEQ_LPWKEN1. This register should be cleared
				· ·	ented in all devices. The bits associated with be changed from their default value.

Analog Devices Page 61 of 327

Table 4-30: GPIO1 Low-Power Wake-up Enable Registers

GPIO1 Low-Power Wake-up Enable				PWRSEQ_LPWKEN1	[0x0010]
Bits	Field	Access	Reset	Description	
31:0		DNM	0	GPIO1 Pin Wake-up Interrupt En	able
				device from any low-power mode	s an interrupt to be generated and wakes up the to <i>ACTIVE</i> if the corresponding bit in the . Bits corresponding to unimplemented GPIO are
				ignored. Note: To enable the device to wake-up from a low-power mode on a GPIO pin transition, first set the "GPIO Wake-up enable" register bit GCR_PM.gpio_we = 1 Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	

Table 4-31: Peripheral Low-Power Wake-up Status Flags

Periphera	l Low-Power Wa	ke-up Status F	lags	PWRSEQ_LPPWKST	[0x0030]	
Bits	Field	Access	Reset	Description		
31:3	=	RO	0	Reserved		
2	lpuart0	R/W1C	0	LPUARTO Wake-up Flag		
				This field is set when this peripher	ral causes the CPU to wake to ACTIVE.	
				0: Normal operation. 1: Wake-up event detected.		
			Note: If the corresponding bit in PWRSEQ_LPPWKEN register is set, a generates an interrupt to wake up the device from a low-power mode.			
1	lptmr1	R/W1C	0	LPTMR1 Wake-up Flag		
				This field is set when this peripher	ral causes the CPU to wake to ACTIVE.	
				0: Normal operation. 1: Wake-up event detected.		
					WRSEQ_LPPWKEN register is set, the event of the device from a low-power mode.	
0	lptmr0	R/W1C	0	LPTMR0 Wake-up Flag		
				This field is set when this peripher	ral causes the CPU to wake to ACTIVE.	
				0: Normal operation. 1: Wake-up event detected.		
					WRSEQ_LPPWKEN register is set, the event of the device from a low-power mode.	

Table 4-32: Peripheral Low-Power Wake-up Enable Register

Periphera	Peripheral Low-Power Wake-up Enable			PWRSEQ_LPPWKEN	[0x0034]
Bits	Field	Access	Reset	Description	
31:3	=	RO	0	Reserved	
2	lpuart0	R/W	0	LPUARTO Wake-up Enable	
				Setting this bit enables an interrupt and wake-up the device from any low-power mode when <i>PWRSEQ_LPPWKST.lpuart0</i> does not equal 0.	
				0: Disabled. 1: Enabled.	

Analog Devices Page 62 of 327

Periphera	Peripheral Low-Power Wake-up Enable			PWRSEQ_LPPWKEN	[0x0034]
Bits	Field	Access	Reset	Description	
1	lptmr1	R/W		LPTMR1 Wake-up Enable	
				Setting this bit enables an interrupt and wake-up the device from any low-power mode when <i>PWRSEQ_LPPWKST.lptmr1</i> does not equal 0.	
				0: Disabled. 1: Enabled.	
0	lptmr0	R/W	0	LPTMR0 Wake-up Enable	
				Setting this bit enables an interrul mode when PWRSEQ_LPPWKST.Ip	ot and wake-up the device from any low-power otmr0 does not equal 0.
				0: Disabled. 1: Enabled.	

Table 4-33: RAM Shutdown Control Register

RAM Shut	down Control			PWRSEQ_LPMEMSD	[0x0040]
Bits	Field	Access	Reset	Description	
31:4	-	RO	0	Reserved	
3	ram3	R/W	0	Sysram3 and Sysram7 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering do the memory destroys its contents. See Table 3-1 for system RAM configuration	
				0: Enabled. 1: Shut down.	ister for retention mode power settings.
	2	5/11/	0		· · · · · · · · · · · · · · · · · · ·
2	ram2	R/W	0	Sysram2 and Sysram6 Shut Down Set this field to 1 to shut down the power on the specified RAMs. Powering down the memory destroys its contents. See <i>Table 3-1</i> for system RAM configuration.	
				0: Enabled. 1: Shut down.	
				Note: See the GCR_MEMCTRL reg	ister for retention mode power settings.
1	ram1	R/W	0	Sysram1 and Sysram5 Shut Down	ı
					e power on the specified RAMs. Powering down s. See <i>Table 3-1</i> for system RAM configuration.
				0: Enabled. 1: Shut down.	
				Note: See the GCR_MEMCTRL reg	ister for retention mode power settings.
0	ram0	R/W	0	Sysram0 and Sysram4 Shut Down	1
					e power on the specified RAMs. Powering down s. See <i>Table 3-1</i> for system RAM configuration.
				0: Enabled. 1: Shut down.	
				Note: See the GCR_MEMCTRL reg	ister for retention mode power settings.

Analog Devices Page 63 of 327

Table 4-34: General Purpose 0 Register

General Purpose 0				PWRSEQ_GP0	[0x0048]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	General Purpose Field	
				The software can use this register as a general-purpose register, and the contents are retained during SLEEP, DEEPSLEEP, and BACKUP.	

Table 4-35: General Purpose 1 Register

General P	General Purpose 1			PWRSEQ_GP1	[0x004C]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	General Purpose Field	
				The software can use this register as a general-purpose register, and the contents are retained during SLEEP, DEEPSLEEP, and BACKUP.	

4.11 Global Control Registers (GCR)

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Note: The GCR are only reset on a system reset or POR. A soft reset and peripheral reset do not affect these registers.

Table 4-36: Global Control Register Summary

Offset	Register	Description
[0x0000]	GCR_SYSCTRL	System Control Register
[0x0004]	GCR_RST0	Reset Register 0
[8000x0]	GCR_CLKCTRL	Clock Control Register
[0x000C]	GCR_PM	Power Management Register
[0x0018]	GCR_PCLKDIV	Peripheral Clocks Divisor
[0x0024]	GCR_PCLKDIS0	Peripheral Clocks Disable 0
[0x0028]	GCR_MEMCTRL	Memory Clock Control
[0x002C]	GCR_MEMZ	Memory Zeroize Register
[0x0040]	GCR_SYSST	System Status Flags
[0x0044]	GCR_RST1	Reset Register 1
[0x0048]	GCR_PCLKDIS1	Peripheral Clocks Disable 1
[0x004C]	GCR_EVENTEN	Event Enable Register
[0x0050]	GCR_REVISION	Revision Register
[0x0054]	GCR_SYSIE	System Status Interrupt Enable
[0x0064]	GCR_ECCERR	Reserved
[0x0068]	GCR_ECCCED	Reserved
[0x006C]	GCR_ECCIE	Reserved
[0x0070]	GCR_ECCADDR	Reserved

Analog Devices Page 64 of 327

4.11.1 Register Details

Table 4-37: System Control Register

System Co	ntrol			GCR_SYSCTRL	[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	chkres	R	0	ROM Checksum Calculation Pass	/Fail
				This bit is only valid after the RON GCR_SYSCTRL.cchk to 0.	A checksum is complete and hardware sets
				0: Pass. 1: Fail.	
14	swd_dis	R/W	0	Serial Wire Debug Disable	
				This bit is used to disable the serio	al wire debug interface.
				0: SWD disabled. 1: SWD enabled.	
				Note: This bit is only writeable if (GCR_SYSST.icelock field is not set.
13	cchk	R/W	0	Calculate ROM Checksum	
				_	ROM checksum calculation is complete, and the CTRL.chkres. Writing a 0 has no effect.
				0: No operation. 1: Start ROM checksum calculat	ion.
12	romdone	R	1	ROM Start Code Status	
				Reserved, Do Not Modify.	
11:7	-	DNM	0	Reserved, Do Not Modify	
6	icc0_flush	R/W	0	ICC Cache Flush	
				Write 1 to flush all three caches. I flush is complete. Writing 0 has no	This bit is automatically cleared to 0 when the offect.
				0: Memory flush not in progress 1: Memory flush in progress.	S.
5	fpu_dis	R/W	0	Floating Point Unit Disable	
				0: Enabled.	
				1: Disabled.	
4:3	-	RO	0	Reserved	
2:1	sbusarb	R/W	1	System Bus Arbitration Scheme	
				0: Fixed burst. 1: Round-robin.	
				2: Reserved.	
				3: Reserved.	
0	-	RO	0	Reserved	

Analog Devices Page 65 of 327

Table 4-38: Reset Register 0

Reset 0				GCR_RST0	[0x0004]
Bits	Field	Access	Reset	Description	
31	sys	R/W	0	System Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset. See the Device Resets section for additional information.	
30	periph	R/W	0	Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset. Note: Watchdog timers, GPIO ports, the AoD, RAM retention and the general control registers (GCR) are unaffected. See the Device Resets section for additional information.	
29	soft	R/W	0	Soft Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset. See the Device Resets section for additional information.	
28	uart2	R/W	0	Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	cally cleared by hardware when the reset is
27:25	-	RO	0	Reserved	
24	trng	R/W	0	TRNG Peripheral Reset Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	cally cleared by hardware when the reset is
23:17	-	RO	0	Reserved	
16	i2c0	R/W	0	l²C0 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.	
15	spi2	R/W	0	SPI2 Peripheral Reset Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	cally cleared by hardware when the reset is

Analog Devices Page 66 of 327

Reset 0				GCR_RST0	[0x0004]	
Bits	Field	Access	Reset	Description		
14	spi1	R/W	0	SPI1 Peripheral Reset Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	cally cleared by hardware when the reset is	
13	spi0	R/W	0	SPIO Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.		
12	uart1	R/W	0	UART1 Peripheral Reset Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	UART1 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation.	
11	uart0	R/W	0	UARTO Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.		
10:9	-	RO	0	Reserved		
8	tmr3	R/W	0	TMR3 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation.		
7	tmr2	R/W	0	1: Reset. TMR2 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.		
6	tmr1	R/W	0	TMR1 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.		
5	tmr0	R/W	0	TMR0 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.		
4	-	RO	-	Reserved		

Analog Devices Page 67 of 327

Reset 0				GCR_RST0	[0x0004]
Bits	Field	Access	Reset	Description	
3	gpio1	R/W	0	GPIO1 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.	
2	gpio0	R/W	0	GPIO0 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.	
1	wdt0	R/W	0	Watchdog Timer 0 Peripheral Reset Write 1 to reset. This field is automatically cleared by hardware when the reset is complete. 0: Normal operation. 1: Reset.	
0	dma	R/W	0	DMA Access Block Reset Write 1 to reset. This field is automatic complete. 0: Normal operation. 1: Reset.	cally cleared by hardware when the reset is

Table 4-39: System Clock Control Register

System C	lock Control			GCR_CLKCTRL	[8000x0]
Bits	Field	Access	Rese	t Description	
31	extclk_rdy	R	1	External Clock Ready	
				This bit field is set when the signal on clock, is ready.	the P0.12 device pin, driven by an external
				0: Not ready or not enabled. 1: External clock is ready.	
30	-	RO	1	Reserved	
29	inro_rdy		0	Internal Nano-Ring Oscillator (INRO)	Ready Status
				0: Not ready or not enabled.1: Oscillator ready.	
28	ibro_rdy	R	0	Internal Baud Rate Oscillator (IBRO) F	Ready Status
				0: Not ready or not enabled. 1: Oscillator ready.	
27	ipo_rdy	R	0	Internal Primary Oscillator (IPO) Read	ly Status
				0: Not ready or not enabled.1: Oscillator ready.	
26	-	RO	0	Reserved	
25	ertco_rdy	R	0	32.768kHz External RTC Oscillator (ER	RTCO) Ready Status
				0: Not ready or not enabled.1: Oscillator ready.	
24	erfo_rdy	R	0	ERFO Ready Status	
				0: Not ready or not enabled.	
				1: Oscillator ready.	

Analog Devices Page 68 of 327

System Cl	ock Control			GCR_CLKCTRL	[8000x0]	
Bits	Field	Access	Reset	Description		
23:22	-	RO	0	Reserved		
21	ibro_vs	R/W	0	IBRO Voltage Source Select		
				supply. When exiting <i>DEEPSLEEP</i> , the v bit setting.	ced by a dedicated internal 1V regulated oltage is automatically switched back to this	
				0: Dedicated internal 1V regulated su 1: V _{CORE} supply.	ipply.	
20	ibro_en	R/W	0	IBRO Enable		
				0: Disabled. 1: Enabled and ready when GCR_CLK	CTRL.ibro_rdy = 1.	
19	ipo_en	R/W	1	IPO Enable		
				0: Disabled. 1: Enabled and ready when GCR_CLK	CCTRL.ipo_rdy = 1.	
18	-	DNM	0	Reserved. Do Not Modify.		
17	ertco_en	R/W	0	ERTCO Enable		
				Set this field to 1 to enable the ERTCO.		
				0: Disabled. 1: Enabled and ready when GCR_CLK	CCTRL.ertco_rdy = 1.	
16	erfo_en	R/W	0	ERFO Enable		
				0: Disabled. 1: Enabled and ready when GCR_CLK	CCTRL.erfo_rdy = 1.	
15:14	ipo_div	R/W	0	IPO Prescaler		
				Divides the IPO clock before it is select	ed as SYS_OSC.	
				0: Divide by 1. 1: Divide by 2.		
				2: Divide by 4.		
				3: Divide by 8.		
13	sysclk_rdy	R	0	SYS_OSC Select Ready		
					g GCR_CLKCTRL.sysclk_sel, there is a delay bit is cleared until the switchover is complete.	
				0: Switch to new clock source not yet 1: SYS_OSC is clock source selected in		
12	-	RO	0	Reserved		
				Do not modify this field.		
11:9	sysclk_sel	R/W	4	System Oscillator Source Select		
	, -			Selects the system oscillator (SYS_OSC) (SYS_CLK). Modifying this field immediate	source used to generate the system clock ately clears GCR_CLKCTRL.sysclk_rdy.	
				0: Reserved.		
				1: Reserved. 2: ERFO.		
				3: INRO.		
				4: IPO.		
				5: IBRO. 6: ERTCO.		
				7: External Clock P0.12.		

Analog Devices Page 69 of 327

System Clock Control				GCR_CLKCTRL	[0x0008]
Bits	Field	Access	Reset	Description	
8:6	sysclk_div	R/W	0	System Oscillator Prescaler Sets the divider for generating SYS_CLK from the selected SYS_OSC. See Equat 4-1 for details.	
5:0	-	DNM	0b001000	Reserved, DNM	

Table 4-40: Power Management Register

Power Management				GCR_PM	[0x000C]		
Bits	Field	Access	Reset	Description			
31:21	-	RO	0	Reserved			
20	erfo_bp	R/W	0	ERFO Bypass			
				This bit is set to 0 on a POR and is not	affected by other resets.		
				O: Clock source is crystal oscillator, d HFXOUT pins. 1: Clock source square wave driven i	riving the crystal connected between HFXIN and nto HFXIN pin.		
19:18	-	DNM	0	Reserved, Do Not Modify			
17	ibro_pd	R/W	1	IBRO Power Down			
				This field must be set to 1 before ente	ring DEEPSLEEP.		
16	ipo_pd	R/W	1	IPO Power Down			
				This field powers off the IPO in <i>DEEPSLEEP</i> . This field must be set to 1 before entering <i>DEEPSLEEP</i> .			
15:13	-	DNM	0	Reserved, Do Not Modify			
12	erfo_pd	R/W	1	ERFO Power Down			
				This field powers off the ERFO in <i>DEEP</i> entering <i>DEEPSLEEP</i> .	SLEEP. This field must be set to 1 before		
11:9	1	DNM	0	Reserved, Do Not Modify			
8	lpuart0_we	R/W	0	LPUARTO Wake-Up Enable			
				Set this field to 1 to enable LPUARTO a from SLEEP, DEEPSLEEP, or BACKUP lo	s a wake-up source. LPUARTO wakes the device w-power modes.		
				0: Disabled. 1: Enabled.			
7	lptmr1_we	R/W	0	LPTMR1 Wake-up Enable			
				Set this field to 1 to enable LPTMR1 as from SLEEP, DEEPSLEEP, or BACKUP lo	a wake-up source. LPTMR1 wakes the device w-power modes.		
				0: Disabled. 1: Enabled.			
6	lptmr0_we	R/W	0	LPTMR0 Wake-up Enable			
				Set this field to 1 to enable LPTMR0 as from SLEEP, DEEPSLEEP, or BACKUP lo	a wake-up source. LPTMR0 wakes the device w-power modes.		
				0: Disabled. 1: Enabled.			

Analog Devices Page 70 of 327

Power Ma	Power Management			GCR_PM [0x000C]		
Bits	Field	Access	Reset	Description		
5	rtc_we	R/W	0	RTC Alarm Wake-up Enable		
				Set this field to 1 to enable an RTC alarm to wake the device. The RTC alarm device from SLEEP, DEEPSLEEP, BACKUP, or STORAGE low-power mode.		
				0: Disabled. 1: Enabled.		
4	gpio_we	R/W	0	GPIO Wake-Up Enable		
				1	ns as potential wake-up sources. Any GPIO ice from <i>SLEEP, DEEPSLEEP, BACKUP,</i> or	
				0: Disabled. 1: Enabled.		
3	-	RO	0	Reserved		
2:0	mode	R/W	0	Operating Mode		
				0b000: ACTIVE.		
				0b001: ACTIVE.		
				0b010: ACTIVE.		
				0b100: BACKUP.		
				0b101: BACKUP.		
				0b110: BACKUP.		
				0b011: Shutdown. 0b111: Shutdown.		
				UDIII. SHULUUWII.		

Table 4-41: Peripheral Clock Divisor Register

Periphera	al Clocks Divisor			GCR_PCLKDIV	[0x0018]	
Bits	Field	Access	Reset	Description		
31:17	-	RO	-	Reserved		
16	div_clk_out_en	R/W	0	DIV_CLK_OUT Enable Set this field to 1 to enable the DIV_CLK_OUT signal. Refer to the device data sheet alternate function table. O: Disabled.		
				1: Enabled.		
15:14	div_clk_out_ctrl			DIV_CLK_OUT Control This field sets the source and frequency of the DIV_CLK_OUT signal. Refer to the device data sheet alternate function table.		
				Ob00: DIV_CLK_OUT is off. Ob01: IBRO divided by 2. Ob10: ERFO divided by 4. Ob11: ERFO divided by 8.		
12:2	-	RO	-	Reserved		
1:0	aon_clkdiv	R/W	0	AoD Clock Divider Configures the frequency of the AoD clock. See the section Oscillator Sources and Clock Switching section for details.		

Analog Devices Page 71 of 327

Table 4-42: Peripheral Clock Disable Register 0

eripheral	Clock Disab	le 0		GCR_PCLKDIS0	[0x0024]		
Bits	Field	Access	Reset	Description			
31:29	-	DNM	1	Reserved, Do Not Modify			
28	i2c1	R/W	1	l ² C1 Clock Disable			
				Disabling a clock disables functionality peripheral registers are disabled. Peripheral registers are disabled.	while also saving power. Reads and writes to oheral register states are retained.		
				0: Enabled. 1: Disabled.			
27:19	-	DNM	1	Reserved, Do Not Modify			
18	tmr3	R/W	1	TMR3 Clock Disable			
				Disabling a clock disables functionality peripheral registers are disabled. Peripheral registers are disabled.	while also saving power. Reads and writes to oheral register states are retained.		
				0: Enabled. 1: Disabled.			
17	tmr2	R/W	1	TMR2 Clock Disable			
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to operal register states are retained.		
				0: Enabled. 1: Disabled.			
16 tmr1 R/W 1			1	TMR1 Clock Disable			
		Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to operal register states are retained.				
		0: Enabled. 1: Disabled.					
15	tmr0	R/W	1	TMR0 Clock Disable			
				Disabling a clock disables functionality peripheral registers are disabled. Peripheral	while also saving power. Reads and writes to operal register states are retained.		
				0: Enabled. 1: Disabled.			
14	-	DNM	1	Reserved, Do Not Modify			
13	i2c0	R/W	1	I2C0 Clock Disable			
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to operal register states are retained.		
				0: Enabled. 1: Disabled.			
12:11	-	DNM	1	Reserved, Do Not Modify			
10	uart1	R/W	1	UART1 Clock Disable			
		Disabling a clock disables functionality peripheral registers are disabled. Peripheral registers are disabled.	while also saving power. Reads and writes to oheral register states are retained.				
				0: Enabled. 1: Disabled.			
9	uart0	R/W	1	UARTO Clock Disable			
					unctionality while also saving power. Reads and oled. Peripheral register states are retained.		
				0: Enabled. 1: Disabled.			

Analog Devices Page 72 of 327

Periphera	Clock Disabl	le 0		GCR_PCLKDIS0	[0x0024]
Bits	Field	Access	Reset	Description	
8	spi2	R/W	1	SPI2 Clock Disable	
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	
7	spi1	R/W	1	SPI1 Clock Disable	
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	
6	spi0	R/W	1	SPI0 Clock Disable	
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	
5	dma	R/W	1	DMA Clock Disable	
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	
4:2	-	DNM	1	Reserved, Do Not Modify	
1	gpio1	R/W	1	GPIO1 Port and Pad Logic Clock Disabl	e
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	
0	gpio0	R/W	1	GPIO0 Port and Pad Logic Clock Disabl	e
				Disabling a clock disables functionality peripheral registers are disabled. Perip	while also saving power. Reads and writes to heral register states are retained.
				0: Enabled. 1: Disabled.	

Table 4-43: Memory Clock Control Register

Memory Clock Control				GCR_MEMCTRL	[0x0028]
Bits	Field	Access	Reset	Description	
31:14	-	RO	0	Reserved	
13	romls_en	R/W	0	ROM LIGHTSLEEP Enable	
				Data is unavailable for read/write op	erations in <i>LIGHTSLEEP</i> .
				0: Disabled. 1: Enabled.	
12	icc0ls_en	R/W	0	ICC LIGHTSLEEP Enable	
				Data is unavailable for read/write op	erations in <i>LIGHTSLEEP</i> but is retained.
				0: Disabled. 1: Enabled.	

Analog Devices Page 73 of 327

Memory Clock Control			GCR_MEMCTRL [0x0028]		
Bits	Field	Access	Reset	Description	
11	ram3ls_en	R/W	0	Sysram3 and Sysram7 LIGHTSLEEP Enable Data is unavailable for read/write operations in LIGHTSLEEP but is retained. 0: Disabled. 1: Enabled. Note: To put RAM in a shutdown that removes all power from the RAM and resets the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.	
10	ram2ls_en	R/W	0	Sysram2 and Sysram6 LIGHTSLEEP Enable Data is unavailable for read/write operations in LIGHTSLEEP but is retained. 0: Disabled. 1: Enabled. Note: To put RAM in a shutdown mode that removes all power from the RAM and resets the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for base address and size information.	
9	ram1ls_en	R/W	0	Sysram1 and Sysram5 LIGHTSLEEP Enable Data is unavailable for read/write operations in LIGHTSLEEP but is retained. 0: Disabled. 1: Enabled. Note: To put RAM in a shutdown mode that removes all power from the RAM and resets the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for the	
8	ram0ls_en	R/W	0	base address and size information. Sysram0 and Sysram4 LIGHTSLEEP Enable Data is unavailable for read/write operations in LIGHTSLEEP but is retained. 0: Disabled. 1: Enabled. Note: To put RAM in a shutdown mode that removes all power from the RAM and resets the RAM contents, use the PWRSEQ_LPMEMSD register. See Table 3-1 for the base address and size information.	
7:5	-	RO	0	Reserved	
4	ramws_en		1	System RAM Wait State Enable 0: No wait state. 1: Wait state enabled.	
3	-	RO	0	Reserved	
2:0	fws	R/W	5	Program Flash Wait States Number of wait-state SYS_OSC cycles per flash code read access. See Flash Wait States for details on this field's usage. 0 - 7: Number of flash code access wait states.	

Table 4-44: Memory Zeroization Control Register

Memory Zeroization Control				GCR_MEMZ	[0x002C]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	

Analog Devices Page 74 of 327

Memory 2	Zeroization Control			GCR_MEMZ	[0x002C]
Bits	Field	Access	Reset	Description	
2	icc0	R/W	0	ICC Cache Data and Tag Zeroization Write 1 to initiate the operation.	
				0: Normal operation. 1: Zeroize cache data and tag RAM.	
1	ramcb	R/W	0	System RAM Check Bit Block Zeroiz Write 1 to initiate the operation. 0: Normal operation. 1: Zeroize check bit RAM.	ation
0	ram	R/W	0	System RAM Zeroization Write 1 to initiate the operation. 0: Normal operation. 1: Zeroize RAM.	

Table 4-45: System Status Flag Register

System Status Flag				GCR_SYSST	[0x0040]
Bits	Field	Access	Rese	t Description	
31:1	-	RO	0	Reserved	
0	icelock	R	0	Arm ICE Lock Status Flag	
				0: Arm ICE is enabled (unlocked). 1: Arm ICE is disabled (locked).	

Table 4-46: Reset Register 1

Reset 1				GCR_RST1	[0x0044]
Bits	Field	Access	Reset	Description	
31:24	-	RO	0	Reserved	
23	i2s	R/W10	0	I ² S Peripheral Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
22:18	-	RO	0	Reserved	
17	i2c2	R/W10	0	I2C2 Peripheral Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
16:15	-	RO	0	Reserved	
14	ac	R/W10	0	Auto Calibration Block Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
13:11	-	RO	-	Reserved	

Analog Devices Page 75 of 327

Reset 1				GCR_RST1	[0x0044]
Bits	Field	Access	Reset	Description	
10	aes	R/W10	0	AES Block Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
9	crc	R/W10	0	CRC Block Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
8	wdt1	R/W10	0	Watchdog Timer 1 Peripheral Reset	
		.,,20	Č		field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	
7:1	-	RO	0	Reserved	
0	i2c1	R/W10	0	I ² C1 Peripheral Reset	
				Write 1 to initiate the operation. This freset is complete.	field is automatically cleared by hardware when the
				0: Normal operation. 1: Reset.	

Table 4-47: Peripheral Clock Disable Register 1

Periphera	l Clock Disable 1			GCR_PCLKDIS1	[0x0048]	
Bits	Field	Access	Reset	t Description		
31:24	-	RO	1	Reserved		
23	i2s	R/W	1	I ² S Clock Disable		
				Disabling the clock disables functional states are retained but read and writ	ality while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		
22	-	RO	1	Reserved		
21	i2c2	R/W	1	I2C2 Clock Disable		
				Disabling the clock disables functions states are retained but read and writ	ality while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		
20:16	-	RO	1	Reserved		
15	aes	R/W	1	AES Clock Disable		
				Disabling the clock disables functions states are retained but read and writ	ality while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		

Analog Devices Page 76 of 327

Peripheral Clock Disable 1				GCR_PCLKDIS1 [0x0048]		
Bits	Field	Access	Reset	set Description		
14	crc	R/W	1	CRC Block Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. O: Enabled.		
				1: Disabled.		
13:12	-	RO	1	Reserved		
11	icc0	R/W	0	ICC Clock Disable Disabling the clock disables functional states are retained but read and write	ality while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		
10:6	-	RO	1	Reserved		
5	wwdt1	R/W	1	Watchdog Timer 1 Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked.		
				0: Enabled. 1: Disabled.		
4	wwdt0	R/W	1	Watchdog Timer 0 Clock Disable Disabling the clock disables functional states are retained but read and write	ality while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		
3	-	RO	1	Reserved		
2	trng	R/W	1	TRNG Clock Disable Disabling the clock disables functionality while also saving power. Associated register states are retained but read and write access is blocked. 0: Enabled.		
1	uart2	R/W	1	1: Disabled. UART2 Clock Disable		
	dui t2	11,700			lity while also saving power. Associated register e access is blocked.	
				0: Enabled. 1: Disabled.		
0	-	RO	1	Reserved		

Table 4-48: Event Enable Register

Event Enable				GCR_EVENTEN	[0x004C]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	tx	R/W	0	0 Transmit Event (TXEV) On Send Event (SEV) Enable	
				When set, a SEV instruction causes a TXEV event from the CPU.	
				0: Disabled. 1: Enabled.	

Analog Devices Page 77 of 327

Event En	Event Enable			GCR_EVENTEN	[0x004C]
Bits	Field	Access	Reset	Description	
1	rx	R/W	0	Receive Event (RXEV) Event Enable Set this field to 1 to enable generation of an RXEV event to wake the CPU from a WFE sleep state. O: Disabled.	
			_	1: Enabled.	
0	dma	R/W	0	CPU DMA CTZ Wake-Up Enable Allows a DMA0 CTZ event to generate entered with a WFE instruction.	an RXEV to wake-up CPU from a low-power mode
				0: Disabled. 1: Enabled.	

Table 4-49: Revision Register

Revision				GCR_REVISION	[0x0050]	
Bits	Field	Access	Reset	Description		
31:16	=	RO	0	Reserved	Reserved	
15:0	revision	R	*	Device Revision	Device Revision	
				Returns the chip revision ID as a packed BCD. See the section <i>Silicon Revision Differences</i> for details.		

Table 4-50: System Status Interrupt Enable Register

System Status Interrupt Enable				GCR_SYSIE	[0x0054]	
Bits	Field	Access	Reset	et Description		
31:1	=	RO	*	Reserved		
0	iceunlock	R/W	0	Arm ICE Unlocked Interrupt Enable	Arm ICE Unlocked Interrupt Enable	
				Generates an interrupt if the GCR_S	Generates an interrupt if the GCR_SYSST.icelock is set.	
				0: Disabled. 1: Enabled.		

Table 4-51: Error Correction Coding Error Detected Register

ECC Correctable Error Detected				GCR_ECCERR [0x0064]	
Bits	Field	Access	Reset	Description	
31:0	=	RO	0	Reserved	

Table 4-52: Error Correction Coding Correctable Error Detected Register

Error Correction Coding Correctable Error Detected				GCR_ECCCED	[0x0068]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 4-53: Error Correction Coding Interrupt Enable Register

Error Correction Coding Interrupt Enable			ble	GCR_ECCIE [0x006C]	
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Analog Devices Page 78 of 327

Table 4-54: Error Correction Coding Address Register

Error Correction Coding Address				GCR_ECCADDR [0x0070]	
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

4.12 Error Correction Coding Enable Register (ECC)

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 4-55: Error Correction Coding Enable Register Summary

Offset	Register	Description
[0x0008]	ECC_EN	Reserved

4.12.1 Register Details

Table 4-56: Error Correction Coding Enable Register

Error Correction Coding Enable				ECC_EN [0x0008]		
Bits	Name	Access	Reset	set Description		
31:0	-	RO	0	Reserved		

4.13 System Initialization Registers (SIR)

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 4-57: System Initialization Register Summary

Offset	Register	Description
[0x0000]	SIR_SIR_STATUS	System Initialization Error Status Register
[0x0004]	SIR_SIR_ADDR	System Initialization Error Address Register

4.13.1 Register Details

Table 4-58: System Initialization Error Status Register

System Initialization Error Status				SIR_SIR_STATUS	[0x0000]	
Bits	Name	Access	Reset	Description		
31:2	=	RO	0	Reserved	Reserved	
1	cfg_err	RO	*	Configuration Error Flag This field is set by hardware during reset if an error in the device configuration is detected.		
				Configuration valid. Configuration invalid.		
				Note: If this field reads 1, a device error has occurred. Contact Maxim Integrated technical support for additional assistance providing the address contained in SIR_SIR_ADDR.addr.		

Analog Devices Page 79 of 327

System Initialization Error Status					SIR_SIR_STATUS	[0x0000]	
Bits	Name	Access	Rese	et	Description		
0	cfg_valid	RO	*		Configuration Valid Flag		
					This field is set to 1 by hardware during reset if	f the device configuration is valid.	
					0: Configuration invalid. 1: Configuration valid.		
				Note: If this field reads 0, the device configuration is invalid, and occurred. Contact Analog Devices technical support for additional		•	

Table 4-59: System Initialization Error Address Register

System Initialization Error Address				SIR_SIR_ADDR	[0x0004]	
Bits	Name	Access	Reset	et Description		
31:0	addr	RO	0	Configuration Error Address If the SIR_SIR_STATUS.cfg_err field is set to 1, address of the configuration failure.	the value in this register is the	

4.14 Function Control Registers (FCR)

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 4-60: Function Control Register Summary

Offset	Register	Description	
[0x0000]	FCR_FCTRL0	Function Control Register 0	
[0x0004]	FCR_AUTOCAL0	Automatic Calibration 0 Register	
[0x0008]	FCR_AUTOCAL1	Automatic Calibration 1 Register	
[0x000C]	FCR_AUTOCAL2	Automatic Calibration 2 Register	

4.14.1 Register Details

Table 4-61: Function Control 0 Register

Function (Function Control 0			FCR_FCTRL0	[0x0000]
Bits	Field	Access	Reset	Description	
31:26	-	RO	0	Reserved	
25	i2c2_scl_filter_en	R/W	0	I2C2 SCL Glitch Filter Enable	
				0: Disabled.	
				1: Enabled.	
24	i2c2_sda_filter_en	R/W	0	I2C2 SDA Glitch Filter Enable	
				0: Disabled.	
				1: Enabled.	
23	i2c1_scl_filter_en	R/W	0	I2C1 SCL Glitch Filter Enable	
				0: Disabled.	
				1: Enabled.	
22	i2c1_sda_filter_en	R/W	0	I2C1 SDA Glitch Filter Enable	
				0: Disabled.	
				1: Enabled.	

Analog Devices Page 80 of 327

Function	Control 0			FCR_FCTRL0	[0x0000]
Bits	Field	Access	Reset	Description	
21	i2c0_scl_filter_en	R/W	0	I2C0 SCL Glitch Filter Enable	
				0: Disabled. 1: Enabled.	
20	i2c0_sda_filter_en	R/W	0	I2C0 SDA Glitch Filter Enable	
				0: Disabled. 1: Enabled.	
19:3	-	RO	0	Reserved	
2:0	erfo_range_sel	R/W	0	ERFO Frequency Range Select	
				Set these bits to reflect the crys	stal frequency connected to the HFXOUT and
				0: <22.5MHz. 1: 22.5MHz to 24.5MHz. 2: 24.5MHz to 26.3MHz. 3: 26.3MHz to 28.0MHz. 4: 28.0MHz to 29.6MHz. 5: 29.6MHz to 31.1MHz. 6: 31.1MHz to 32.6MHz. 7: Reserved.	

Table 4-62: Automatic Calibration 0 Register

Function Co	ontrol 1			FCR_AUTOCAL0	[0x0004]
Bits	Field	Access	Reset	Description	
31:23	trim	R	0	IPO Automatic Trim Value Output This field contains the calculated trim output from an automatic calibration run.	
22.22					ed tilli output from all automatic calibration fun
22:20	-	RO	0	Reserved	
19:8	gain	R/W	0	IPO Trim Pulse Count Load this field with the desired number of trim adjustment pulses required before the trim is updated during an atomic calibration operation. The recommended value for this field is 4.	
7:5	-	RO	0	Reserved	
4	atomic	R/W10	0	IPO Trim Atomic Start	
					tic atomic calibration of the IPO. The calibration <i>ne</i> milliseconds. This bit is cleared by hardware te.
3	invert	RO	0	IPO Trim Step Invert	
				Set this field to invert the up/d	down trim steps during calibration operations.
				0: Trim steps are not inverte 1: Trim steps inverted.	d.
2	load	R/W10	0	IPO Initial Trim Load	
				Set this bit to load the initial trim value for the IPO from FCR_AUTOCAL1.initial. This bit is automatically cleared by hardware once the load is complete.	
1	en	R/W	0	IPO Automatic Calibration Continuous Mode Enable 0: No effect. 1: Enabled.	

Analog Devices Page 81 of 327

Function (Control 1			FCR_AUTOCAL0 [0x0004]	
Bits	Field	Access	Reset	Description	
0	sel	R/W	0	IPO Trim Select	
					or the IPO. The reset default for this field uses the g this field to 1 uses the automatic calibration trim LO.load.
				0: Use default trim. 1: Use automatic calibration	trim values.

Table 4-63: Automatic Calibration 1 Register

Function (Control 2			FCR_AUTOCAL1 [0x0008]	
Bits	Field	Access	Reset	Description	
31:9	-	RO	0	Reserved	
8:0	initial	R/W	0	initial trim value to use for an II field is to the target trim value completes.	m setting for the IPO. Set this field to the desired PO automatic calibration operation. The closer this required, the faster the automatic trim operation rforming autocalibration on the MAX32670.

Table 4-64: Automatic Calibration 2 Register

Automatic Calibration 2				FCR_AUTOCAL2	[0x000C]
Bits	Name	Access	Reset	Description	
31:21	-	RO	0	Reserved	
20:8	div	R/W	0	IPO Trim Automatic Calibration D Target trim frequency for the IPO: $f_{IPO} = div \times 32,768$ Note: Setting div to 0 is equivalen	
7:0	runtime	R/W	0	IPO Trim Automatic Calibration R Atomic Run Time = runtim	••••

Analog Devices Page 82 of 327

5. Interrupts and Exceptions

Interrupts and exceptions are managed by the Arm Cortex-M4 Nested Vector Interrupt Controller (NVIC). The NVIC handles the interrupts, exceptions, priorities, and masking. *Table 5-1* details the MAX32670/MAX32671 interrupt vector table and describes each exception and interrupt.

5.1 Features

- 8 programmable priority levels
- · Nested exception and interrupt support
- Interrupt masking

5.2 Interrupt Vector Table

Table 5-1 lists the interrupt and exception table for the MAX32670/MAX32671. There are 100 interrupt entries for the MAX32670/MAX32671, including reserved for future use interrupt place holders. Including the 15 system exceptions for the Arm Cortex-M4 with FPU, the total number of entries is 115.

Table 5-1: MAX32670/MAX32671 Interrupt Vector Table

Exception (Interrupt) Number	Offset	Name	Description
1	[0x0004]	Reset_IRQn	Reset
2	[0x0008]	NonMaskableInt_IRQn	Non-Maskable Interrupt
3	[0x000C]	HardFault_IRQn	Hard Fault
4	[0x0010]	MemoryManagement_IRQn	Memory Management Fault
5	[0x0014]	BusFault_IRQn	Bus Fault
6	[0x0018]	UsageFault_IRQn	Usage Fault
7:10	[0x001C]-[0x0028]	-	Reserved
11	[0x002C]	SVCall_IRQn	Supervisor Call Exception
12	[0x0030]	DebugMonitor_IRQn	Debug Monitor Exception
13	[0x0034]	-	Reserved
14	[0x0038]	PendSV_IRQn	Request Pending for System Service
15	[0x003C]	SysTick_IRQn	System Tick Timer
16	[0x0040]	PF_IRQn	Power Fail interrupt
17	[0x0044]	WDT0_IRQn	Windowed Watchdog Timer 0 Interrupt
18	[0x0048]	-	Reserved
19	[0x004C]	RTC_IRQn	Real-Time Clock Interrupt
20	[0x0050]	TRNG_IRQn	True Random Number Generator Interrupt
21	[0x0054]	TMR0_IRQn	Timer 0 Interrupt
22	[0x0058]	TMR1_IRQn	Timer 1 Interrupt
23	[0x005C]	TMR2_IRQn	Timer 2 Interrupt

Analog Devices Page 83 of 327

Exception	Offset	Name	Description
(Interrupt) Number	Oliset	Name	Description
24	[0x0060]	TMR3_IRQn	Timer 3 Interrupt
25	[0x0064]	TMR4_IRQn	LPTMR0 (TMR4) Interrupt
26	[0x0068]	TMR5_IRQn	LPTMR1 (TMR5) Interrupt
27:28	[0x006C]:[0x0070]	-	Reserved
29	[0x0074]	I2C0_IRQn	I ² C Port 0 Interrupt
30	[0x0078]	UART0_IRQn	UART Port 0 Interrupt
31	[0x007C]	UART1_IRQn	UART Port 1 Interrupt
32	[0x0080]	SPI0_IRQn	SPI Port 0 Interrupt
33	[0x0084]	SPI1_IRQn	SPI Port 1 Interrupt
34	[0x0088]	SPI2_IRQn	SPI Port 2 Interrupt
35:38	[0x008C]:[0x0098]	-	Reserved
39	[0x009C]	FLC0_IRQn	Flash Controller 0 Interrupt
40	[0x00A0]	GPIO0_IRQn	GPIO Port 0 Interrupt
41	[0x00A4]	GPIO1_IRQn	GPIO Port 1 Interrupt
42:43	[0x00A8]:[0x00AC]	-	Reserved
44	[0x00B0]	DMA0_IRQn	DMA0 Interrupt
45	[0x00B4]	DMA1_IRQn	DMA1 Interrupt
46	[0x00B8]	DMA2_IRQn	DMA2 Interrupt
47	[0x00BC]	DMA3_IRQn	DMA3 Interrupt
48:49	[0x00C0 : 0x00C4]	-	Reserved
50	[0x00C8]	UART2_IRQn	UART Port 2 Interrupt
51	[0x00CC]	-	Reserved
52	[0x00D0]	I2C1_IRQn	I ² C Port 1 Interrupt
53:69	[0x00D4]: [0x0114]	-	Reserved
70	[0x0118]	GPIOWAKE_IRQn	GPIO Wakeup Interrupt
71:72	[0x011C]: [0x0120]	-	Reserved
73	[0x0124]	WDT1_IRQn	Windowed Watchdog Timer 1 Interrupt
74:77	[0x0128]: [0x0134]	-	Reserved
78	[0x0138]	I2C2_IRQn	I ² C Port 2 Interrupt
79:83	[0x013C}:[0x014C]	-	Reserved
84	[0x0150]	DMA4_IRQn	DMA4 Interrupt
85	[0x0154]	DMA5_IRQn	DMA5 Interrupt
86	[0x0158]	DMA6_IRQn	DMA6 Interrupt
87	[0x015C]	DMA7_IRQn	DMA7 Interrupt
88:97	[0x0160]:[0x0184]	-	Reserved

Analog Devices Page 84 of 327

Exception (Interrupt) Number	Offset	Name	Description
98:103	[0x0188]: [0x019C]	-	Reserved
104	[0x01A0}	UART3_IRQn	LPUARTO Interrupt
105:112	[0x01A4]:[0x01C0]	-	Reserved
113	[0x01C4]	AES_IRQn	AES Block Interrupt
114	[0x01C8]	CRC_IRQn	CRC Block Interrupt
115	[0x01CC]	I2S_IRQn	I ² S Interrupt

Analog Devices Page 85 of 327

6. General-Purpose I/O (GPIO) and Alternate Function Pins

The GPIO pins share an individually controlled I/O mode and an alternate function (AF) mode. Configuring a pin for an AF supersedes its use as a controlled GPIO. However, the input data is always readable using the GPIO input register, GPIOn_IN, if the GPIO input is enabled.

Multiplexing between the AF and the I/O function is often static in an application, set at initialization, and dedicated as either an AF or GPIO. The software must manage dynamic multiplexing between AF1, AF2, AF3, AF4, and I/O mode. The software must manage the AF and GPIO to ensure each is set up properly when switching from a peripheral to the I/O function. Refer to the device data sheet electrical characteristics table for information on the GPIO pin behavior based on the configurations described in this document.

In GPIO mode, each I/O pin supports interrupt functionality that can be independently enabled and configured as a level triggered interrupt, a rising edge, a falling edge, or both rising and falling edge interrupt. All GPIO on the same 32-bit GPIO port share the same interrupt vector. Not all GPIO pins are available on all packages.

Note: The register set used to control the GPIO are identical across multiple Analog Devices microcontrollers. However, the behavior of several registers varies depending on the specific device. The behavior of the registers should not be assumed to be the same from one device to a different device. Specifically the registers GPIOn_PADCTRLO, GPIOn_PADCTRL1, GPIOn_HYSEN, GPIOn_SRSEL, GPIOn_DSO, GPIOn_DS1, and GPIOn_VSSEL are device dependent in their usage.

The GPIO are all bidirectional digital I/O that include:

- Input mode features:
 - Standard CMOS or Schmitt hysteresis.
 - Input data from the input data register (GPIOn_IN) or to a peripheral (AF).
 - Input state selectable for floating (tri-state) or weak pullup/pulldown.
- Output mode features:
 - Output data from the output data register (GPIOn_OUT) in GPIO mode.
 - Output data driven from peripheral if an AF is selected.
 - Standard GPIO:
 - Four drive strength modes.
 - Slow or fast slew rate selection.
- Selectable weak pullup resistor, weak pulldown resistor, or tri-state mode for standard GPIO pins.
- Selectable weak pulldown or tri-state mode for GPIO pins with I²C as an AF.
- Wake from low-power modes on a rising edge, falling edge, or both on the I/O pins.

6.1 Instances

Table 6-1 shows the number of GPIO available on each IC package. Some packages and part numbers do not implement all bits of a 32-bit GPIO port. Register fields corresponding to unimplemented GPIO contain indeterminate values and should not be modified.

Table 6-1: GPIO Pin Count

Package	Number of GPIO	Pins
40 TQFN	GPIO0[30:0]	31

Note: Refer to the device data sheet for a description of AF for each GPIO port pin.

Note: MAX32670/MAX32671 does not support the selectable GPIO voltage supply feature.

Analog Devices Page 86 of 327

6.2 Configuration

6.2.1 Peripheral Clock Enable

The GPIO port is disabled by default on a reset. Using a GPIO pin requires enabling the peripheral clock for the port. Enable GPIO0 by setting .gpio0 to *GCR_RSTO.gpio0* to 0.

6.2.2 Power-On-Reset Configuration

During a POR event, all I/O default to GPIO mode with input and output disabled except the SWDIO, SWDCLK, P0.4, and P0.5 pins. The SWD is enabled by default after POR with AF1 selected by hardware. See *ROM* Bootloader for exceptions.

Following a POR event, all GPIO except device pins SWDIO, SWDCLK, UARTOA_RX, and UARTOA_TX (P0.0, P0.1, P0.8, and P0.9) are configured with the following default settings:

- GPIO mode enabled.
 - ◆ GPIOn ENO[pin] = 1.
 - ◆ *GPIOn_EN1[pin]* = 0.
 - GPIOn_EN2[pin] = 0.
- Pullup/Pulldown disabled, I/O in Hi-Z mode.
 - ◆ GPIOn_PADCTRL1 = 0.
 - ◆ *GPIOn_PS[pin]* = 0.
- Output mode disabled.
 - ◆ GPIOn OUTEN[pin] = 0.
- Input mode disabled.
 - $GPIOn_INEN[pin] = 0.$
- Interrupt disabled.
 - $GPIOn_INTEN[pin] = 0.$

6.2.3 Serial Wire Debug Configuration

Perform the following steps to configure the SWDIO and SWDCLK device pins for SWD mode:

- 1. Set the device pin P0.0 for AF1 mode:
 - a. GPIOn ENO[0] = 0.
 - b. GPIOn EN1[0] = 0.
 - c. $GPIOn_EN2[0] = 0$.
- 2. Set device pin P0.1 for AF1 mode:
 - a. GPIOn ENO[1] = 0.
 - b. $GPIOn_EN1[1] = 0$.
 - c. $GPIOn_{EN2}[1] = 0$.

Note: To use the SWD pins in I/O mode, set the desired GPIO pins for SWD AF and set the SWD disable field to 1 $(GCR_SYSCTRL.swd_dis = 1)$.

Analog Devices Page 87 of 327

6.2.4 Input Mode Configuration

Perform the following steps to configure a pin or pins for input mode:

- 1. Set the pin for I/O mode:
 - a. $GPIOn_ENO[pin] = 1$.
 - b. GPIOn EN1[pin] = 0.
 - c. GPIOn EN2[pin] = 0.
- 2. Configure the pin for pullup, pulldown, or high-impedance mode. See *Table 6-2* for pullup and pulldown selection.
 - a. GPIO pins with I²C as an AF only support high-impedance or a weak pulldown resistor.
- 3. Enable the pin for input mode by setting GPIOn_INEN[pin] to 1.
- 4. Read the input state of the pin using the GPIOn IN[pin] field.

A summary of the configuration of the input mode is shown in Table 6-2.

Table 6-2: MAX32670 Input Mode Configuration Summary

Input Mode	Pullup/Pulldown Enable GPIOn_PADCTRL0[pin] BITWISE OR GPIOn_PADCTRL1[pin]	Pullup/Pulldown Select GPIOn_PS[pin]
High impedance	0	N/A
Weak pullup to V _{DD}	1	1
Weak pulldown to V _{SS}	1	0

Note: Refer to the device data sheet electrical characteristics table for the value of resistors.

Note: GPIOn_PADCTRL1 reset default is 1.

6.2.5 Output Mode Configuration

Perform the following steps to configure a pin for output mode:

- 1. Set the pin for I/O mode:
 - a. $GPIOn_ENO[pin] = 1$.
 - b. GPIOn EN1[pin] = 0.
 - c. GPIOn EN2[pin] = 0.
- 2. Set the output drive strength using the GPIOn_DS1[pin] and GPIOn_DS0[pin] bits.
 - a. See the section GPIO Drive Strength for configuration details and the modes supported.
 - b. Refer to the device data sheet for the electrical characteristics for the drive strength modes.
- 3. Enable the output buffer for the pin by setting GPIOn_OUTEN.en[pin] to 1.
- 4. Set the output high or low using the GPIOn_OUT[pin] bit.

6.2.6 GPIO Drive Strength

Each I/O pin supports multiple selections for drive strength. Standard GPIO pins are configured for the supported modes using the *GPIOn_DS1* and *GPIOn_DS0* registers, as shown in *Table 6-3*. Each of the bits within these registers represents the configuration of a single pin on the GPIO port. For example, *GPIO0_DS.str[25]*, *GPIO0_DS1.str[25]* both represent configuration for device pin P0.25. The drive strength currents shown are targets only. Refer to the device data sheet Electrical Characteristics table for details of the Vol_GPIO, Vol_GPIO, Vol_I2C, and Vol_I2C parameters.

Analog Devices Page 88 of 327

Table 6-3: Standard GPIO Drive Strength Selection

Drive Strength V _{DD} = 1.71V	GPIOn_DS1[pin]	GPIOn_DS0[pin]
1mA	0	0
2mA	0	1
4mA	1	0
6mA	1	1

For GPIO with I²C as an AF, *Table 6-4* shows the drive strength setting options.

Table 6-4: GPIO with I²C AF Drive Strength Selection

Drive Strength V _{DD} = 1.71V	GPIOn_DS0[pin]
2mA	0
10mA	1

6.2.7 Alternate Function Usage

Table 6-5 shows the bit settings for the GPIOn_EN2 and GPIOn_EN1 fields to configure the function of the GPIO port pins for a desired alternate function. For example, GPIO0_EN1.[25], and GPIO0_EN2.[25] all represent configuration for device pin P0.25.

Note: Each AF is independently selectable. Mixing functions assigned to AF1, AF2, AF3, or AF4 is supported if all the peripheral's required functions are enabled.

Table 6-5: MAX32670 GPIO Mode and AF Selection

Alternate Function Selection	GPIOn_EN2[pin]	GPIOn_EN1[pin]
AF1	0	0
AF2	0	1
AF3	1	0
AF4	1	1

Most GPIO support one or more alternate functions selected with the GPIO configuration enable bits shown in *Table 6-5*. The bits that select the AF must only be changed while the pin is in one of the I/O modes ($GPIOn_ENO = 1$). The following steps describe how to configure a pin for alternate function usage.

- 1. Set the pin to I/O mode by setting GPIOn_ENO[pin] to 1.
 - a. This step is important to prevent selection of unintended alternate functions during configuration.
- 2. Set GPIOn_EN2[pin] and GPIOn_EN1[pin] to the values for the desired alternate function, as shown in Table 6-5.
- 3. Configure the electrical characteristics of the pin. See *Table 6-2* if the assigned alternate function uses the pin as an input. See *Table 6-3* if the assigned alternate function uses the pin as an output.
- 4. Set *GPIOn_EN0[pin]* to 0 to enable the alternate function.

6.3 Configuring GPIO (External) Interrupts

Each GPIO supports external interrupt events when the GPIO is configured for I/O mode, and the input mode is enabled. The interrupts are peripheral controlled if the GPIO is configured as a peripheral AF. GPIO interrupts can be independently

Analog Devices Page 89 of 327

enabled for any number of GPIO on each GPIO port. All implemented pins of a GPIO port have a single assigned/shared interrupt vector.

The following procedure details the steps for enabling Active mode interrupt events for a GPIO pin:

- 1. Disable interrupts by setting the *GPIOn_INEN[pin]* field to 0. This prevents any new interrupts on the pin from triggering but does not clear previously triggered (pending) interrupts. The application can disable all interrupts for GPIO by writing 0 to *GPIOn_INEN[31:0]*. To maintain previously enabled interrupts, read the *GPIOn_INEN* register and save the value to memory before setting the register to 0.
- 2. Clear pending interrupts by writing 1 to the GPIOn_INTFL_CLR[pin] bit.
- 3. Set GPIOn INTMODE[pin] to select either level (0) or edge-triggered (1) interrupts.
 - a. For level triggered interrupts, the interrupt triggers on an input high or low.
 - i. GPIOn INTPOL[pin] = 1: Input high triggers interrupt.
 - ii. *GPIOn_INTPOL[pin]* = 0: Input low triggers interrupt.
 - b. For edge-triggered interrupts, the interrupt triggers on an edge event.
 - i. GPIOn_INTPOL[pin] = 0: Input rising edge triggers interrupt.
 - ii. GPIOn_INTPOL[pin] = 1: Input falling edge triggers interrupt.
 - iii. Optionally set *GPIOn_DUALEDGE[pin]* to 1 to trigger on both the rising and falling edges of the input signal.
- 4. Set GPIOn_INTEN[pin] to 1 to enable the interrupt for the pin.

6.3.1 GPIO Interrupt Handling

Each GPIO port is assigned its own dedicated interrupt vector, as shown in *Table 6-7*. Complete the following steps to handle GPIO interrupts using a software interrupt vector handler:

- 1. Read the GPIOn_INTFL register to determine the GPIO pin that triggered the interrupt.
- 2. Complete interrupt tasks associated with the interrupt source pin as required by the application.
- 3. Clear the interrupt flag in the *GPIOn_INTFL* register by writing 1 to the *GPIOn_INTFL_CLR[pin]* bit position that triggered the interrupt. If multiple bits are set in the *GPIOn_INTFL* register, all of the corresponding the bits should be cleared.
- 4. Return from the interrupt vector handler.

Table 6-6 shows the registers and interrupt handler for standard GPIO interrupts for each supported operating mode.

Table 6-6: MAX32670 GPIO Interrupt Enable Settings for Each Supported Operating Mode

Operating Mode	GPIOn_INTEN	Interrupt Handler				
ACTIVE	Х	GPIO0_IRQn				
SLEEP	Х	GPIO0_IRQn				
Note: Wake from DEEPSLEEP, BACKUP, and STORAGE is only supported using the GPIOWAKE interrupt.						

Table 6-7: MAX32670 GPIO Port Interrupt Vector Mapping

GPIO Wake Interrupt	GPIO Interrupt Status	Device Specific Interrupt	GPIO Interrupt Vector
Source	Register	Vector Number	
GPIO0[31:0]	GPIO0_INTFL	40	GPIO0_IRQn

6.3.2 Using GPIO for Wake-Up from Low-Power Modes

Standard GPIO interrupts wake the device from *SLEEP* and *DEEPSLEEP*. Additionally, wake from *DEEPSLEEP*, *BACKUP*, and *STORAGE* are supported for GPIO using the GPIOWAKE feature. GPIOWAKE allows wake from low-power modes from

Analog Devices Page 90 of 327

external edge-triggered interrupts on the GPIO ports. Level triggered interrupts are not supported for wake-up because the system clock must be active to detect levels.

6.3.3 Using GPIOWAKE for Wake-Up from DEEPSLEEP, BACKUP, and STORAGE

For wake-up interrupts on the GPIO, a single interrupt vector, GPIOWAKE_IRQn, is assigned for all the GPIO pins. When the wake-up event occurs, the application software must interrogate the *PWRSEQ_LPWKSTO* register to determine which GPIO0 port pin caused the interrupt.

Table 6-8: GPIO Wakeup Interrupt Vector

GPIO Wake Interrupt	GPIO Wake Interrupt	Device Specific Interrupt	GPIO Wake-up	
Source	Status Register	Vector Number	Interrupt Vector	
GPIO0[31:0]	GPIOn_INTFL	70	GPIOWAKE_IRQn	

Enable GPIOWAKE interrupts for all power modes (*ACTIVE*, *SLEEP*, *DEEPSLEEP*, and *BACKUP*) from an external GPIO event by completing the following steps:

- 1. Clear pending interrupt flags by writing 0xFFFF FFFF to the PWRSEQ_LPWKSTO register.
- 2. Set up a GPIOWAKE_IRQn interrupt handler.
- 3. Enable the GPIOWAKE for each desired pin by setting PWRSEQ_LPWKEN0[pin] to 1.
- 4. Configure the power manager to use the GPIO as a wake-up source by writing 1 to the GCR_PM.gpio_we field.
- 5. Enter the desired low-power mode. See *Operating Modes* for details.
- 6. When a wake-up event occurs, if an I/O caused the wake up, the pin's corresponding bit is set in the *PWRSEQ_LPWKSTO* register.

Analog Devices Page 91 of 327

6.4 GPIO Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own independent set of registers, as shown in *Table 6-9*. Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERALO_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 6-9: GPIO Register Summary

[0x0000] GPIOn_ENO_SET GPIO Port n Configuration Enable Atomic Set Bit 0 Register [0x0000] GPIOn_ENO_SET GPIO Port n Configuration Enable Atomic Set Bit 0 Register [0x0000] GPIOn_OUTEN GPIO Port n Configuration Enable Atomic Clear Bit 0 Register [0x0000] GPIOn_OUTEN GPIO Port n Output Enable Register [0x0010] GPIOn_OUTEN_SET GPIO Port n Output Enable Atomic Set Register [0x0011] GPIOn_OUTEN_CLR GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT_SET GPIO Port n Output Register [0x0010] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0021] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0022] GPIOn_IOT_CLR GPIO Port n Interrupt Atomic Clear Register [0x0023] GPIOn_INT GPIO Port n Interrupt Register [0x0024] GPIOn_IN GPIO Port n Interrupt Mode Register [0x0025] GPIOn_INTOME GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0030] GPION_INTEN GPIO Port n Interrupt Enable Register [0x0030] GPION_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0030] GPION_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x0040] GPION_INTEN_CLR GPIO Port n Interrupt Enable Atomic Set Register [0x0040] GPION_INTEN_CLR GPIO Port n Interrupt Status Register [0x0040] GPION_INTEN_CLR GPIO Port n Wakeup Enable Register [0x0050] GPION_WKEN_SET GPIO Port n Wakeup Enable Register [0x0050] GPION_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0060] GPION_MEN_CLR GPIO Port n Wakeup Enable Atomic Set Register [0x0060] GPION_ENLER GPIO Port n Pad Control 1 Register [0x0060] GPION_ENLER GPIO Port n Configuration Enable Bit 1 Register [0x0070] GPION_ENL_SET GPIO Port n Configuration Enable Bit 1 Register [0x0070] GPION_ENL_SET GPIO Port n Configuration Enable	Offset	Register Name	Description			
[0x0008] GPIOn_ENO_CLR GPIO Port n Configuration Enable Atomic Clear Bit 0 Register [0x000C] GPIOn_OUTEN GPIO Port n Output Enable Register [0x0014] GPIOn_OUTEN_SET GPIO Port n Output Enable Atomic Set Register [0x0014] GPIOn_OUTEN_CLR GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT_SET GPIO Port n Output Register [0x0020] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPION_IN GPIO Port n Input Register [0x0024] GPION_IN GPIO Port n Input Register [0x0028] GPION_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPION_INTEN GPIO Port n Interrupt Polarity Register [0x0030] GPION_INTEN GPIO Port n Interrupt Enable Register [0x0034] GPION_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0038] GPION_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0040] GPION_INTEN_SET GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPION_INTEN_CLR GPIO Port n Interrupt Status Register [0x0040] GPION_INTEL_CLR GPIO Port n Interrupt Status Register [0x0040] GPION_INTEL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPION_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_DUALEDGE GPIO Port n Interrupt Dela Edge Mode Register [0x0050] GPION_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0064] GPION_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0066] GPION_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0066] GPION_EN1_SET GPIO Port n Configuration Enable Bit 1 Register [0x0067] GPION_EN1_SET GPIO Port n Configuration Enable Bit 1 Register [0x0070] GPION_EN1_SET GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPION_EN1_SET GPIO Port n Configuration Enable Atomic Cle	[0x0000]	GPIOn_EN0	GPIO Port n Configuration Enable Bit 0 Register			
[0x000C] GPIOn_OUTEN GPIO Port n Output Enable Register [0x0010] GPIOn_OUTEN_SET GPIO Port n Output Enable Atomic Set Register [0x0014] GPIOn_OUTEN_CLR GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT_SET GPIO Port n Output Register [0x0020] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_IN GPIO Port n Input Register [0x0026] GPION_INTMODE GPIO Port n Input Register [0x0027] GPION_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPION_INTMODE GPIO Port n Interrupt Polarity Register [0x0034] GPION_INTEN GPIO Port n Interrupt Enable Register [0x0034] GPION_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPION_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0038] GPION_INTEN_SET GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPION_INTEL_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPION_INTEL_CLR GPIO Port n Interrupt Status Register [0x0040] GPION_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPION_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x0064] GPION_PADCTRL1 GPIO Port n Pad Control 0 Register [0x0064] GPION_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0066] GPION_ENT_SET GPIO Port n Pad Control 1 Register [0x0066] GPION_ENT_SET GPIO Port n Configuration Enable Bit 1 Register [0x0067] GPION_ENT_SET GPIO Port n Configuration Enable Bit 1 Register [0x0067] GPION_ENT_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0074] GPION_ENT_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0076] GPION_ENT_SET GPIO Port n Configuration Enable Atomic Set	[0x0004]	GPIOn_ENO_SET	GPIO Port n Configuration Enable Atomic Set Bit 0 Register			
[0x0010] GPIOn_OUTEN_SET GPIO Port n Output Enable Atomic Set Register [0x0014] GPIOn_OUTEN_CLR GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT GPIO Port n Output Register [0x0010] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_LCR GPIO Port n Output Atomic Clear Register [0x0020] GPIOn_INT GPIO Port n Input Register [0x0020] GPIOn_INT GPIO Port n Input Register [0x0020] GPION_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPION_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPION_INTEN GPIO Port n Interrupt Polarity Register [0x0030] GPION_INTEN GPIO Port n Interrupt Enable Register [0x0031] GPION_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0038] GPION_INTEN GPIO Port n Interrupt Enable Atomic Clear Register [0x0030] GPION_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPION_INTFL GPIO Port n Interrupt Clear Register [0x0041] GPION_INTFL GPIO Port n Interrupt Clear Register [0x0042] GPION_INTFL GPIO Port n Wakeup Enable Register [0x0050] GPION_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPION_DUALEDGE GPIO Port n Wakeup Enable Atomic Clear Register [0x0060] GPION_DUALEDGE GPIO Port n Pad Control 0 Register [0x0060] GPION_ENALEDGE GPIO Port n Pad Control 1 Register [0x0060] GPION_ENALEDGE GPIO Port n Configuration Enable Bit 1 Register [0x0060] GPION_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0070] GPION_EN2 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPION_EN2 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPION_EN2 GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[8000x0]	GPIOn_ENO_CLR	GPIO Port n Configuration Enable Atomic Clear Bit 0 Register			
[0x0014] GPIOn_OUTEN_CLR GPIO Port n Output Enable Atomic Clear Register [0x0018] GPIOn_OUT GPIO Port n Output Register [0x0010] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_IN GPIO Port n Input Register [0x0028] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPIOn_INTMODE GPIO Port n Interrupt Polarity Register [0x0020] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INTEN GPIO Port n Interrupt Polarity Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x0030] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTEL GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPION_INTFL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPION_INTFL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPION_WKEN_GET GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN_CLR GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_PADCTRLO GPIO Port n Wakeup Enable Atomic Clear Register [0x0060] GPION_PADCTRLO GPIO Port n Pad Control 0 Register [0x0060] GPION_PADCTRLO GPIO Port n Pad Control 1 Register [0x0060] GPION_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0060] GPION_EN1 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPION_EN1_CLR GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPION_EN2_CLR GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0070] GPION_EN2_CLR GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[0x000C]	GPIOn_OUTEN	GPIO Port n Output Enable Register			
[0x0018] GPIOn_OUT GPIOn_OUT_SET GPIO Port n Output Register [0x0020] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_IN GPIOn_IN GPIO Port n Input Register [0x0028] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x0030] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x0030] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTFL GPIO Port n Interrupt Status Register [0x0040] GPIOn_INTFL_CLR GPIO Port n Interrupt Status Register [0x0040] GPIOn_INTFL_CLR GPIO Port n Wakeup Enable Register [0x0040] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPIOn_DUALEDGE GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPIOn_PADCTRLO GPIO Port n Pad Control 0 Register [0x0060] GPIOn_PADCTRLO GPIO Port n Pad Control 1 Register [0x0061] GPIOn_ENDCTRLO GPIO Port n Pad Control 1 Register [0x0062] GPIOn_EN1_SET GPIO Port n Configuration Enable Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register [0x0070] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0010]	GPIOn_OUTEN_SET	GPIO Port n Output Enable Atomic Set Register			
[0x001C] GPIOn_OUT_SET GPIO Port n Output Atomic Set Register [0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_IN GPIO Port n Input Register [0x0028] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x002C] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INTEN GPIO Port n Input Enable Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x003C] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x003C] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTFL GPIO Port n Interrupt Status Register [0x0048] GPIOn_INTFL_CLR GPIO Port n Interrupt Clear Register [0x0048] GPIOn_INTFL_CLR GPIO Port n Wakeup Enable Register [0x0050] GPIOn_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPIOn_DUALEDGE GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0060] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0060] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0060] GPIOn_EN1 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN2 GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPIOn_EN2 GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0070] GPIOn_EN2 GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0070] GPIOn_EN2 GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0014]	GPIOn_OUTEN_CLR	GPIO Port n Output Enable Atomic Clear Register			
[0x0020] GPIOn_OUT_CLR GPIO Port n Output Atomic Clear Register [0x0024] GPIOn_IN GPIO Port n Input Register [0x0028] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x0020] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INEN GPIO Port n Interrupt Polarity Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN GPIO Port n Interrupt Enable Atomic Set Register [0x0030] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTEL_CLR GPIO Port n Interrupt Status Register [0x0040] GPIOn_INTFL GPIO Port n Interrupt Clear Register [0x0048] GPIOn_INTFL_CLR GPIO Port n Wakeup Enable Register [0x0040] GPIOn_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Clear Register [0x0051] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x0052] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0061] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0062] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0063] GPIOn_EN1 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1 GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0075] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0076] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[0x0018]	GPIOn_OUT	GPIO Port n Output Register			
[0x0024] GPIOn_IN GPIO Port n Input Register	[0x001C]	GPIOn_OUT_SET	GPIO Port n Output Atomic Set Register			
[0x0028] GPIOn_INTMODE GPIO Port n Interrupt Mode Register [0x002C] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x0030] GPIOn_INEN GPIO Port n Input Enable Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x0040] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTEL GPIO Port n Interrupt Status Register [0x0040] GPIOn_INTEL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPIOn_INTEL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPION_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPION_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPION_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x0050] GPION_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPION_DADCTRLO GPIO Port n Pad Control 1 Register [0x0064] GPION_END_CTRL1 GPIO Port n Pad Control 1 Register [0x0065] GPION_EN1_SET GPIO Port n Configuration Enable Bit 1 Register </td <td>[0x0020]</td> <td>GPIOn_OUT_CLR</td> <td>GPIO Port n Output Atomic Clear Register</td>	[0x0020]	GPIOn_OUT_CLR	GPIO Port n Output Atomic Clear Register			
[0x002C] GPIOn_INTPOL GPIO Port n Interrupt Polarity Register [0x003d] GPIOn_INEN GPIO Port n Input Enable Register [0x003d] GPIOn_INTEN GPIO Port n Input Enable Register [0x003d] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x003d] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x003C] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x004d] GPIOn_INTFL GPIO Port n Interrupt Status Register [0x004d] GPIOn_INTFL_CLR GPIO Port n Interrupt Clear Register [0x004d] GPIOn_WKEN GPIO Port n Wakeup Enable Register [0x005d] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x005d] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005d] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x006c] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x006d] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x006d] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x006d] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006c] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x007d] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x007d] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007d] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007d] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[0x0024]	GPIOn_IN	GPIO Port n Input Register			
[0x0030] GPIOn_INEN GPIO Port n Input Enable Register [0x0034] GPIOn_INTEN GPIO Port n Interrupt Enable Register [0x0038] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register [0x003C] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTEL GPIO Port n Interrupt Status Register [0x0048] GPION_INTEL_CLR GPIO Port n Interrupt Clear Register [0x0040] GPION_WKEN GPIO Port n Wakeup Enable Register [0x0040] GPION_WKEN GPIO Port n Wakeup Enable Atomic Set Register [0x0050] GPION_WKEN_SET GPIO Port n Wakeup Enable Atomic Clear Register [0x0054] GPION_WKEN_CLR GPIO Port n Nakeup Enable Atomic Clear Register [0x0050] GPION_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPION_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0061] GPION_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0062] GPION_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0063] GPION_EN1 GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0070] GPION_EN2 GPIO Port n Configurat	[0x0028]	GPIOn_INTMODE	GPIO Port n Interrupt Mode Register			
DX0034 GPIOn_INTEN GPIO Port n Interrupt Enable Register	[0x002C]	GPIOn_INTPOL	GPIO Port n Interrupt Polarity Register			
[0x0038] GPIOn_INTEN_SET GPIO Port n Interrupt Enable Atomic Set Register	[0x0030]	GPIOn_INEN	GPIO Port n Input Enable Register			
[0x003C] GPIOn_INTEN_CLR GPIO Port n Interrupt Enable Atomic Clear Register [0x0040] GPIOn_INTFL GPIO Port n Interrupt Status Register [0x0048] GPIOn_INTFL_CLR GPIO Port n Interrupt Clear Register [0x004C] GPIOn_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x0055] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x0060] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0076] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0034]	GPIOn_INTEN	GPIO Port n Interrupt Enable Register			
[0x0040] GPIOn_INTFL GPIO Port n Interrupt Status Register [0x0048] GPIOn_INTFL_CLR GPIO Port n Interrupt Clear Register [0x004C] GPIOn_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Clear Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0038]	GPIOn_INTEN_SET	GPIO Port n Interrupt Enable Atomic Set Register			
[0x0048] GPIOn_INTFL_CLR GPIO Port n Interrupt Clear Register [0x004C] GPIOn_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[0x003C]	GPIOn_INTEN_CLR	GPIO Port n Interrupt Enable Atomic Clear Register			
[0x004C] GPIOn_WKEN GPIO Port n Wakeup Enable Register [0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0076] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0076] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register	[0x0040]	GPIOn_INTFL	GPIO Port n Interrupt Status Register			
[0x0050] GPIOn_WKEN_SET GPIO Port n Wakeup Enable Atomic Set Register [0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0076] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0077] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0070] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0048]	GPIOn_INTFL_CLR	GPIO Port n Interrupt Clear Register			
[0x0054] GPIOn_WKEN_CLR GPIO Port n Wakeup Enable Atomic Clear Register [0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0076] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0077] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x0077] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x004C]	GPIOn_WKEN	GPIO Port n Wakeup Enable Register			
[0x005C] GPIOn_DUALEDGE GPIO Port n Interrupt Dual Edge Mode Register [0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0050]	GPIOn_WKEN_SET	GPIO Port n Wakeup Enable Atomic Set Register			
[0x0060] GPIOn_PADCTRL0 GPIO Port n Pad Control 0 Register [0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0054]	GPIOn_WKEN_CLR	GPIO Port n Wakeup Enable Atomic Clear Register			
[0x0064] GPIOn_PADCTRL1 GPIO Port n Pad Control 1 Register [0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x005C]	GPIOn_DUALEDGE	GPIO Port n Interrupt Dual Edge Mode Register			
[0x0068] GPIOn_EN1 GPIO Port n Configuration Enable Bit 1 Register [0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0060]	GPIOn_PADCTRL0	GPIO Port n Pad Control 0 Register			
[0x006C] GPIOn_EN1_SET GPIO Port n Configuration Enable Atomic Set Bit 1 Register [0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0064]	GPIOn_PADCTRL1	GPIO Port n Pad Control 1 Register			
[0x0070] GPIOn_EN1_CLR GPIO Port n Configuration Enable Atomic Clear Bit 1 Register [0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0068]	GPIOn_EN1	GPIO Port n Configuration Enable Bit 1 Register			
[0x0074] GPIOn_EN2 GPIO Port n Configuration Enable Bit 2 Register [0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x006C]	GPIOn_EN1_SET	GPIO Port n Configuration Enable Atomic Set Bit 1 Register			
[0x0078] GPIOn_EN2_SET GPIO Port n Configuration Enable Atomic Set Bit 2 Register [0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0070]	GPIOn_EN1_CLR	GPIO Port n Configuration Enable Atomic Clear Bit 1 Register			
[0x007C] GPIOn_EN2_CLR GPIO Port n Configuration Enable Atomic Clear Bit 2 Register	[0x0074]	GPIOn_EN2	GPIO Port n Configuration Enable Bit 2 Register			
	[0x0078]	GPIOn_EN2_SET	GPIO Port n Configuration Enable Atomic Set Bit 2 Register			
[0x00A8] GPIOn_HYSEN GPIO Port n Input Hysteresis Enable Register	[0x007C]	GPIOn_EN2_CLR	GPIO Port n Configuration Enable Atomic Clear Bit 2 Register			
	[0x00A8]	GPIOn_HYSEN	GPIO Port n Input Hysteresis Enable Register			
[0x00AC] GPIOn_SRSEL GPIO Port n Slew Rate Select Register	[0x00AC]	GPIOn_SRSEL	GPIO Port n Slew Rate Select Register			

Analog Devices Page 92 of 327

Offset	Register Name	Description		
[0x00B0]	GPIOn_DS0	GPIO Port n Drive Strength Select 0 Register		
[0x00B4]	GPIOn_DS1	GPIO Port n Drive Strength Select 1 Register		
[0x00B8]	GPIOn_PS	GPIO Port n Pullup/Pulldown Enable Register		
[0x00C0]	GPIOn_VSSEL	GPIO Port n Voltage Select Register		

6.4.1 Register Details

Table 6-10: GPIO AF 0 Select Register

GPIO AF 0 Select Register				GPIOn_EN0	[0x0000]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	1	GPIO Configuration Enable Bit 0 These bits, in conjunction with bits in <i>Tab</i> pin for digital I/O or an alternate function writing to this register or indirectly through the second of	all devices. The bits associated with

Table 6-11: GPIO Port n Configuration Enable Atomic Set Bit 0 Register

GPIO Port n Configuration Enable Atomic Set Bit 0			c Set Bit 0	GPIOn_EN0_SET	[0x0004]
Bits	Field	Access	Reset	Description	
31:0	-	R/W10		GPIO Configuration Enable Atomic Set Bit 0 Setting a bit in this field sets the corresponding bit in the GPIOn_ENO register.	
				0: No effect. 1: Corresponding bits in the GPIOn_ENO register are set to 1. Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	

Table 6-12: GPIO Port n Configuration Enable Atomic Clear Bit 0 Register

GPIO Port n Configuration Enable Atomic Clear Bit 0			ic Clear Bi	t 0 GPIOn_EN0_CLR	[0x0008]
Bits	Field	Access	Reset	Description	
31:0	-	R/W10	0	GPIO Configuration Enable Atomic Clear Bit 0	
				Setting a bit in this field clears the corresponding bits in the GPIOn_ENO register.	
				0: No effect.	
				1: Corresponding bits in the GPIOn_ENO register are cleared to 0.	
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	

Analog Devices Page 93 of 327

Table 6-13: GPIO Port n Output Enable Register

GPIO Port n Output Enable			GPIOn_OUTEN	[0x000C]	
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Output Enable Setting a bit in this field enables the output driver for the corresponding GPIO pin. A bit can be enabled directly by writing to this register or indirectly through GPIOn_OUTEN_SET or GPIOn_OUTEN_CLR.	
				0: Disabled. 1: Enabled. Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	

Table 6-14: GPIO Port n Output Enable Atomic Set Register

GPIO Port n Output Enable Atomic Set				GPIOn_OUTEN_SET	[0x0010]	
Bits	Field	Access	Reset	set Description		
31:0	-	R/W10	0	GPIO Output Enable Atomic Set		
				Setting a bit in this field sets the corresponding bit in the <i>GPIOn_OUTEN</i> register.		
				0: No effect.		
				1: Corresponding bits in GPIOn_OUTEI	V set to 1.	
				Note: Some GPIO are not implemented in unimplemented GPIO should not be char		

Table 6-15: GPIO Port n Output Enable Atomic Clear Register

GPIO Port n Output Enable Atomic Clear			r	GPIOn_OUTEN_CLR	[0x0014]		
Bits	Field	Access	Reset	et Description			
31:0	-	R/W10	0	GPIO Output Enable Atomic Clear			
				Setting a bit in this field sets the corresponding bits in the GPIOn_OUTEN register.			
				0: No effect.			
				1: Corresponding bits in GPIOn_OUTEN	v cleared to 0.		
				Note: Some GPIO are not implemented in unimplemented GPIO should not be char			

Table 6-16: GPIO Port n Output Register

GPIO Port	n Output			GPIOn_OUT	[0x0018]		
Bits	Field	Access	Reset	t Description			
31:0	-	R/W	0	GPIO Output Level			
				Setting a bit in this field sets the corresponding output pin to a high state. Clearing a bit in this field clears the corresponding output pin to a low state.			
					0: Drive the corresponding output pin low (logic 0). 1: Drive the corresponding output pin high (logic 1).		
				Note: This bit is ignored if the corresponding bit position in the GPIOn_OUTEN regist is not set or if the pin is configured for an AF.			
				Note: Some GPIO are not implemented in unimplemented GPIO should not be chan			

Analog Devices Page 94 of 327

Table 6-17: GPIO Port n Output Atomic Set Register

GPIO Port n Output Atomic Set				GPIOn_OUT_SET	[0x001C]		
Bits	Field	Access	Reset	et Description			
31:0	-	R/W10	0	GPIO Output Atomic Set			
				Setting a bit in this field sets the corresponding bits in the <i>GPIOn_OUT</i> register.			
				0: No effect.			
				1: Corresponding bits in GPIOn_OUTER	V set to 1.		
				Note: Some GPIO are not implemented in unimplemented GPIO should not be char			

Table 6-18: GPIO Port n Output Atomic Clear Register

GPIO Port n Output Atomic Clear				GPIOn_OUT_CLR	[0x0020]	
Bits	Field	Access	Reset	set Description		
31:0	-	wo	0	GPIO Output Atomic Clear		
				Setting a bit in this field clears the corresponding bits in the <i>GPIOn_OUT</i> register.		
				0: No effect.		
				1: Corresponding bits in GPIOn_OUTEI	V cleared to 0.	
				Note: Some GPIO are not implemented in unimplemented GPIO should not be char		

Table 6-19: GPIO Port n Input Register

GPIO Port	n Input			GPIOn_IN	[0x0024]	
Bits	Field	Access	Reset	Description	Description	
31:0	-	R	0	GPIO Input Level		
				Read the state of the corresponding input pin. The input state is always readable for a pin regardless of the pin's configuration as an output or AF.		
				0: Input pin low (logic 0). 1: Input pin high (logic 1).		
				Note: Some GPIO are not implemented in unimplemented GPIO should not be chan		

Table 6-20: GPIO Port n Interrupt Mode Register

cription O Interrupt Mode	
O Interrupt Mode	
	red interrupts for the corresponding GPIO riggered interrupt for the corresponding
Level triggered interrupt. Edge triggered interrupt. e: This bit has no effect unless the cor e: Some GPIO are not implemented in	rresponding bit in the GPIOn_INEN register is all devices. The bits associated with
	,

Analog Devices Page 95 of 327

Table 6-21: GPIO Port n Interrupt Polarity Register

GPIO Port	n Interrupt Polarity			GPIOn_INTPOL	[0x002C]			
Bits	Field	Access	Rese	et Description				
31:0	-	R/W	0	GPIO Interrupt Polarity				
				Interrupt polarity selection bit for the co	rresponding GPIO pin.			
				Level-triggered mode (GPIOn_INTMODE	[pin]= 0):			
					0: Input low (logic 0) triggers interrupt. 1: Input high (logic 1) triggers interrupt.			
				Edge-triggered mode (GPIOn_INTMODE[pin]= 1):			
				0: Falling-edge triggers interrupt.1: Rising-edge triggers interrupt.				
				Note: This bit has no effect unless the conset.	rresponding bit in the GPIOn_INEN register is			
				Note: Some GPIO are not implemented in unimplemented GPIO should not be chan				

Table 6-22: GPIO Port n Input Enable Register

GPIO Port n Input Enable				GPIOn_INEN	[0x0030]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W	0x0000 0303	GPIO Input Enable			
				Setting a bit in this field connects the corresponding input pad to the specified input pin for reading the pin state using the <i>GPIOn_IN</i> register.			
				0: Input not connected.			
				1: Input connected.			
				Note: Some GPIO are not implemented in unimplemented GPIO should not be chan			

Table 6-23: GPIO Port n Interrupt Enable Registers

GPIO Port n Interrupt Enable				GPIOn_INTEN	[0x0034]	
Bits	Field	Access	Reset	Description		
31:0	-	R/W	0	GPIO Interrupt Enable		
				Setting a bit in this field enables the inter	rupt for the corresponding GPIO pin.	
				0: Disabled. 1: Enabled.		
				Note: Disabling a GPIO interrupt does not clear pending interrupts for the associated pin. Use the GPIOn_INTFL_CLR register to clear pending interrupts.		
				Note: Some GPIO are not implemented in unimplemented GPIO should not be chan		

Analog Devices Page 96 of 327

Table 6-24: GPIO Port n Interrupt Enable Atomic Set Register

GPIO Port Interrupt Enable Atomic Set			et	GPIOn_INTEN_SET	[0x0038]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W10	0	GPIO Interrupt Enable Atomic Set			
				Setting a bit in this field sets the corresponding bits in the <i>GPIOn_INTEN</i> register.			
				0: No effect.			
				1: Corresponding bits in the GPIOn_INTEN register are set to 1.			
				Note: Some GPIO are not implemented in al unimplemented GPIO should not be change			

Table 6-25: GPIO Port n Interrupt Enable Atomic Clear Register

GPIO Port Interrupt Enable Atomic Clear			ear	GPIOn_INTEN_CLR	[0x003C]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W10	0	GPIO Interrupt Enable Atomic Clear			
				Setting a bit in this field clears the corresponding bits in the <i>GPIOn_INTEN</i> register.			
				0: No effect.			
				1: Corresponding bits in the GPIOn_INTEN	v register are cleared to 0.		
				Note: Some GPIO are not implemented in all unimplemented GPIO should not be change			

Table 6-26: GPIO Interrupt Status Register

GPIO Interrupt Status				GPIOn_INTFL	[0x0040]		
Bits	Field	Access	Reset	Description			
31:0	-	R	0	GPIO Interrupt Status			
				An interrupt is pending for the associated GPIO pin when this bit reads 1.			
				0: No interrupt pending for associated GPIO pin. 1: GPIO interrupt pending for associated GPIO pin.			
				Note: Write a 1 to the corresponding bit in the GPIOn_INTFL_CLR register to clear the interrupt pending status flag.			
				Note: Some GPIO are not implemented in al unimplemented GPIO should not be changed			

Table 6-27: GPIO Port n Interrupt Clear Register

GPIO Por	t Interrupt Clear			GPIOn_INTFL_CLR	[0x0048]		
Bits Field Access Reset				Description			
31:0	-	R/W1C	0	GPIO Interrupt Clear			
				Setting a bit in this field clears the associated interrupt status (GPIOn_INTFL).			
				0: No effect on the associated GPIOn_INTFL flag.			
				1: Clear the associated interrupt pending	flag in the GPIOn_INTFL register.		
				Note: Some GPIO are not implemented in al unimplemented GPIO should not be change			

Analog Devices Page 97 of 327

Table 6-28: GPIO Port n Wakeup Enable Register

GPIO Po	GPIO Port n Wakeup Enable Register			GPIOn_WKEN	[0x004C]	
Bits	Field	Access	Reset	Description		
31:0	-	RO	0	Reserved		
				Note: Some GPIO are not implemented unimplemented GPIO should not be cha		

Table 6-29: GPIO Port n Wakeup Enable Atomic Set Register

GPIO P	GPIO Port Wakeup Enable Atomic Set			GPIOn_WKEN_SET	[0x0050]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 6-30: GPIO Port n Wakeup Enable Atomic Clear Register

GPIO P	GPIO Port Wakeup Enable Atomic Clear			GPIOn_WKEN_CLR	[0x0054]
Bits	Field	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Table 6-31: GPIO Port n Interrupt Dual Edge Mode Register

GPIO Port n Interrupt Dual Edge Mode		ode	GPIOn_DUALEDGE	[0x005C]			
Bits	Field	Access	Reset	Description			
31:0	-	R/W	0	GPIO Interrupt Dual-Edge Mode Select Setting a bit in this field selects dual edge m edge-triggered) on the corresponding GPIO GPIOn_INTMODE bit must be set to edge-tripolarity (GPIOn_INTPOL) setting has no effer 0: Disabled. 1: Enabled.	port device pin. The associated iggered. When enabled, the associated ct.		
				Note: Some GPIO are not implemented in all unimplemented GPIO should not be changed			

Analog Devices Page 98 of 327

Table 6-32: GPIO Port n Pad Control 0 Register

GPIO Po	GPIO Port n Pad Control 0			GPIOn_PADCTRL0	[0x0060]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W	0	Pullup/Pulldown Enable			
				Setting a bit in this field enables the weak pullup or pulldown resistor on to corresponding GPIO port device pin. The selection for pullup or pulldown is set using the			

Table 6-33: GPIO Port n Pad Control 1 Register

GPIO Port n Pad Control 1				GPIOn_PADCTRL1	[0x0064]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	Pullup/Pulldown Enable Setting a bit in this field enables the w corresponding GPIO port device pin. T set using the GPIOn_PS register. CAUTION: This field is OR'd with the concentration of the co	nput is disabled (GPIOn_INEN[pin] = 0). d in all devices. The bits associated with

Analog Devices Page 99 of 327

Table 6-34: GPIO Port n Configuration Enable Bit 1 Register

GPIO Port n Configuration Enable Bit 1				GPIOn_EN1	[0x0068]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO AF 1 Mode Select	
				pin for digital I/O or an AF mode. This fi	table 6-5, configure the corresponding device eld can be modified directly by writing to this 1_SET or GPIOn_EN1_CLR. See Alternate age.
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	
				Note: This register setting does not affe associated pin.	ct the input and interrupt functionality of the

Table 6-35: GPIO Port n Configuration Enable Atomic Set Bit 1 Register

GPIO Port n Configuration Enable Atomic Set Bit 1			Set Bit 1	GPIOn_EN1_SET	[0x006C]
Bits	Bits Field Access Reset			Description	
31:0	-	R/W10		GPIO Configuration Enable Atomic Set I Setting a bit in this field sets the corresp 0: No effect. 1: Corresponding bits in the GPIOn_EN Note: Some GPIO are not implemented i unimplemented GPIO should not be chai	onding bits in the <i>GPIOn_EN1</i> register. **N1 register are set to 1. **n all devices. The bits associated with

Table 6-36: GPIO Port n Configuration Enable Atomic Clear Bit 1 Register

GPIO Port n Configuration Enable Atomic Clear Bit 1			Clear Bit	1 GPIOn_EN1_CLR	[0x0070]	
Bits	Field	Access	Reset	Description		
31:0	-	R/W10	0	GPIO Configuration Enable Atomic Clear Bit 1		
				Setting a bit in this field clears the corresponding bits in the <i>GPIOn_EN1</i> register. O: No effect.		
				U: No effect. 1: Corresponding bits in the GPIOn_EN1 register are cleared to 0.		
				Note: Some GPIO are not implemented a unimplemented GPIO should not be cha		

Table 6-37: GPIO Port n Configuration Enable Bit 2 Register

GPIO Port n Configuration Enable Bit 2				GPIOn_EN2	[0x0074]
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	GPIO Configuration Enable Bit 2	
				pin for digital I/O or an AF mode. This fi	table 6-5, configure the corresponding device eld can be modified directly by writing to this 12_SET or GPIOn_EN2_CLR. See Alternate tage.
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.	
				Note: This register setting does not affect associated pin.	ct the input and interrupt functionality of the

Analog Devices Page 100 of 327

Table 6-38: GPIO Port n Configuration Enable Atomic Set Bit 2 Register

GPIO Port n Configuration Enable Atomic Set Bit 2			Set Bit 2	GPIOn_EN2_SET	[0x0078]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W10	0	GPIO AF Select Atomic Set Bit 2			
				Setting a bit in this field sets the corresponding bits in the GPIOn_EN2 register.			
				0: No effect.			
				1: Corresponding bits in the GPIOn_EI	V2 register are set to 1.		
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.			

Table 6-39: GPIO Port n Configuration Enable Atomic Clear Bit 2 Register

GPIO Port n Configuration Enable Atomic Clear Bit 2				2 GPIOn_EN2_CLR	[0x007C]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W10	0	GPIO AF Select Atomic Clear Bit 2			
				Setting a bit in this field clears the corresponding bits in the GPIOn_EN2 register.			
				0: No effect.			
				1: Corresponding bits in the GPIOn_	EN2 register are cleared to 0.		
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.			

Table 6-40: GPIO Port n Input Hysteresis Enable Register

GPIO Port n Input Hysteresis Enable				GPIOn_HYSEN	[8A00x0]		
Bits	Field	Access	Reset	eset Description			
31:0	-	R/W	0	GPIO Input Hysteresis Enable			
				Setting a bit in this field enables a Schmitt input to introduce hysteresis for better noise immunity on the corresponding GPIO port device pin.			
				0: Disabled. 1: Enabled.			
				Note: Some GPIO are not implemented in all devices. The bits associated unimplemented GPIO should not be changed from their default value.			

Table 6-41: GPIO Port n Slew Rate Enable Register

GPIO Port n Slew Rate Select				GPIOn_SRSEL	[0x00AC]	
Bits	Field	Access	Reset	Description		
31:0	-	R/W	0	GPIO Slew Rate Mode Setting a bit in this field enables the slow slew rate for the corresponding GPIO port device pin. Clearing a bit in this field enables fast slew rate for the corresponding GPIO port device pin. 0: Fast slew rate selected. 1: Slow slew rate selected. Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.		
				Note: GPIO with I ² C as an AF do not support Slew Rate Select. Refer to the symbols V_{OL_I2C} and V_{OH_I2C} in the device data sheet Electrical Characteristics table for details regarding which I/O pins support I ² C functionality.		

Analog Devices Page 101 of 327

Table 6-42: GPIO Port n Output Drive Strength Bit O Register

GPIO Port n Output Drive Strength Bit 0				GPIOn_DS0	[0x00B0]		
Bits	Field	Access	Reset	Description			
31:0	-	R/W	0	GPIO Drive Strength 0 Select			
				The output drive strength supports four modes. The mode selection is set using the combination of the <i>GPIOn_DS1</i> and <i>GPIOn_DS0</i> bits for the associated GPIO pin. See the <i>GPIO Drive Strength</i> section for the selection options on these I/O pins.			
				Note: GPIO with I ² C as an AF only support two different drive strengths:			
				0: Low output drive strength selected. 1: High output drive strength selected.			
				Refer to the symbols V_{OL_IZC} and V_{OH_IZC} in the device data sheet electrical characteristics table for details regarding which I/O pins support I ² C functionality.			
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.			

Table 6-43: GPIO Port n Output Drive Strength Bit 1 Register

GPIO Port n Output Drive Strength Bit 1				GPIOn_DS1	[0x00B4]	
Bits	Field	Access	Reset	Description		
31:0	-	R/W	0	GPIO Drive Strength 1 Select		
				The output drive strength supports four modes. The mode selection is set using the combination of the <i>GPIOn_DS1</i> and <i>GPIOn_DS0</i> bits for the associated GPIO pin. See the <i>GPIO Drive Strength</i> section for details on the selection options.		
				Refer to the symbols V_{OL_GPIO} and V_{OH_GPIO} in the device data sheet electrical characteristics table for details of the drive strengths for these I/O pins.		
				Note: GPIO with I ² C as an AF only support two different drive strengths and do not use any bits in this register for drive strength selection. See GPIOn_DSO for details of the two different drive strength settings.		
				Refer to the symbols $V_{OL_{12C}}$ and $V_{OH_{12C}}$ in the device data sheet Electrical Characteristics table for details regarding which I/O pins support I^2C functionality.		
				Note: Some GPIO are not implemented in all devices. The bits associated with unimplemented GPIO should not be changed from their default value.		

Table 6-44: GPIO Port n Pulldown/Pullup Strength Select Register

GPIO Port n Pulldown/Pullup Strength Select				GPIOn_PS	[0x00B8]	
Bits	Field	Access	Reset	et Description		
31:0	-	R/W	0	port device pin. Clearing a bit in this fiel	pullup resistor for the corresponding GPIO d selects a weak pulldown resistor for the e GPIOn_PADCTRL1 the pull resistor selection.	
				0: Pulldown resistor selected. 1: Pullup resistor selected.		
				Note: GPIO with I^2C as an AF do not sup in this register that control GPIO with I^2C	port a weak pullup resistor. As such, the bits C as an AF should always be set to 0.	
				Note: Refer to the symbols V_{OL_12C} and V_{OH_12C} in the device data sheet Electrical Characteristics table for details regarding which I/O pins support I^2C functionality. See GPIOn_PADCTRL0 and GPIOn_PADCTRL1.		

Analog Devices Page 102 of 327

Table 6-45: GPIO Port n Voltage Select Register

GPIO Port n Voltage Select				GPIOn_VSSEL [0x00C0]		
Bits	Field	Access	Reset	Description		
31:0	-	DNM	0	Reserved. Do Not Modify.		

Analog Devices Page 103 of 327

7. Flash Controller (FLC)

The MAX32670/MAX32671 Flash Controller manages read, write, and erase accesses to the internal flash. It provides the following features:

- Up to 384KB total internal flash memory.
 - Page 48 is used by the bootloader and cannot be used for application software storage.
- 48 pages.
- 8,192 bytes per page.
- 2,048 words by 128 bits per page.
- 128-bit data reads and writes.
- Page erase and mass erase support.
- Write protection.

7.1 Instances

The device provides one instance of the flash controller. The flash is programmable through the serial wire debug interface (in-system) or directly with user software (in-application).

Table 7-1 shows the start address and end address of internal flash memory.

Table 7-1: MAX32670/MAX32671 Internal Flash Memory Organization

Instance Number	Page Number	Size (per page)	Start Address	End Address
	1	8,192	0x1000 0000	0x1000 1FFF
	2	8,192	0x1000 2000	0x1000 3FFF
	3	8,192	0x1000 4000	0x1000 5FFF
51.0	4	8,192	0x1000 6000	0x1000 7FFF
FLC				
	47	8,192	0x1005 C000	0x1005 DFFF
	48	Reserved	0x1005 E000	0x1005 FFFF

7.2 Usage

The flash controller manages write and erase operations for internal flash memory and provides a lock mechanism to prevent unintentional writes to the internal flash. In-application and in-system programming, page erase, and mass erase operations are supported. Flash is also sensitive to voltage, see *Core Operating Voltage Range Selection* for details.

7.2.1 Clock Configuration

The flash controller requires a 1MHz clock for write and erase operations. Use the flash controller clock divisor to generate $f_{FLC_CLK} = 1MHz$, as shown in *Equation 7-1*. For the IPO as the system clock, the *FLC_CLKDIV.clkdiv* should be set to 100.

CAUTION: The FLC_CLKDIV.clkdiv field resets to an invalid clock divisor on all forms of reset.

Equation 7-1: FLC Clock Frequency

$$f_{FLC_CLK} = \frac{f_{SYS_CLK}}{FLC\ CLKDIV.clkdiv} = 1MHz$$

Analog Devices Page 104 of 327

7.2.2 Lock Protection

A locking mechanism prevents accidental memory writes and erases. All writes and erase operations require the *FLC_CTRL.unlock* field to be set to 2 before starting the operation. Writing any other value to the *FLC_CTRL.unlock* field results in the flash instance becoming locked.

Note: If a write, page erase, or mass erase operation is started, and the unlock code was not set to 2, the flash controller hardware sets the access fail flag, FLC_INTR.af, to indicate an access violation occurred.

7.2.3 Flash Write Width

The flash controller supports write widths of 128-bits only. The target address bits *FLC_ADDR*[3:0] are ignored, resulting in 128-bit alignment.

7.2.4 Flash Write

Writes to a flash location are only successful if the targeted location is already in its erased state. Perform the following steps to write to a flash memory instance:

- 1. If desired, enable flash controller interrupts by setting the FLC_INTR.afie and FLC_INTR.doneie bits.
- 2. Read the FLC_CTRL.pend bit until it returns 0.
- 3. Configure FLC_CLKDIV.clkdiv to achieve a 1MHz flash clock based on the current SYS_CLK frequency..
- 4. Set the FLC_ADDR register to a valid target address.
- 5. Set FLC_DATA[3], FLC_DATA[2], FLC_DATA[1], and FLC_DATA[0] to the data to write.
 - a. FLC_DATA[3] is the most significant word, and FLC_DATA[0] is the least significant word.
 - i. Each word of the data to write follows the little-endian format where the least significant byte of the word is stored at the lowest-numbered byte, and the most significant byte is stored at the highest-numbered byte.
- 6. Set FLC_CTRL.unlock to 2 to unlock the flash instance.
- 7. Set FLC_CTRL.wr to 1.
 - a. This field is automatically cleared by the FLC when the write operation is finished.
- 8. The FLC_INTR.done field is set to 1 by hardware when the write completes An interrupt is generated if the FLC_INTR.doneie field is set to 1.
 - a. If an error occurred, the FLC_INTR.af field is set to 1 by the hardware and an interrupt is generated if the FLC_INTR.afie field is set to 1.
- 9. Set FLC_CTRL.unlock to any value other than 2 to re-lock the flash instance.

Note: Code execution can occur within the same flash instance as targeted programming.

Note: If the ICC is enabled, either disable it before writing to the flash or flush it after writing to the flash.

CAUTION: Software must ensure there are no flash writes or erase operations in progress before entering a low-power mode.

Analog Devices Page 105 of 327

7.2.5 Page Erase

CAUTION: Care must be taken to not erase the page from which application code is currently executing.

Perform the following steps to erase a page of flash memory:

- 1. If desired, enable flash controller interrupts by setting the FLC INTR.afie and FLC INTR.doneie bits.
- 2. Read the FLC_CTRL.pend bit until it returns 0.
- 3. Configure FLC CLKDIV.clkdiv to achieve a 1MHz flash clock based on the current SYS CLK frequency.
- 4. Set the *FLC_ADDR* register to an address within the target page to be erased. *FLC_ADDR*[12:0] are ignored by the FLC to ensure the address is page aligned.
- 5. Set FLC CTRL.unlock to 2 to unlock the flash instance.
- 6. Set FLC CTRL.erase code to 0x55 for page erase.
- 7. Set FLC_CTRL.pge to 1 to start the page erase operation.
- 8. The FLC_CTRL.pend bit is set by the flash controller while the page erase is in progress and the FLC_CTRL.pge and FLC_CTRL.pend are cleared by the flash controller when the page erase is complete.
- 9. *FLC_INTR.done* is set by hardware when the page erase completes and if an error occurred, the *FLC_INTR.af* flag is set. These bits generate a flash interrupt if enabled.
- 10. Set FLC CTRL.unlock to any value other than 2 to re-lock the flash instance.

Note: If the ICC is enabled, either disable it before erasing a page or flush it after erasing the page.

CAUTION: Software must ensure there are no flash writes or erase operations in progress before entering a low-power mode.

7.2.6 Mass Erase

CAUTION: Care must be taken to not erase the flash from which application code is currently executing.

Mass erase clears the internal flash memory on an instance basis. Perform the following steps to mass erase a single flash memory instance:

- 1. Read the FLC CTRL.pend bit until it returns 0.
- 2. Configure FLC CLKDIV.clkdiv to achieve a 1MHz flash clock based on the current SYS CLK frequency.
- 3. Set FLC_CTRL.unlock to 2 to unlock the internal flash.
- 4. Set FLC_CTRL.erase_code to 0xAA for mass erase.
- 5. Set *FLC CTRL.me* to 1 to start the mass erase operation.
- 6. The FLC_CTRL.pend bit is set by the flash controller while the mass erase is in progress and the FLC_CTRL.me and FLC_CTRL.pend are cleared by the flash controller when the mass erase is complete.
- 7. FLC_INTR.done is set by the flash controller when the mass erase completes and if an error occurred, the FLC_INTR.af flag is set. These bits generate a flash interrupt if enabled.
- 8. Set FLC_CTRL.unlock to any value other than 2 to re-lock the flash instance.

Analog Devices Page 106 of 327

7.3 Flash Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Note: The flash registers are reset only on a POR and system reset. Soft reset, and peripheral reset do not affect the flash register values.

Table 7-2: Flash Controller Register Summary

Offset	Register Name	Description
[0x0000]	FLC_ADDR	Flash Controller Address Pointer Register
[0x0004]	FLC_CLKDIV	Flash Controller Clock Divisor Register
[0x0008]	FLC_CTRL	Flash Controller Control Register
[0x0024]	FLC_INTR	Flash Controller Interrupt Register
[0x0028]	FLC_ECCDATA	Reserved
[0x0030]	FLC_DATA[0]	Flash Controller Data Register 0
[0x0034]	FLC_DATA[1]	Flash Controller Data Register 1
[0x0038]	FLC_DATA[2]	Flash Controller Data Register 2
[0x003C]	FLC_DATA[3]	Flash Controller Data Register 3
[0x0040]	FLC_ACTRL	Flash Controller Access Control
[0x0080]	FLC_WELRO	Flash Controller Write/Erase Lock Register 0
[0x0088]	FLC_WELR1	Flash Controller Write/Erase Lock Register 1
[0x0090]	FLC_RLRO	Flash Controller Read Lock Register 0
[0x0098]	FLC_RLR1	Flash Controller Read Lock Register 1

7.3.1 Register Details

Table 7-3: Flash Controller Address Pointer Register

Flash Controller Address Pointer				FLC_ADDR	[0x0000]	
Bits	Name	Access	Reset	Description		
31:0	addr	R/W	0x1000 0000	Flash Address		
				This field contains the target address for a write operation. A valid internal flash memory address is required for all write operations.		

Table 7-4: Flash Controller Clock Divisor Register

Flash Controller Clock Divisor Register				FLC_CLKDIV	[0x0004]
Bits	Name	Access	Reset	Reset Description	
31:8	-	RO	1	Reserved	
7:0	clkdiv	R/W	0x60	Flash Controller Clock Divisor The system clock is divided by the valu controller clock. The flash controller clock and mass erase operations. See section CAUTION: This field resets to an invalid	ock is only used during write, erase, on <i>Clock Configuration</i> for details.

Analog Devices Page 107 of 327

Table 7-5: Flash Controller Control Register

Flash Controller Control Register				FLC_CTRL	[8000x0]	
Bits	Name	Access	Reset	Description		
31:28	unlock	R/W	0	Flash Unlock		
				Write the unlock code, 2, before any flash write or erase operation to unlock the Flash. Writing any other value to this field locks the internal flash.		
				2: Flash unlock code.		
27:26	-	RO	-	Reserved		
25	lve	lve R/W 0		Low Voltage Enable		
				Set this field to 1 to enable low voltage opera Core Operating Voltage Range Selection for of this setting.		
				0: Low voltage operation disabled. 1: Low voltage operation enabled.		
				Note: The PWRSEQ_LPCN.ovr field must be set to 0 or 1 before setting this field to 1.		
24	pend	RO	0	Flash Busy Flag		
				When this field is set, writes to all flash regist are ignored by the Flash Controller. This bit withe flash becomes accessible.		
		Note: If the Flash Controller is busy (FLC_CTRL.pend = 1), reads, writerase operations are not allowed and result in an access failure (FLC = 1).		•		
				0: Flash idle. 1: Flash busy.		
23:16	-	RO	0	Reserved		
15:8	erase_code	R/W	0	Erase Code		
				Prior to an erase operation this field must be 0xAA for a mass erase. The flash must be unl code. This field is automatically cleared after the en	ocked prior to setting the erase	
				0: Erase disabled. 0x55: Page erase code. 0xAA: Mass erase code.		
4:3	-	RO	0	Reserved		
2	pge	R/W10	0	Page Erase		
				Write a 1 to this field to initiate a page erase FLC_ADDR.addr. The flash must be unlocked erase, see FLC_CTRL.unlock for details. The Flash Controller hardware clears this bit complete.	prior to attempting a page	
				0: No page erase operation in process or pa 1: Write a 1 to initiate a page erase. If this operation is in progress.		

Analog Devices Page 108 of 327

Flash Contr	Flash Controller Control Register			FLC_CTRL [0x0008]		
Bits	Name	Access	Reset	Description		
1	me	R/W10	0	Mass Erase Write a 1 to this field to initiate a mass erase The flash must be unlocked prior to attempti FLC_CTRL.unlock for details. The Flash Controller hardware clears this bit completes. 0: No operation. 1: Initiate mass erase.	ng a mass erase, see	
0	wr	R/W10	0	Write If this field reads 0, no write operation is pen write operation, set this bit to 1 and the Flash address set in the FLC_ADDR register. O: No write operation in process or write operation. If the operation is in progress. Note: This field is protected and cannot be see	peration complete.	

Table 7-6: Flash Controller Interrupt Register

Flash Contro	oller Interrupt Regis	ter		FLC_INTR	[0x0024]
Bits	Name	Access	Reset	Description	
31:10	-	RO	0	Reserved	
9	afie	R/W	0	Flash Access Fail Interrupt Enable Set this bit to 1 to enable interrupts of 0: Disabled. 1: Enabled.	n flash access failures.
8	doneie	R/W	0	Flash Operation Complete Interrupt Enable Set this bit to 1 to enable interrupts on flash operations complete. 0: Disabled. 1: Enabled.	
7:2	-	RO	0	Reserved	
1	af	R/W0C	0	Flash Access Fail Interrupt Flag This bit is set when an attempt is mad flash is busy or locked. Only hardware this bit has no effect. This bit is cleared 0: No access failure has occurred. 1: Access failure occurred.	can set this bit to 1. Writing a 1 to
0	done	R/W0C	0	Flash Operation Complete Interrupt F This flag is automatically set by hardw operation completes. 0: Operation not complete or not in 1: Flash operation complete.	are after a flash write or erase

Table 7-7: Flash Controller ECC Data Register

Flash Controller ECC Data				FLC_ECCDATA [0x0028]	
Bits	Name	Access	Reset	Description	
31:0	-	RO	0	Reserved	

Analog Devices Page 109 of 327

Table 7-8: Flash Controller Data O Register

Flash Controller Data 0				FLC_DATA[0] [0x0030]		
Bits	Name	Access	Reset	Reset Description		
31:0	data	R/W	0	Flash Data 0		
				Flash data for bits 31:0.		

Table 7-9: Flash Controller Data Register 1

Flash Controller Data 1				FLC_DATA[1] [0x0034]		
Bits	Name	Access	Reset	Reset Description		
31:0	data	R/W	-	Flash Data 1		
				Flash data for bits 63:32.		

Table 7-10: Flash Controller Data Register 2

Flash Controller Data 2				FLC_DATA[2] [0x0038]	
Bits	Name	Access	Reset	Reset Description	
31:0	data	R/W	-	Flash Data 2 Flash data for bits 95:64.	

Table 7-11: Flash Controller Data Register 3

Flash Controller Data 3				FLC_DATA[3] [0x00	
Bits	Name	Access	Reset	Reset Description	
31:0	data	R/W	0	Flash Data 3	
				Flash data for bits 127:96.	

Table 7-12: Flash Controller Access Control Register

Flash Controller Access Control				FLC_ACTRL	[0x0040]	
Bits	Name	Access	Reset	Reset Description		
31:0	actrl	R/W	0	Access Control When this register is written with the information block can be accessed. Se details.	• • •	

Table 7-13: Flash Controller Write/Erase Lock Register 0

lash Controller Write/Erase Lock 0				FLC_WELR0	[0x0080]
Bits	Name	Access	Reset	Reset Description	
31:0	welr0	R/W1C	OxFFFF FFFF	FF Flash Write/Lock Bit	
				Each bit in this register maps to a page maps to page 1 of the flash and FLC_W page is 8,192 bytes. Write a 1 to a bit procession only be unlocked by an external reset	VELRO[31] maps to page 32. Each flash position in this register and the ately locked. The page protection can
				0: The corresponding page of flash is 1: The corresponding page of flash is	•

Analog Devices Page 110 of 327

Table 7-14: Flash Controller Write/Erase Lock Register 1

Flash Controller Write/Erase Lock 1			FLC_WELR1	[0x0088]	
Bits	Name	Access	Reset	Reset Description	
31:16	-	DNM	0xFFFF	Reserved	
15:0	welr1	R/W1C	0xFFFF	Each bit in this register maps to a page maps to page 33 of the flash and FLC_flash page is 8,192 bytes. Write a 1 to corresponding page of flash is immedionly be unlocked by an external reset 0: The corresponding page of flash is 1: The corresponding page of flash is	WELR1[15] maps to page 48. Each a bit position in this register and the ately locked. The page protection can or a POR. s write protected.

Table 7-15: Flash Controller Read Lock Register 0

Flash Controller Read Lock 0				FLC_RLR0 [0x0090]	
Bits	Name	Access	Reset	Description	
31:0	rlr0	R/W1C	OxFFFF FFFF	FFFF FFFF Read Lock Bit	
				Each bit in this register maps to a page maps to page 1 of the flash and FLC_R Each flash page is 8,192 bytes. Write a the corresponding page of flash is immread protection can only be unlocked 0: The corresponding flash page is read; The corresponding flash page is not not be unlocked by the corresponding flash page is not not be unlocked by the corresponding flash page is not not be unlocked by the corresponding flash page is not not be unlocked by the corresponding flash page is not not be unlocked by the corresponding flash page is not not be unlocked by the corresponding flash page is not	LRO[31] maps to page 32 of flash. 1 to a bit position in this register and nediately read protected. The page's by an external reset or a POR.

Table 7-16: Flash Controller Read Lock Register 1

Flash Controller Read Lock 1				FLC_RLR1 [0x0098]	
Bits	Name	Access	Reset	Reset Description	
31:16		DNM	0xFFFF	Reserved	
15:0	rlr1	R/W1C	0xFFFF	Read Lock Bit	
				Each bit in this register maps to a page maps to page 33 of the flash and FLC_ Each flash page is 8,192 bytes. Write a the corresponding page of flash is immread protection can only be unlocked 0: The corresponding flash page is read to the corresponding flash page is read to the corresponding flash page is not the c	RLR1[15] maps to page 48 of flash. 1 to a bit position in this register and nediately read protected. The page's by an external reset or a POR. ead protected.

Analog Devices Page 111 of 327

8. Standard DMA (DMA)

The standard DMA is a hardware feature that provides the ability to perform high-speed, block memory transfers of data independent of an Arm core. All DMA transactions consist of burst read from the source into the internal DMA FIFO followed by a burst write from the internal DMA FIFO to the destination.

DMA transfers are one of three types:

- From a receive FIFO to a RAM address.
- From a RAM address to a transmit FIFO.
- To a transmit FIFO from a RAM address.
- From a source SRAM address to a destination SRAM address.

The DMA supports multiple channels. Each channel provides the following features:

- Full 32-bit source and destination addresses with 24-bit (16 Mbytes) address increment capability.
- Ability to chain DMA buffers when a count-to-zero (CTZ) condition occurs.
- Up to 16 Mbytes for each DMA transfer.
- 8 x 32 byte transmit and receive FIFO.
- · Programmable channel timeout period.
- Programmable burst size.
- · Programmable priority.
- Interrupt upon CTZ.
- Abort on error.

8.1 Instances

There is one instance of the DMA, generically referred to as DMA. Each instance provides 8 channels, generically referred to as DMA_CHn. Each instance of the DMA has a set of interrupt registers common to all its channels, and a set of registers unique to each channel instance.

Table 8-1: MAX32670/MAX32671 DMA and Channel Instances

DMA Instance	DMA_CHn Channel Instance
	DMA_CH0
	DMA_CH1
	DMA_CH2
DNAA	DMA_CH3
DMA	DMA_CH4
	DMA_CH5
	DMA_CH6
	DMA_CH7

8.2 DMA Channel Operation (DMA_CH)

8.2.1 DMA Channel Arbitration and DMA Bursts

DMA contains an internal arbiter that allows enabled channels to access the AHB and move data. Once a channel is programmed and enabled, it generates a request to the arbiter immediately (for memory-to-memory DMA) or whenever its associated peripheral requests DMA (for memory-to-peripheral or peripheral-to-memory DMA).

Analog Devices Page 112 of 327

Granting is done based on priority—a higher priority request is always granted. Within a given priority level, requests are granted on a round-robin basis. The *DMA_CHn_CTRL.pri* field determines the DMA channel priority.

When a channel's request is granted, it runs a DMA transfer. The arbiter grants requests to a single channel at a time. Once the DMA transfer completes, the channel relinquishes its grant.

A DMA channel is enabled using the DMA_CHn_CTRL.en bit.

When disabling a channel, poll the *DMA_CHn_STATUS*.status bit to determine if the channel is truly disabled. In general, *DMA_CHn_STATUS*.status follows the setting of the *DMA_CHn_CTRL*.en bit. However, the *DMA_CHn_STATUS*.status bit is automatically cleared under the following conditions:

- Bus error (cleared immediately)
- CTZ when the DMA_CHn_CTRL.rlden = 0 (cleared at the end of the AHB R/W burst)
- DMA_CHn_CTRL.en bit transitions to 0 (cleared at the end of the AHB R/W burst)

Whenever *DMA_CHn_STATUS.status* transitions from 1 to 0, the corresponding *DMA_CHn_CTRL.en* bit is also cleared. If an active channel is disabled during an AHB read/write burst, the current burst continues until completed.

Only an error condition can interrupt an ongoing data transfer.

8.2.2 DMA Source and Destination Addressing

The source and destination for DMA transfers are dictated by the request select dedicated to the peripheral instance. The DMA_CHn_CTRL.request field dictates the source and destination for a channel's DMA transfer as shown in Table 8-2. The DMA_CHn_SRC and DMA_CHn_DST registers hold the source and destination memory addresses, depending on the specific operation.

The *DMA_CHn_CTRL.srcinc* field is ignored when the DMA source is a peripheral memory, and the *DMA_CHn_CTRL.dstinc* field is ignored when the DMA destination is a peripheral memory.

Analog Devices Page 113 of 327

Table 8-2: MAX32670/MAX32671 DMA Source and Destination by Peripheral

DMA_CHn_CTRL.request	Peripheral	DMA Source	DMA Destination	
0x00	Memory-to-Memory DMA_CHn_SF		DMA_CHn_DST	
0x01	SPI0	SPIO Receive FIFO	DMA_CHn_DST	
0x02	SPI1	SPI1 Receive FIFO	DMA_CHn_DST	
0x03	SPI2	SPI2 Receive FIFO	DMA_CHn_DST	
0x04	UART0	UARTO Receive FIFO	DMA_CHn_DST	
0x05	UART1	UART1 Receive FIFO	DMA_CHn_DST	
0x06	Reserved	-	-	
0x07	12C0	I2C0 Receive FIFO	DMA_CHn_DST	
0x08	I2C1	I2C1 Receive FIFO	DMA_CHn_DST	
0x09	Reserved	-	-	
0x0A	12C2	I2C2 Receive FIFO	DMA_CHn_DST	
0x0B:0x0D	Reserved	-	-	
0x0E	UART2	UART2 Receive FIFO	DMA_CHn_DST	
0x0F	Reserved	-	-	
0x10	AES	AES Receive FIFO	DMA_CHn_DST	
0x11:0x1B	Reserved	-	-	
0x1C	UART3 (LPUART0)	UART3 Receive FIFO	DMA_CHn_DST	
0x1D	Reserved		-	
0x1E	I ² S	I ² S Receive FIFO	DMA_CHn_DST	
0x1F:0x20	Reserved	-	-	
0x21	SPI0	DMA_CHn_SRC	SPIO Transmit FIFO	
0x22	SPI1	DMA_CHn_SRC	SPI1 Transmit FIFO	
0x23			SPI2 Transmit FIFO	
0x24	UARTO DMA_CHn_SRC		UARTO Transmit FIFO	
0x25	UART1	DMA_CHn_SRC	UART1 Transmit FIFO	
0x26	Reserved	-	-	
0x27	12C0	DMA_CHn_SRC	I2C0 Transmit FIFO	
0x28	I2C1	DMA_CHn_SRC	I2C1 Transmit FIFO	
0x29	Reserved	-	-	
0x2A	I2C2	DMA_CHn_SRC	I2C2 Transmit FIFO	
0x2B	Reserved	-	-	
0x2C	CRC	DMA_CHn_SRC	CRC	
0x2D	Reserved			
0x2E	UART2	DMA_CHn_SRC	UART2 Transmit FIFO	
0x2F	Reserved			
0x30	AES	DMA_CHn_SRC	AES Transmit FIFO	
0x31:0x3B	Reserved			
0x3C	UART3 (LPUARTO)	DMA_CHn_SRC	UART3 Transmit FIFO	
0x3D	Reserved			

Analog Devices Page 114 of 327

DMA_CHn_CTRL.request	A_CHn_CTRL.request Peripheral DMA Source		DMA Destination
0x3E	I ² S	DMA_CHn_SRC	I ² S Transmit FIFO
0x3F	Reserved	-	-

8.2.3 Data Movement from Source to DMA

Table 8-3 shows the fields that control the burst movement of data into the DMA FIFO. The source is a peripheral or memory.

Table 8-3: Data Movement from Source to DMA FIFO

Register/Field	Description	Comments	
DMA_CHn_SRC	Source address	If the increment enable is set, this increments on every read cycle of the burst. This field is ignored when the DMA source is a peripheral.	
	Number of bytes to transfer before a CTZ condition occurs	This register is decremented on each read of the burst.	
DMA_CHn_CTRL.burst_size	Burst size (1-32)	This maximum number of bytes moved during the burst read.	
DMA_CHn_CTRL.srcwd	Source width	This field determines the maximum data width used during each read of the AHB burst (byte, two bytes, or four bytes). The actual AHB width might be less if <i>DMA_CHn_CNT</i> is not great enough to supply all the needed bytes.	
DMA_CHn_CTRL.srcinc	Source increment enable	Increments <i>DMA_CHn_SRC</i> . This field is ignored when the DMA source is a peripheral.	

8.2.4 Data Movement from DMA to Destination

Table 8-4 shows the fields that control the burst movement of data out of the DMA FIFO. The destination is a peripheral or memory.

Table 8-4: Data Movement from the DMA FIFO to Destination

Register/Field	Description	Comments
DMA_CHn_DST	Destination address	If the increment enable is set, this increments on every write cycle of the burst. This field is ignored when the DMA destination is a peripheral.
DMA_CHn_CTRL.burst_size	Burst size (1-32)	The maximum number of bytes moved during a single AHB read/write burst.
DMA_CHn_CTRL.dstwd	Destination width	This determines the maximum data width used during each write of the AHB burst (one byte, two bytes, or four bytes).
DMA_CHn_CTRL.dstinc	Destination increment enable	Increments <i>DMA_CHn_DST</i> . This field is ignored when the DMA destination is a peripheral.

Analog Devices Page 115 of 327

8.3 Usage

Use the following procedure to perform a DMA transfer from a peripheral's receive FIFO to memory, from memory to a peripheral's transmit FIFO, or from memory to memory.

- 1. Set DMA CHn CTRL.en, DMA CHn CTRL.rlden, and DMA CHn STATUS.ctz if to 0.
- If using memory DMA transfer destination, configure DMA_CHn_DST register to the starting address of the destination in memory.
- 3. If using memory for the source of the DMA transfer, configure the *DMA_CHn_SRC* register to the starting address of the source in memory.
- 4. Write the number of bytes to transfer to the *DMA CHn CNT* register.
- 5. Configure the following *DMA_CHn_CTRL* register fields in one or more instructions. Do not set *DMA_CHn_CTRL.en* to 1 or *DMA_CHn_CTRL.rlden* to 1 in this step:
 - a. Configure DMA_CHn_CTRL.request to select the transfer operation associated with the DMA channel.
 - b. Configure *DMA_CHn_CTRL.burst_size* for the desired burst size.
 - c. Configure DMA_CHn_CTRL.pri to set the channel priority relative to other DMA channels.
 - d. Configure *DMA_CHn_CTRL.dstwd* to dictate the number of bytes written in each transaction.
 - If desired, set <u>DMA_CHn_CTRL</u>.dstinc to 1 to enable automatic incrementing of the <u>DMA_CHn_DST</u> register upon every AHB transaction.
 - f. Configure DMA_CHn_CTRL.srcwd to dictate the number of bytes read in each transaction.
 - g. If desired, set *DMA_CHn_CTRL.srcinc* to 1 to enable automatic incrementing of the *DMA_CHn_DST* register upon every AHB transaction.
 - h. If desired, set *DMA_CHn_CTRL.dis_ie* = 1 to generate an interrupt when the channel becomes disabled. The channel becomes disabled when the DMA transfer completes or a bus error occurs.
 - i. If desired, set *DMA_CHn_CTRL.ctz_ie* 1 to generate an interrupt when the *DMA_CHn_CNT* register is decremented to zero.
 - j. If using the reload feature, configure the reload registers to set the destination, source, and count for the following DMA transaction.
 - 1) Load the DMA_CHn_SRCRLD register with the source address reload value.
 - 2) Load the *DMA_CHn_DSTRLD* register with the destination address reload value.
 - 3) Load the DMA CHn CNTRLD.cnt field with the count reload value.
 - k. If desired, enable the channel timeout feature described in *Channel Timeout Detect*. Clear *DMA_CHn_CTRL.to_per* to 0x0 to disable the channel timeout feature.
- 6. Set *DMA CHn CTRL.en* = 1 to immediately start the DMA transfer.
 - a. If using the reload feature, set DMA CHn CTRL.en and DMA CHn CTRL.rlden to 1 in a single instruction.
- 7. Wait for the interrupt flag to become 1 to indicate the completion of the DMA transfer.

Analog Devices Page 116 of 327

8.4 Count-To-Zero (CTZ) Condition

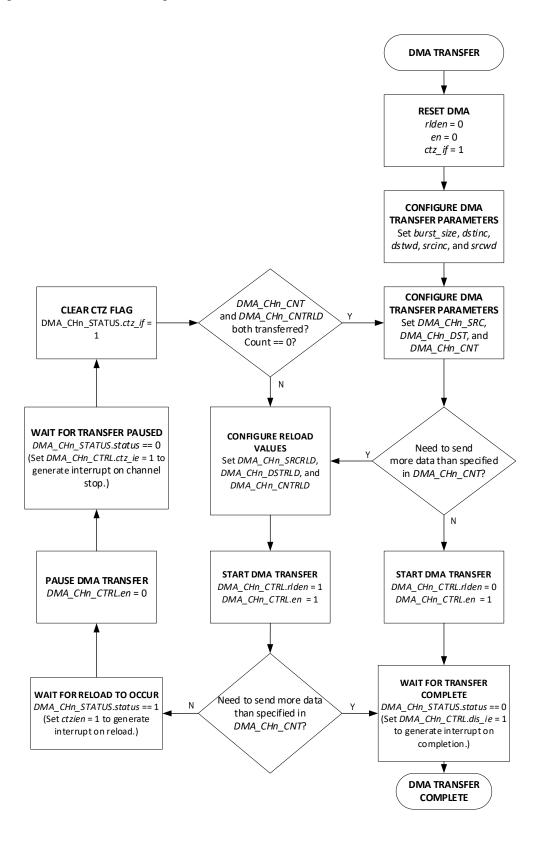
When an AHB channel burst completes, a CTZ condition exists if DMA CHn CNT is decremented to 0.

At this point, there are two possible responses depending on the value of the DMA_CHn_CTRL.rlden:

- If DMA CHn CTRL.rlden = 1
 - The DMA_CHn_SRC, DMA_CHn_DST, and DMA_CHn_CNT registers are loaded from the reload registers, and
 the channel remains active and continues operating using the newly-loaded address/count values and the
 previously programmed configuration values.
- If DMA CHn CTRL.rlden = 0
 - The channel is disabled, and *DMA CHn STATUS.status* is cleared.

8.5 Chaining Buffers

Chaining buffers reduce the DMA ISR response time and allow DMA to service requests without intermediate processing from the CPU. *Figure 8-1* shows the procedure for generating a DMA transfer using one or more chain buffers.


- Configure the following reload registers to configure a channel for chaining:
 - ◆ DMA CHn CTRL
 - ◆ DMA_CHn_SRC
 - ◆ DMA CHn DST
 - ◆ DMA_CHn_CNT
 - ◆ DMA CHn SRCRLD
 - ◆ DMA CHn DSTRLD
 - ◆ DMA CHn CNTRLD

Writing to any register while a channel is disabled is supported, but there are certain restrictions when a channel is enabled. The *DMA_CHn_STATUS.status* bit indicates whether the channel is enabled or not. Because an active channel might be in the middle of an AHB read/write burst, do not write to the *DMA_CHn_SRC*, *DMA_CHn_DST*, or *DMA_CHn_CNT* registers while a channel is active (*DMA_CHn_STATUS.status* = 1). To disable any DMA channel, clear the *DMA_INTEN.ch<n>* bit. Then, poll the *DMA_CHn_STATUS.status* bit to verify that the channel is disabled.

Analog Devices Page 117 of 327

Figure 8-1: DMA Block-Chaining Flowchart

Analog Devices Page 118 of 327

8.6 DMA Interrupts

Enable interrupts for each channel by setting $DMA_INTEN.ch < n >$. When an interrupt for a channel is pending, the corresponding $DMA_INTFL.ch < n > = 1$. Set the corresponding enable bit to cause an interrupt when the flag is set.

A channel interrupt (DMA_CHn_STATUS.ipend = 1) is caused by:

- DMA_CHn_CTRL.ctz_ie = 1
 - If enabled all CTZ occurrences set the DMA_CHn_STATUS.ipend bit.
- DMA_CHn_CTRL.dis_ie = 1
 - If enabled, any clearing of the DMA_CHn_STATUS.status bit sets the DMA_CHn_STATUS.ipend bit. Examine the DMA_CHn_STATUS register to determine which reasons caused the disable. The DMA_CHn_CTRL.dis_ie bit also enables the DMA_CHn_STATUS.to_if bit. The DMA_CHn_STATUS.to_if bit does not clear the DMA_CHn_STATUS.status bit.

To clear the channel interrupt, write 1 to the cause of the interrupt (the *DMA_CHn_STATUS.ctz_if*, *DMA_CHn_STATUS.to_if*, *DMA_CHn_STATUS.bus_err*, or *DMA_CHn_STATUS.to_if* bits).

When running in normal mode without buffer chaining (*DMA_CHn_CTRL.rlden* = 0), set the *DMA_CHn_CTRL.dis_ie* bit only. An interrupt is generated upon DMA completion or an error condition (bus error or timeout error).

When running in buffer chaining mode (*DMA_CHn_CTRL.rlden* = 1), set both the *DMA_CHn_CTRL.dis_ie* and *DMA_CHn_CTRL.ctz_ie* bits. The CTZ interrupts occur on completion of each DMA (count reaches zero and reload occurs). The setting of *DMA_CHn_CTRL.dis_ie* ensures that an error condition generates an interrupt. If *DMA_CHn_CTRL.ctz_ie* = 0, then the only interrupt occurs when the DMA completes and *DMA_CHn_CTRL.rlden* = 0 (final DMA).

8.7 Channel Timeout Detect

Each channel can optionally generate an interrupt when its associated peripheral does not request a transfer in a user-configurable period. When the timeout start conditions are met, an internal 10-bit counter begins incrementing at a frequency determined by the AHB clock, DMA_CHn_CTRL.to_clkdiv, and DMA_CHn_CTRL.to_per shown in Table 8-5: DMA Channel Timeout Configuration. A channel timeout event is generated if the timer is not reset by one of the events listed below before the timeout period expires.

Table 8-5: DMA Channel Timeout Configuration

DMA_CHn_CTRL.to_clkdiv	Timeout Period (μs)
0	Channel timeout disabled
1	2 ⁸ * [Value from DMA_CHn_CTRL.to_per]
	f _{HCLK}
2	2 ¹⁶ * [Value from DMA_CHn_CTRL.to_per]
	f _{HCLK}
3	2 ²⁴ * [Value from DMA_CHn_CTRL.to_per]

The start of the timeout period is controlled by DMA_CHn_CTRL.to_wait:

- If *DMA_CHn_CTRL.to_wait* = 0, the timer begins counting immediately after *DMA_CHn_CTRL.to_per* is configured to a value other than 0.
- If *DMA_CHn_CTRL.to_wait* = 1, the timer begins counting when the first DMA request is received from the peripheral.

Analog Devices Page 119 of 327

The timer is reset whenever:

- The DMA request line programmed for the channel is activated.
- The channel is disabled for any reason (DMA_CHn_STATUS.status = 0).

If the timeout timer period expires, hardware sets *DMA_CHn_STATUS.to_if* = 1 to indicate a channel timeout event has occurred. A channel timeout does not disable the DMA channel.

8.8 Memory-to-Memory DMA

Memory-to-memory transfers are processed as if the request is always active. This means that the DMA channel generates an almost constant request for the bus until the transfer is complete. For this reason, assign a lower priority to channels executing memory-to-memory transfers to prevent starvation of other DMA channels.

Note: Memory-to-memory transfers are limited to RAM only memory.

8.9 DMA Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 8-6: DMA Register Summary

	Offset	Register	Description	
Ī	[0x0000]	DMA_INTEN	DMA Interrupt Enable register	
Ī	[0x0004]	DMA_INTFL	DMA Interrupt Status register	

8.9.1 Register Details

Table 8-7: DMA Interrupt Enable Register

DMA Inter	rupt Enable			DMA_INTEN	[0x0000]
Bits	Field	Access	Reset	Description	
31:0	ch <n></n>	R/W	0		the corresponding channel interrupt m in DMA_INTFL. unimplemented channels should not be changed from

Table 8-8: DMA Interrupt Enable Register

DMA Inter	rupt Enable			DMA_INTFL	[0x0004]	
Bits	Field	Access	Reset	et Description		
31:0	ch <n></n>	RO	0	DMA Channel n Interrupt Flag		
				m. To clear an interrupt, clear the cor DMA_CHn_STATUS register. An interr	rupt bit in this field is set only if the is set in the <i>DMA_INTEN</i> register. Register bits	

Analog Devices Page 120 of 327

8.10 DMA Channel Register Summary

Table 8-9: Standard DMA Channel 0 to Channel 7 Register Summary

Offset	DMA Channel	Description
[0x0100]	DMA_CH0	DMA Channel 0
[0x0120]	DMA_CH1	DMA Channel 1
[0x0140]	DMA_CH2	DMA Channel 2
[0x0160]	DMA_CH3	DMA Channel 3
[0x0180]	DMA_CH4	DMA Channel 4
[0x0200]	DMA_CH5	DMA Channel 5
[0x0220]	DMA_CH6	DMA Channel 6
[0x0240]	DMA_CH7	DMA Channel 7

8.11 DMA Channel Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple instances of the peripheral are provided, each instance has its own, independent set of the registers, as shown in *Table 8-10*. Register names for a specific instance are defined by replacing "n" with the instance number. As an example, a register PERIPHERALn_CTRL resolves to PERIPHERAL0_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 8-10: DMA Channel Registers Summary

Offset	Register	Description	
[0x0000]	DMA_CHn_CTRL	DMA Channel n Control Register	
[0x0004]	DMA_CHn_STATUS	DMA Channel <i>n</i> Status Register	
[0x0008]	DMA_CHn_SRC	DMA Channel <i>n</i> Source Register	
[0x000C]	DMA_CHn_DST	DMA Channel <i>n</i> Destination Register	
[0x0010]	DMA_CHn_CNT	DMA Channel <i>n</i> Count Register	
[0x0014]	DMA_CHn_SRCRLD	DMA Channel <i>n</i> Source Reload Register	
[0x0018]	DMA_CHn_DSTRLD	DMA Channel n Destination Reload Register	
[0x001C]	DMA_CHn_CNTRLD	DMA Channel n Count Reload Register	

8.11.1 Register Details

Table 8-11: DMA Channel n Control Register

DMA Char	nel n Control		DMA_CHn_CTRL [0x0100]		DMA_CHn_CTRL		[0x0100]
Bits	Field	Access	Reset	t Description			
31	ctz_ie	R/W	0	CTZ Interrupt Enable			
				0: Disabled.			
				1: Enabled. DMA_INTFL.ch <n>_ipend is set to 1 whenever a CTZ event occurs.</n>			
30	dis_ie	R/W	0 Channel Disable Interrupt Enable				
				0: Disabled.			
					FL.ch <n>_ipend bit is set to 1 whenever status changes from 1 to 0.</n>		

Analog Devices Page 121 of 327

DMA Char	nnel n Control			DMA_CHn_CTRL	[0x0100]			
Bits	Field	Access	Reset	Description				
29	-	RO	0	Reserved				
28:24	burst_size	R/W	0	Burst Size				
				The number of bytes tran	sferred into and out of the DMA FIFO in a single burst.			
				0: 1 byte.				
				1: 2 bytes.				
				2: 3 bytes.				
				31: 32 bytes.				
23	-	RO	0	Reserved				
22	dstinc	R/W	0	Destination Increment Er				
					natic increment of the <i>DMA_CHn_DST</i> register upon his bit is ignored for a DMA transmit to peripherals.			
					is bit is ignored for a bivia transmit to peripherals.			
				0: Disabled. 1: Enabled.				
21:20	dstwd	R/W	0	Destination Width				
21.20	ustwu	r, vv	0		ch AHB transaction to the destination peripheral or			
					n might be less than this if there are insufficient bytes in			
				the DMA FIFO for the full	width).			
				0: 1 byte.				
				1: 2 bytes.				
				2: 4 bytes.				
				3: Reserved.				
19	-	RO	0	Reserved				
18	srcinc	R/W	0	Source Increment on AHI				
					natic increment of the <i>DMA_CHn_SRC</i> register upon his bit is ignored for a DMA receive from peripherals.			
				0: Disabled.	is sic is ignored for a bit in receive from peripherals.			
				1: Enabled.				
17:16	srcwd	R/W	0	Source Width				
17.10	Siewa	19 **			ch AHB transaction from the source peripheral or			
					n might be less than this if the DMA_CHn_CNT register			
				indicates a smaller value.				
				0: 1 byte.				
				1: 2 bytes.				
				2: 4 bytes.				
		- /		3: Reserved.				
15:14	to_clkdiv	R/W	0	Timeout Timer Clock Pre-				
				0: Timer disabled.	der for the timer clock input.			
				$1:\frac{f_{HClK}}{2^8}$				
				2: ^{fhclK} f				
				3: ^{fhclk} / _{2²⁴}				
				224				

Analog Devices Page 122 of 327

DMA Channel n Control		DMA_CHn_CTRL	[0x0100]					
Bits	Field	Access	Reset	Description				
13:11	to_per	R/W	0	Timeout Period Select				
					re-scaled clocks seen by the channel timer before a nerated. The value is approximate because of petween timers			
				0: 3 – 4.				
				1: 7 – 8.				
				2: 15 – 16.				
				3: 31 – 32.				
				4: 63 – 64.				
				5: 127 – 128.				
				6: 255 – 256.				
				7: 511 – 512.				
10	to_wait	R/W	0	Request DMA Timeout	Timer Wait Enable			
				0: Start timer immedia	ately when enabled.			
				1: Delay timer start ur	ntil after the first DMA transaction occurs.			
9:4	request	R/W	0	Request Select				
				Selects the source and d	lestination for the transfer as shown in <i>Table 8-2</i> .			
3:2	pri	R/W	0	Channel Priority				
					hannel relative to other channels of DMA. Channels of the ed in a round-robin fashion.			
				0: Highest priority.				
				1:				
				2:				
				3: Lowest priority.				
1	rlden	R/W	0	Reload Enable				
					vs reloading the <i>DMA_CHn_SRC</i> , <i>DMA_CHn_DST</i> , and s with their corresponding reload registers upon CTZ.			
				Note: When setting this 1 in the same write for p	field to 1, the DMA_CHn_CTRL.en field must also be set to proper operation.			
0	en	R/W	0	Channel Enable				
				This bit is automatically to 0.	cleared when DMA_CHn_STATUS.status changes from 1			
				0: Disabled.				
				1: Enabled.				

Table 8-12: DMA Status Register

DMA Char	nnel n Status			DMA_CHn_STATUS [0x0104]	
Bits	Field	Access	Reset	Description	
31:7	-	DNM	0	Reserved, Do Not Modify	
6	to_if	R/W1C	0	Timeout Interrupt Flag	
				Timeout. Write 1 to clear.	
				0: No timeout.	
				1: A channel timeout has oc	curred.
5	-	RO	0	Reserved	

Analog Devices Page 123 of 327

DMA Char	DMA Channel n Status			DMA_CHn_STATUS	[0x0104]	
Bits	Field	Access	Reset	Description		
4	bus_err	R/W1C	0	Bus Error		
				If this bit reads 1, an AHB about hardware. Write 1 to clear.	rt occurred and the channel was disabled by	
				0: No error found.		
				1: An AHB bus error occurre	d.	
3	rld_if	R/W1C	0	Reload Interrupt Flag		
				Reload. Write 1 to clear.		
				0: Reload has not occurred.		
				1: Reload occurred.		
2	ctz_if	R/W1C	0	CTZ Interrupt Flag		
				Write 1 to clear.		
				0: CTZ has not occurred.		
				1: CTZ has occurred.		
1	ipend	RO	0	Channel Interrupt Pending		
				0: No interrupt.		
				1: Interrupt pending.		
0	status	RO	0	Channel Status		
				This bit indicates when it is sar registers for the channel.	fe to change the configuration, address, and count	
				Whenever this bit is cleared by hardware, the <i>DMA_CHn_CTRL.en</i> bit is also cleared.		
				0: Disabled.		
				1: Enabled.		

Table 8-13: DMA Channel n Source Register

DMA Channel n Source				DMA_CHn_SRC [0x0108]			
Bits	Field	Access	Reset	Description			
31:0	addr	R/W	0	Source Device Address			
				For peripheral transfers, the actual address field is either ignored or forced to zero because peripherals only have one location to read/write data based on the request select chosen.			
				If <i>DMA_CHn_CTRL.srcinc</i> = 1, then this register is incremented on each AHB transfer cycle by one, two, or four bytes depending on the data width.			
				If DMA_CHn_CTRL.srcinc = 0, this register remains constant.			
					e DMA_CHn_CTRL.rlden = 1, then this register is the DMA_CHn_SRCRLD register.		

Analog Devices Page 124 of 327

Table 8-14: DMA Channel n Destination Register

DMA Channel n Destination				DMA_CHn_DST	[0x010C]		
Bits	Field	Access	Reset	Description			
31:0	addr	R/W	0	Destination Device Address			
				For peripheral transfers, the actual address field is either ignored or forced to zero because peripherals only have one location to read/write data based on the request select chosen.			
				If <i>DMA_CHn_CTRL.dstinc</i> = 1, then this register is incremented on every AHB transfer cycle by one, two, or four bytes depending on the data width.			
				If a CTZ condition occurs while <i>DMA_CH</i> reloaded with the contents of the <i>DMA</i>	_		

Table 8-15: DMA Channel n Count Register

DMA Chan	nel n Count			DMA_CHn_CNT	[0x0110]			
Bits	Field	Access	Reset	Reset Description				
31:24	-	RO	0	Reserved				
23:0	cnt	R/W	0	every AHB access to the DMA FIFO. The d	DMA Counter Load this register with the number of bytes to transfer. This field decreases on every AHB access to the DMA FIFO. The decrement is one, two, or four bytes depending on the data width. When the counter reaches 0, a CTZ condition is			
				If a CTZ condition occurs while <i>DMA_CHI</i> reloaded with the contents of the <i>DMA_C</i>				

Table 8-16: DMA Channel n Source Reload Register

DMA Channel n Source Reload				DMA_CHn_SRCRLD	[0x0114]		
Bits	Field	Access	Reset	et Description			
31	=	RO	0	Reserved			
30:0	addr	R/W	0	Source Address Reload Value			
				If <i>DMA_CHn_CTRL.rlden</i> = 1, then the value of this register is loaded into <i>DMA_CHn_SRC</i> upon a CTZ condition.			

Table 8-17: DMA Channel n Destination Reload Register

DMA Channel n Destination Reload				DMA_CHn_DSTRLD	[0x0118]		
Bits	Field	Access	Reset	eset Description			
31	=	RO	0	Reserved			
30:0	addr	R/W	0	Destination Address Reload Value			
				If <i>DMA_CHn_CTRL.rlden</i> = 1, then the value of this register is loaded into <i>DMA_CHn_DST</i> upon a CTZ condition.			

Table 8-18: DMA Channel n Count Reload Register

Channel n Count Reload	[0x011C]		
s Field Access F	Description		
. ren RO	Reserved This field is reserved and must be set to 0.		
. ren RO			

Analog Devices Page 125 of 327

DMA Channel n Count Reload				DMA_CHn_CNTRLD [0x011C]		
Bits	Field	Access	Reset	Description		
30:24	=	RO	0	Reserved		
23:0	cnt	R/W	0	Count Reload Value.		
				If <i>DMA_CHn_CNTRLD.en</i> = 1, then the value of this register is loaded into <i>DMA_CHn_CNT</i> upon a CTZ condition.		

Analog Devices Page 126 of 327

9. Universal Asynchronous Receiver/Transmitter (UART)

The UART and the low-power universal asynchronous receiver/transmitter (LPUART) interfaces communicate with external devices using industry-standard serial communications protocols. The UARTs are full-duplex serial ports. Each UART instance is independently configurable unless using a shared external clock source.

The LPUART is a version of the peripheral that can receive characters at up to 9600 baud while in low-power modes. The hardware loads valid received characters into the receive FIFO and wakes the device when an enabled interrupt condition occurs.

The peripheral provides the following features:

- Flexible baud rate generation for standard UART instances.
- Programmable character size of 5 to 8 bits.
- Stop bit settings of 1, 1.5, or 2 bits.
- Parity settings of even, odd, mark (always 1), space (always 0), and no parity.
- Automatic parity error detection with selectable parity bias.
- Automatic frame error detection.
- Separate 8-byte transmit and receive FIFOs.
- Flexible interrupt conditions.
- Hardware flow control (HFC) using ready-to-send (RTS) and clear-to-send (CTS) pins.
- Separate DMA channels for transmit and receive.
 - DMA support is available in ACTIVE and SLEEP.

LPUART instances provide these additional features:

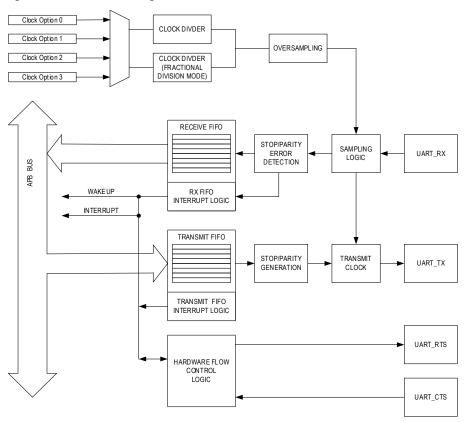

- Receive characters in SLEEP, DEEPSLEEP, and BACKUP at up to 9600 baud.
- Fractional baud rate divisor improves baud rate accuracy for 9600 and lower baud rates.
- Wake up from low-power modes to ACTIVE on multiple receive FIFO conditions.

Figure 9-1 shows a high-level diagram of the UART peripheral.

Analog Devices Page 127 of 327

Figure 9-1: UART Block Diagram

Note: See Table 9-1 for the clock options supported by each UART instance.

9.1 Instances

Instances of the peripheral are shown in *Table 9-1*. The standard UARTs and the LPUARTs are functionally similar; they are referred to as UART for common functionality. The LPUART instance supports fractional division mode (FDM) and is referenced as LPUART for feature-specific options.

AOD_CLK is a scaled version of PCLK described in the section System, Power, Clocks, Reset.

A single external pin provides either the EXT_CLK1 source for the UART or the EXT_CLK2 external clock source for the LPUARTs. As a result, the external clock source cannot be selected by both a UART and LPUART simultaneously.

Analog Devices Page 128 of 327

Table 9-1: MAX32670/MAX32671 UART/LPUART Instances

Instance	FDM Support	Power Modes	CLK0	CLK1	CLK2	CLK3	C_TX_FIFO_DEPTH C_RX_FIFO_DEPTH
UART0							
UART1	NO	ACTIVE SLEEP	PCLK	EXT_CLK1 GPIO0.12 (AF4)	IBRO	ERFO	8/8
UART2		SLLLF		GF100.12 (A14)			
	VEC	ACTIVE SLEEP	AOD_CLK	EXT_CLK2 GPIO0.12 (AF2)	ERTCO	INRO¹	8/8
LPUART0	YES	DEEPSLEEP BACKUP	N/A	EXT_CLK2 GPIO0.12 (AF2)	ERTCO	INRO ¹	8/8

^{1.} INRO accuracy varies up to $\pm 50\%$ across temperature and voltage. Baud rate accuracy must be taken into account when using INRO as the clock source.

9.2 DMA

Each UART instance supports DMA for both transmit and receive; separate DMA channels can be connected to the receive and transmit FIFOs.

The UART DMA channels are configured using the UART DMA configuration register, *UARTn_DMA*. Enable the receive FIFO DMA channel by setting *UARTn_DMA.rx_en* to 1, and enable the transmit FIFO DMA channel by setting *UARTn_DMA.tx_en* to 1. The hardware automatically triggers DMA transfers based on the number of bytes in the receive FIFO and transmit FIFO.

The behavior of the DMA requests are:

- A receive DMA request is asserted when the number of bytes in the receive FIFO transitions to be greater than or equal to the receive FIFO threshold.
- A transmit DMA request is asserted when the number of bytes in the transmit FIFO transitions to be less than the transmit FIFO threshold.

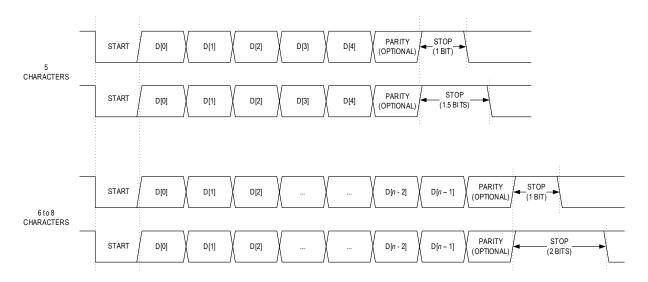

9.3 UART Frame

Figure 9-2 shows the UART frame structure. Character sizes of 5 to 8 bits are configurable through the UARTn_CTRL.char_size field. Stop bits are configurable as 1 or 1.5 bits for 5-character frames and 1 or 2 stop bits for 6, 7, or 8-character frames. Parity support includes even, odd, mark, space, and none.

Analog Devices Page 129 of 327

Figure 9-2: UART Frame Structure

9.4 FIFOs

Separate receive and transmit FIFOs are provided. The FIFOs are both accessed through the same *UARTn_FIFO.data* field. The current level of the transmit FIFO is read from *UARTn_STATUS.tx_IvI*, and the receive FIFO current level is read from *UARTn_STATUS.rx_IvI*. Data for character sizes less than 7 bits are right justified.

9.4.1 Transmit FIFO Operation

Writing data to the *UARTn_FIFO.data* field increments the transmit FIFO pointer, *UARTn_STATUS.tx_lvI*, and loads the data into the transmit FIFO. The *UARTn_TXPEEK.data* register provides a feature that allows the software to "peek" at the current value of the write-only transmit FIFO without changing the *UARTn_STATUS.tx_lvI*. Writes to the transmit FIFO are ignored while *UARTn_STATUS.tx_lvI* = C_TX_FIFO_DEPTH.

9.4.2 Receive FIFO Operation

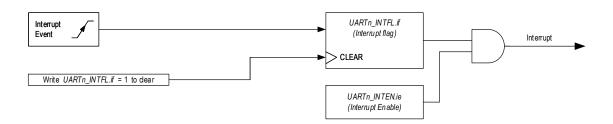
Reads of the *UARTn_FIFO.data* field return the character values in the receive FIFO and decrement the *UARTn_STATUS.rx_IvI*. An overrun event occurs if a valid frame, including parity, is detected while *UARTn_STATUS.rx_IvI* = C_RX_FIFO_DEPTH. When an overrun event occurs, the data is discarded by hardware.

A parity error event indicates that the value read from UARTn_FIFO.data contains a parity error.

9.4.3 Flushing

The FIFOs are flushed on the following conditions:

- Setting the UARTN CTRL.rx flush field to 1 flushes the receive FIFO by setting its pointer to 0.
- Setting the UARTn_CTRL.tx_flush field to 1 flushes the transmit FIFO by setting its pointer to 0.
- Flush the FIFOs by setting the respective UART's reset field (GCR_RSTO) to 1.


Analog Devices Page 130 of 327

9.5 Interrupt Events

The peripheral generates interrupts for the events shown in *Table 9-2*. Unless noted otherwise, each instance has its own set of interrupts and higher-level flag and enable fields, as shown in *Table 9-2*

Figure 9-3: UART Interrupt Functional Diagram

Some activity can set one or more event flags and cause more than one event. An event interrupt occurs if the corresponding interrupt enable is set. The interrupt flags, when set, must be cleared by the software by writing 1 to the corresponding interrupt flag field.

Table 9-2: MAX32670/MAX32671 Interrupt Events

Event	Interrupt Flag	Interrupt Enable
Frame Error	UARTn_INT_FL.rx_ferr	UARTn_INT_EN.rx_ferr
Parity Error	UARTn_INT_FL.rx_par	UARTn_INT_EN.rx_par
CTS Signal Change	UARTn_INT_FL.cts_ev	UARTn_INT_EN.cts_ev
Receive FIFO Overrun	UARTn_INT_FL.rx_ov	UARTn_INT_EN.rx_ov
Receive FIFO Threshold	UARTn_INT_FL.rx_thd	UARTn_INT_EN.rx_thd
Transmit FIFO Half-Empty	UARTn_INT_FL.tx_he	UARTn_INT_EN.tx_he
Transmit FIFO Almost Empty	UARTn_INT_FL.tx_ob	UARTn_INT_EN.tx_ob

9.5.1 Frame Error

A frame error is generated when the UART sampling circuitry detects an invalid bit. Each bit is sampled three times, as shown in *Figure 9-4*, and can generate a frame error on the start bit, stop bit, data bits, and optionally the parity bit. When a frame error occurs, the data is discarded.

Analog Devices Page 131 of 327

The frame error criteria are different based on the following:

- Standard UART and LPUART with FDM disabled (UARTn_CTRL.fdm = 0).
 - The start bit is sampled three times, and all samples must be 0, or a frame error is generated.
 - Each data bit is sampled, and two of the three samples must match, or a frame error is generated.
 - If parity is enabled, the parity bit is sampled three times, and all samples must match, or a frame error is generated.
 - The stop bit is sampled three times, and all samples must be 1, or a frame error is generated.
 - See *Table 9-3* for details
- LPUART with FDM enabled (UARTn_CTRL.fdm = 1) and data/parity edge detect enabled (UARTn_CTRL.dpfe_en = 1).
 - The start bit is sampled three times, and all samples must be 0, or a frame error is generated.
 - Each data bit is sampled three times, and all samples must match, or a frame error is generated.
 - If parity is enabled, the parity bit is sampled three times, and all samples must match, or a frame error is generated.
 - The stop bit is sampled three times, and all samples must be 1, or a frame error is generated.
 - See Table 9-4 for details.

Table 9-3: Frame Error Detection for Standard UARTs and LPUART

UARTn_CTRL .par_en	UARTn_CTRL .par_md	UARTn_CTRL .par_eo	Start Samples	Data Samples	Parity Samples	Stop Samples	
0	N/A	N/A			Not Present		
	0	0			3/3 = 1 if even number "1" 3/3 = 0 if odd number "0"		
1	0		3 of 3 must	3 of 3 must be 0	2/3 must match	3/3 = 1 if odd number "1" 3/3 = 0 if even number "0"	3 of 3 must be
	1	0		matem	3/3 = 1 if even number "0" 3/3 = 0 if odd number "1"		
	1	1			3/3 = 1 if odd number "0" 3/3 = 0 if even number "1"		

Table 9-4: Frame Error Detection for LPUARTs with UARTn_CTRL.fdm = 1 and UARTn_CTRL.dpfe_en = 1

UARTn_CTRL .par_en	UARTn_CTRL .par_md	UARTn_CTRL .par_eo	Start Samples	Data Samples	Parity Samples	Stop Samples	
0	N/A	N/A			Not Present		
	0	0	3 of 3 must be 0			3 of 3 = 1 if even number of 1s 3 of 3 = 0 if odd number 0s	
1	0	1				3 of 3 must match	3 of 3 = 1 if odd number 1s 3 of 3 = 0 if even number 0s
	1	0		matem	3 of 3 = 1 if even number 0s 3 of 3 = 0 if odd number 1s	201	
	1	1			3 of 3 = 1 if odd number 0s 3 of 3 = 0 if even number 1s		

Analog Devices Page 132 of 327

9.5.2 Parity Error

Set *UARTn_CTRL.par_en* = 0 to enable parity checking of the received frame. If the calculated parity does not match the parity bit, then the corresponding interrupt flag is set. The data received is saved to the receive FIFO when a parity error occurs.

9.5.3 CTS Signal Change

A CTS signal change condition occurs if HFC is enabled, the UART baud clock is enabled, and the CTS pin changes state.

9.5.4 Overrun

An overrun condition occurs if a valid frame is received when the receive FIFO is full. The interrupt flag is set at the end of the stop bit, and the frame is discarded.

9.5.5 Receive FIFO Threshold

A receive FIFO threshold event occurs when a valid frame is received that causes the number of bytes to exceed the configured receive FIFO threshold *UARTn_CTRL.rx_thd_val*.

9.5.6 Transmit FIFO Half-Empty

The transmit FIFO half-empty event occurs when *UARTn_STATUS.tx_IvI* transitions from more than half-full to half-empty, as shown in *Equation 9-1*.

Note: When this condition occurs, verify the number of bytes in the transmit FIFO (UARTn_STATUS.tx_IvI) before refilling.

Equation 9-1: UART Transmit FIFO Half-Empty Condition

$$\left(\frac{C_TX_FIFO_DEPTH}{2} + 1\right) \xrightarrow{Transistions\ from} \left(\frac{C_TX_FIFO_DEPTH}{2}\right)$$

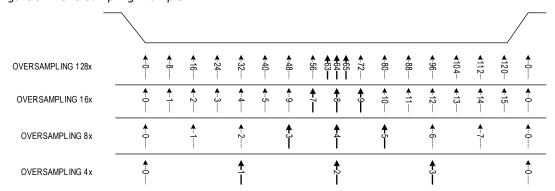
9.5.7 Transmit FIFO Almost Empty

The transmit FIFO almost empty event occurs where there is one byte remaining in the transmit FIFO.

9.6 Inactive State

The following conditions result in the UART being inactive:

- When *UARTn CTRL.bclken* = 0
- After setting UARTn CTRL.bclken to 1 until UARTn CTRL.bclkrdy = 1
- Any write to the UARTn CLKDIV.clkdiv field while UARTn CTRL.bclken = 1
- Any write to the UARTh OSR.osr field when UARTh CTRL.bclken = 1


9.7 Receive Sampling

Each bit of a frame is oversampled to improve noise immunity. The oversampling rate (OSR) is configurable with the *UARTn_OSR.osr* field. In most cases, the bit is evaluated based on three samples at the midpoint of each bit time, as shown in *Figure 9-4*.

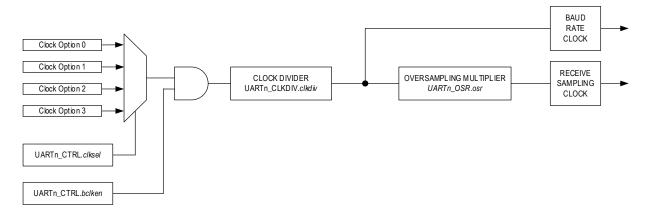
Analog Devices Page 133 of 327

Figure 9-4: Oversampling Example

Whenever *UARTn_CLKDIV.clkdiv* < 16 (i.e., division rate less than 8.0), OSR is not used, and the oversampling rate is adjusted to full sampling by the hardware. In full sampling, the receive input is sampled on every clock cycle regardless of the OSR setting.

Note: For 9600 baud low-power operation, the dual-edge sampling mode must be enabled (UARTn_CTRL.desm = 1).

9.8 Baud Rate Generation


The baud rate is determined by the selected UART clock source and the value of the clock divisor. Multiple clock sources are available for each UART instance. See *Table 9-1* for available clock sources.

Note: Chang the clock source only between data transfers to avoid corrupting an ongoing data transfer.

9.8.1 UART Clock Sources

Standard UART instances operate only in *ACTIVE* and *SLEEP*. Standard UART instances can only wake the device from *SLEEP*. Figure 9-5 shows the baud rate generation path for standard UARTs.

Figure 9-5: UART Baud Rate Generation

9.8.2 Baud Rate Calculation

The standard UART transmit and receive circuits share a common baud rate clock, which is the selected UART clock source divided by the clock divisor. Similarly, the low-power UARTs support a 0.5 fractional clock divisor when *UARTn_CTRL.fdm* is set to 1. *Equation 9-2* should be used for calculating baud rates for *ACTIVE* and *SLEEP*. *Equation 9-3* is used for LPUARTs operating in *BACKUP* and *DEEPSLEEP* and requires setting *UARTn_CTRL.fdm* to 1. This allows for greater accuracy when operating at very low baud rates and finer granularity for the oversampling rate.

Analog Devices Page 134 of 327

Equation 9-2: UART Baud Rate Equation (UARTn_CTRL.fdm = 0)

$$UARTn_CLKDIV.clkdiv = INT \left[\frac{f_{UART_CLK}}{Baud\ rate} \right]$$

$$iff_{UART_CLK}\%$$
 Baud rate $> \frac{Baud\ rate}{2}$ or $UARTn_CLKDIV.clkdiv = 0$, then $UARTn_CLKDIV.clkdiv + 1$

Equation 9-3: Low-Power UART Baud Rate Equation With FDM Enabled (UARTn CTRL.fdm = 1)

$$UARTn_CLKDIV.clkdiv = INT \left[\frac{f_{UART_CLK}}{Baud\ rate} \times 2 \right]$$

$$if f_{UART_CLK} \% \ Baud \ rate > \frac{Baud \ rate}{2} \ or \ UARTn_CLKDIV.clkdiv = \ 0, then \ UARTn_CLKDIV.clkdiv + 1$$

For example, in a case where the UART clock is PCLK (50MHz), and the desired baud rate is 115,200bps, calculate the *UARTn CLKDIV.clkdiv* field as follows:

$$UARTn_CLKDIV.clkdiv = INT\left[\frac{50,000,000}{115,200}\right] = 434$$

For a low-power UART with AOD_CLK (PCLK = 50MHz) selected as the clock source, the desired baud rate is 115,200bps, GCR_PCLKDIV.aon_clkdiv = 3, UARTn_CTRL.fdm = 0, and calculate the UARTn_CLKDIV.clkdiv field as follows:

$$AOD_CLK = \frac{50,000,000}{4 \times 2^3} = 1,562,500$$

$$UARTn_CLKDIV.clkdiv = INT \left[\frac{1,562,500}{115,200} \right] = 13$$

IMPORTANT: UARTn_CLKDIV.clkdiv must be greater than the selected OSR setting. In general, a *UARTn_OSR.osr* setting of 5 is sufficient for most applications.

9.9 Low-Power Receiver Operation

The LPUARTs can be configured to receive up to 9600 baud in *DEEPSLEEP* and *BACKUP*. If a valid frame is received, the receive FIFO is loaded, and the receive FIFO level is incremented. If enabled, the wake-up conditions in *Table 9-6* wake the device from the low-power mode to *ACTIVE*.

The LPUARTs support FDM (*UARTn_CTRL.fdm* = 1), allowing greater accuracy when operating at very low baud rates and finer granularity for the oversampling rate. If *UARTn_CLKDIV.clkdiv* is less than 16, OSR is not used, and the receive signal is sampled on the first clock edge. Dual-edge sampling is supported by setting *UARTn_CTRL.desm* to 1.

Table 9-5 uses Equation 9-3 to calculate the UARTn_CLKDIV.clkdiv settings and possible OSR settings for LPUART operation with FDM enabled(UARTn_CTRL.fdm = 1).

Table 9-5: Slow Baud Rate Generation Example (FDM = 1)

Clock Source	Baud	UARTn_CLKDIV.clkdiv	UARTn_OSR.osr settings
	9,600	6	N/A (1x)
	7,200	9	N/A (1x)
	4,800	13	N/A (1x)
ERTCO	2,400	27	0: 8×
		27	1: 12×
			0: 8×
	1,800	36	1: 12×
			2: 16×

Analog Devices Page 135 of 327

Clock Source	Baud	UARTn_CLKDIV.clkdiv	UARTn_OSR.osr settings
			0: 8×
			1: 12×
	1,200	54	2: 16×
			3: 20×
			4: 24×

The following steps configure the LPUART for operation at 9,600 baud in low-power modes.

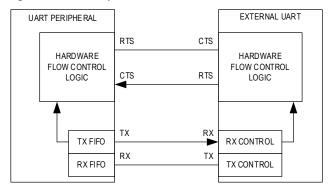
- 1. Enable the LPUART for operation in DEEPSLEEP and BACKUP by setting MCR CLKDIS.lpuart0 to 0.
- 2. Configure the required LPUART pins for use by enabling each pin using the MCR_LPPIOCTRL register.
 - a. Enable the transmit pin by setting MCR_LPPIOCTRL.lpuartO_tx to 1.
 - b. Enable the receive pin by setting MCR LPPIOCTRL.lpuart0 rx to 1.
 - c. If using hardware flow control, enable RTS and CTS by setting the MCR_LPPIOCTRL.lpuart0_rts and MCR_LPPIOCTRL.lpuart0_cts fields to 1.
- 3. Disable the baud clock by clearing *UARTn_CTRL.bclken* to 0.
 - a. Read UARTn_CTRL.bclkrdy until it is 0.
- 4. Set PWRSEQ_LPCN.ertco_en to 1 to enable the ERTCO.
- 5. Set UARTn CTRL.ucagm to 1.
- 6. Set *UARTn CTRL.bclksrc* to 2 to select the ERTCO source.
- 7. Enable FDM by setting UARTn_CTRL.fdm to 1.
- 8. Set UARTn_CLKDIV.clkdiv to 6 as calculated in Table 9-5.
- 9. Set UARTn_CTRL.desm to 1 to enable receive sampling on both the rising and falling edge.
- 10. Enable the LPUART as a wake-up source during low-power modes by:
 - a. Set PWRSEQ_LPPWKEN.lpuart0 to 1.
 - b. Set GCR_PM.lpuart0_we to 1.
- 11. Clear all the wake-up flags shown in Table 9-6.
- 12. Choose the desired wake-up condition from Table 9-6 and set the corresponding wake-up enable field to 1.
 - a. For example, to wake on the first byte received, set *UARTn_WKEN.rx_ne* to 1.
- 13. Re-enable the baud clock by setting UARTn_CTRL.bclken to 1.
- 14. Read the UARTn_CTRL.bclkrdy field until it reads 1.
- 15. Enter the desired low-power mode.

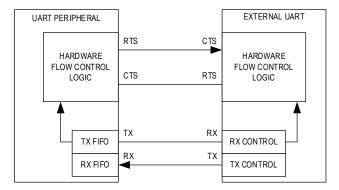
9.9.1 Low-Power UART Wake-Up Conditions

Table 9-6 shows the wake-up conditions for low-power UARTs when FDM is enabled (UARTn_CTRL.fdm = 1).

Table 9-6: MAX32670/MAX32671 Wakeup Events

Receive FIFO Condition	Wake-Up Flag	Wake-Up Enable	Low-Power Peripheral Wake-Up Flag	Low-Power Peripheral Wake-Up Enable	Power Management Wake-Up Enable
Threshold	UARTn_WKFL rx_thd	UARTn_WKEN rx_thd			
Full	UARTn_WKFL rx_full	UARTn_WKEN rx_full	PWRSEQ_LPPWKST.lpuart0	PWRSEQ_LPPWKEN.lpuart0	GCR_PM.lpuart0_we
Not Empty	UARTn_WKFL rx_ne	UARTn_WKEN rx_ne			


Analog Devices Page 136 of 327



9.10 Hardware Flow Control

The optional HFC uses two additional pins, CTS and RTS, as a handshaking protocol to manage UART communications. For full-duplex operation, the RTS output pin on the peripheral is connected to the CTS input pin on the external UART, and the CTS input pin on the peripheral is connected to the RTS output pin on the external UART, as shown in *Figure 9-6*.

Figure 9-6: HFC Physical Connection

EXTERNAL UART RECEIVE

EXTERNAL UART TRANSMIT

A UART transmitter waits for the external device to assert its CTS pin in HFC operation. When CTS is asserted, the UART transmitter sends data to the external device. The external device keeps CTS asserted until it is unable to receive additional data, typically because the external device's receive FIFO is full. The external device then deasserts CTS until the device can receive more data. The external device then asserts CTS again, allowing additional data to be sent.

The peripheral hardware or software can fully automate HFC by directly monitoring the CTS input signal and controlling the RTS output signal.

9.10.1 Automated HFC

Setting *UARTn_CTRL.hfc_en* = 1 enables automated HFC. When automated HFC is enabled, the hardware manages the CTS and RTS signals. The deassertion of the RTS signal is configurable using the *UARTn_CTRL.rtsdc* field:

- UARTn_CTRL.rtsdc = 0: Deassert RTS when UARTn_STATUS.rx_lvl = C_RX_FIFO_DEPTH
- UARTn CTRL.rtsdc = 1: Deassert RTS while UARTn STATUS.rx IvI ≥= UARTn CTRL.rx thd val

The transmitter continues to send data as long as the CTS signal is asserted and there is data in the transmit FIFO. If the receiver deasserts the CTS pin, the transmitter finishes transmitting the current character and then waits until the CTS pin state is asserted before continuing transmission. *Figure 9-7* shows the state of the CTS pin during a transmission under automated HFC.

Automated HFC does not generate interrupt events related to the state of the transmit FIFO or the receive FIFO. The software must handle FIFO management. See *Interrupt Events* for additional information.

Analog Devices Page 137 of 327

CTS DEASSERTED TRANSMIT PAUSES DURING DATA TRANSMIT UNTIL RECEIVER TRANSMIT FIFO IS NOT EMPTY. EXTERNAL RECEIVER TRANSMITTER FINISHES ASSERTS CTS FIFO IS EMPTY, TRANSMIT RESUMES WHEN DATA DATA IN PROGRESS AND WRITTEN TO RECEIVER ASSERTS CTS TRANSMIT STOPS STOPS TRANSMITTING FIFO UARTn_STATUS.tx_lvl = 8 UARTn_STATUS.tx_lvl = 7 UARTn_STATUS.tx_lvl = 6 UARTn_STATUS.tx_lvl = 5 UARTn_STATUS.tx_lvl = 4 $UARTn_STATUS.tx_lvl = 3$ $UARTn_STATUS.tx_lvl = 2$ UARTn_STATUS.tx_lvl = 1 $UARTn_STATUS.tx_lvl = 0$ FIFO WRITE UARTn_PNR. d s UARTn TXPEEK.data DATA[0] DATAI 11 DATA[2] DATA[3] DATA[4] DATA[5] UARTn_STATUS.tx_em

Figure 9-7: HFC Signaling for Transmitting to an External Receiver

9.10.2 Software-Controlled HFC

Software-controlled HFC requires the software to manually control the RTS output pin and monitor the CTS input pin. To use the software-controlled HFC, disable the automated HFC by setting the *UARTn_CTRL.hfc_en* field to 1. Additionally, the software should enable CTS sampling (*UARTn_CTRL.cts_dis* = 0) if performing software-controlled HFC.

9.10.2.1 RTC/CTS Handling for Application-Controlled HFC

The software can manually monitor the CTS pin state by reading the field *UARTn_PNR.cts*. The software can manually set the state of the RTS output pin and read the current state of the RTS output pin using the field *UARTn_PNR.rts*. The software must manage the state of the RTS pin when performing software-controlled HFC.

Interrupt support for CTS input signal change events is supported even when automated HFC is disabled. The software can enable the CTS interrupt event by setting the <code>UARTn_INT_EN.cts_ev</code> field to 1. The hardware sets the CTS signal change interrupt flag any time the CTS pin state changes. The software must clear this interrupt flag manually by writing 1 to the <code>UARTn_INT_FL.cts_ev</code> field.

Note: CTS pin state monitoring is disabled whenever the UART baud clock is disabled (UARTn_CTRL.bclken = 0). The software must enable CTS pin monitoring by setting the field UARTn_CTRL.cts_dis to 0 after enabling the baud clock if CTS pin state monitoring is required.

Analog Devices Page 138 of 327

9.11 UART Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own independent set of registers, shown in *Table 9-7*. Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERALO_CTRL and PERIPHERAL1 CTRL for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

All registers and fields apply to UART and LPUART instances unless specified otherwise.

Table 9-7: UART/LPUART Register Summary

Offset	Register	Name
[0x0000]	UARTn_CTRL	UART Control Register
[0x0004]	UARTn_STATUS	UART Status Register
[8000x0]	UARTn_INT_EN	UART Interrupt Enable Register
[0x000C]	UARTn_INT_FL	UART Interrupt Flag Register
[0x0010]	UARTn_CLKDIV	UART Clock Divisor Register
[0x0014]	UARTn_OSR	UART Oversampling Control Register
[0x0018]	UARTn_TXPEEK	UART Transmit FIFO
[0x001C]	UARTn_PNR	UART Pin Control Register
[0x0020]	UARTn_FIFO	UART FIFO Data Register
[0x0030]	UARTn_DMA	UART DMA Control Register
[0x0034]	UARTn_WKEN	UART Wake-up Interrupt Enable Register
[0x0038]	UARTn_WKFL	UART Wake-up Interrupt Flag Register

9.11.1 Register Details

Table 9-8: UART Control Register

UART Co	ntrol			UARTn_CTRL	[0x0000]		
Bits	Field	Access	Reset	Description			
31:23	-	DNM	0	Reserved			
22	desm	R/W	0	Receive Dual Edge Sampling Mode			
				LPUART instances only. This field is reserved	in standard UART instances.		
				0: Sample receive input signal on clock risi	ng edge only.		
				1: Sample receive input signal on both risir	ng and falling edges.		
21	fdm	R/W	0	Fractional Division Mode			
				LPUART instances only. This field is reserved in standard UART instances.			
				0: Baud rate divisor is an integer.			
				1: Baud rate divisor supports 0.5 division resolution.			
20	ucagm	R/W	0	UART Clock Auto Gating Mode			
				Note: Software must set this field to 1 for pro	pper operation.		
				0: No gating.			
				1: UART clock is paused during transmit an	d receive idle states.		

Analog Devices Page 139 of 327

UART Cor	ntrol			UARTn_CTRL	[0x0000]		
Bits	Field	Access	Reset	Description			
19	bclkrdy	R	0	Baud Clock Ready 0: Baud clock not ready. 1: Baud clock ready.			
18	dpfe_en	R/W	0	Data/Parity Bit Frame Error Detection Enable LPUART instances only. This field is reserved in standard UART instances. 0: Disable. Do not detect receive frame errors between the start bit and stop bit.			
				1: Enable. Detect frame errors when received			
17:16	bclksrc	R/W	0	Baud Clock Source This field selects the baud clock source. See each UART instance.	Table 9-1 for available clock options for		
				0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3.			
15	bclken	R/W	0	Baud Clock Enable 0: Disabled. 1: Enabled.			
14	rtsdc	R	0	HFC RTS Deassert Condition 0: Deassert RTS when the receive FIFO level = C_RX_FIFO_DEPTH (FIFO full). 1: Deassert RTS while the receive FIFO level >= UARTn_CTRL.rx_thd_val.			
13	hfc_en	R/W	0	HFC Enable 0: Disabled. 1: Enabled.			
12	stopbits	R/W	0	Number of Stop Bits 0: 1 stop bit. 1: 1.5 stop bits for 5-bit mode or 2 stop bits for 6/7/8-bit mode.			
11:10	char_size	R/W	0	1: 1.5 stop bits for 5-bit mode or 2 stop bits for 6/7/8-bit mode. Character Length 0: 5 bits. 1: 6 bits. 2: 7 bits. 3: 8 bits.			
9	rx_flush	R/W10	0	Receive FIFO Flush Write 1 to flush the receive FIFO. This bit always reads 0. 0: Normal operation. 1: Flush FIFO.			
8	tx_flush	R/W10	0	Transmit FIFO Flush Write 1 to flush the transmit FIFO. This bit always reads 0. 0: Normal operation. 1: Flush FIFO.			
7	cts_dis	R/W	1	CTS Sampling Disable 0: Enabled. 1: Disabled.			

Analog Devices Page 140 of 327

UART Co	ntrol			UARTn_CTRL	[0x0000]	
Bits	Field	Access	Reset	Description		
6	par_md	R/W	0	Parity Value Select		
				0: Parity calculation is based on the number	er of 1 bits (mark).	
				1: Parity calculation is based on the number	er of 0 bits (space).	
5	par_eo	R/W	0	Parity Odd/Even Select		
				0: Even parity.		
				1: Odd parity.		
4	par_en	R/W	0	Transmit Parity Generation Enable		
				0: Parity transmission disabled.		
				1: Parity bit is calculated and transmitted a	ofter the last character bit.	
3:0	rx_thd_val	R/W	0	Receive FIFO Threshold		
				Valid settings are from 1 to C_RX_FIFO_DEPT	гн.	
				0: Reserved.		
				1: 1.		
				2: 2.		
				3: 3.		
				4: 4.		
				5: 5.		
				6: 6.		
				7: 7.		
				8: 8.		
				9 - 15: Reserved.		

Table 9-9: UART Status Register

UART Sta	UART Status			UARTn_STATUS	[0x0004]	
Bits	Name	Access	Reset	Description		
31:16	=	RO	0	Reserved		
15:12	tx_lvl	R	0	Transmit FIFO Level		
				This field is the number of characters in the t	ransmit FIFO.	
				0 - 8: Number of bytes in the transmit FIFO).	
				9 - 15: Reserved.		
11:8	rx_lvl	R	0	Receive FIFO Level		
				This field is the number of characters in the r	eceive FIFO.	
				0 - 8: Number of bytes in the receive FIFO.		
				9 - 15: Reserved.		
7	tx_full	R	0	Transmit FIFO Full		
				0: Not full.		
				1: Full.		
6	tx_em	R	1	Transmit FIFO Empty		
				0: Not empty.		
				1: Empty.		
5	rx_full	R	0	Receive FIFO Full		
				0: Not full.		
				1: Full.		

Analog Devices Page 141 of 327

UART Sta	itus			UARTn_STATUS	[0x0004]
Bits	Name	Access	Reset	Description	
4	rx_em	R	1	Receive FIFO Empty	
				0: Not empty.	
				1: Empty.	
3:2	-	RO	0	Reserved	
1	rx_busy	R	0	Receive Busy	
				0: UART is not receiving a character.	
				1: UART is receiving a character.	
0	tx_busy	R	0	Transmit Busy	
				0: UART is not transmitting data.	
				1: UART is transmitting data.	

Table 9-10: UART Interrupt Enable Register

UART Int	errupt Enable Reg	ister		UARTn_INT_EN	[0x0008]
Bits	Name	Access	Reset	Description	
31:7	-	RO	0	Reserved	
6	tx_he	R/W	0	Transmit FIFO Half-Empty Event Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
5	tx_ob	R/W	0	Transmit FIFO Almost Empty	
				0: Disabled.	
				1: Enabled.	
4	rx_thd	R/W	0	Receive FIFO Threshold Event Interrupt Ena	ble
				0: Disabled.	
				1: Enabled.	
3	rx_ov	R/W	0	Receive FIFO Overrun Event Interrupt Enabl	e
				0: Disabled.	
				1: Enabled.	
2	cts_ev	R/W	0	CTS Signal Change Event Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
1	rx_par	R/W	0	Receive Parity Event Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
0	rx_ferr	R/W	0	Receive Frame Error Event Interrupt Enable	
				0: Disabled.	
				1: Enabled.	

Table 9-11: UART Interrupt Flag Register

UART Interrupt Flag				UARTn_INT_FL [0x000C]	
Bits	Name	Access	Reset	Description	
31:7	-	RO	0	Reserved	
6	tx_he	R/W1C	0	Transmit FIFO Half-Empty Interrupt Flag	
5	tx_ob	R/W1C	0	Transmit FIFO Almost Empty Interrupt Flag	

Analog Devices Page 142 of 327

UART Interrupt Flag				UARTn_INT_FL	[0x000C]
Bits	Name	Access	Reset	Description	
4	rx_thd	R/W1C	0	Receive FIFO Threshold Interrupt Flag	
3	rx_ov	R/W1C	0	Receive FIFO Overrun Interrupt Flag	
2	cts_ev	R/W1C	0	CTS Signal Change Interrupt Flag	
1	rx_par	R/W1C	0	Receive Parity Error Interrupt Flag	
0	rx_ferr	R/W1C	0	Receive Frame Error Interrupt Flag	

Table 9-12: UART Clock Divisor Register

UART Clock Divisor				UARTn_CLKDIV	[0x0010]
Bits Name Access Reset			Reset	Description	
31:20	=	RO	0	Reserved	
19:0	clkdiv	R/W	0	Baud Rate Divisor	
				This field sets the divisor to generate the baud tick from the baud clock. For LPUART instances, if <i>UARTn_CTRL.fdm</i> = 1, the fractional divisors are in increments of 0.5. The over-sampling rate must be no greater than this divisor. See <i>Baud Rate Generation</i> for information on how to use this field.	

Table 9-13: UART Oversampling Control Register

UART Ov	ersampling Co	ntrol		UARTn_OSR	[0x0014]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2:0	osr	R/W	0	Over Sampling Rate	
				LPUARTs with FDM enabled (UARTn_CTRL.fd	lm = 1):
				0: 8 ×	
				1: 12 ×	
				2: 16 ×	
				3: 20 ×	
				4: 24 ×	
				5: 28 ×	
				6: 32 ×	
				7: 36 ×	
				Note: If UARTn_CLKDIV.clkdiv is less than 16, and this field's setting is ignored.	the hardware samples on every clock cycle
				For standard UARTs and LPUARTs with FDM	disabled (<i>UARTn_CTRL.fdm</i> = 0):
				0: 128×	
				1: 64 ×	
				2: 32 ×	
				3: 16 ×	
				4: 8 ×	
				5: 4 ×	
				6 - 7: Reserved	

Analog Devices Page 143 of 327

Table 9-14: UART Transmit FIFO Register

UART Transmit FIFO				UARTn_TXPEEK	[0x0018]
Bits	Name	Access	Reset	Description	
31:8	=	RO	0	Reserved	
7:0	data	RO	0	Transmit FIFO Data	
				Read the transmit FIFO next data without affecting the contents of the transmit FIFO. If there are no entries in the transmit FIFO, this field reads 0.	
				Note: The parity bit is available from this fiel	d.

Table 9-15: UART Pin Control Register

UART Pin Control					UARTn_PNR	[0x001C]
Bits	Name	Access	Res	et	Description	
31:2	-	RO	0)	Reserved	
1	rts	R/W	1		RTS Pin Output State 0: RTS signal is driven to 0. 1: RTS signal is driven to 1.	
0	cts	RO	1		CTS Pin State This field returns the current sampled state of the control of the	of the GPIO associated with the CTS signal.

Table 9-16: UART Data Register

UART Da	UART Data			UARTn_FIFO	[0x0020]		
Bits	Name	Access	Rese	et Description			
31:9	-	RO	0	Reserved			
8	rx_par	R	0	Receive FIFO Byte Parity If the parity feature is disabled, this bit always	Receive FIFO Byte Parity If the parity feature is disabled, this bit always reads 0.		
				If a parity error occurred during the reception of the character at the output end of the receive FIFO (returned by reading the <code>UARTn_FIFO.data</code> field), this bit reads 1; otherwise, it reads 0.			
7:0	data	R/W	0	Transmit/Receive FIFO Data	Transmit/Receive FIFO Data		
				Writing to this field loads the next character is not full.	Writing to this field loads the next character into the transmit FIFO if the transmit FIFO is not full.		
				Reading from this field returns the next char receive FIFO is not empty. If the receive FIFO			
				For character widths less than 8, the unused is loaded, and the unused high bit(s) read 0 or	` '		

Table 9-17: UART DMA Register

UART DMA				UARTn_DMA	[0x0030]
Bits	Name	Access	Reset	Description	
31:10	=	RO	0	Reserved	
9	rx_en	0	0	Receive DMA Channel Enable	
				0: Disabled.	
				1: Enabled.	

Analog Devices Page 144 of 327

UART DIV	UART DMA			UARTn_DMA [0x0030]	
Bits	Name	Access	Reset	Description	
8:5	rx_thd_val	0	0	Receive FIFO Level DMA Threshold If UARTn_STATUS.rx_lvl > UARTn_DMA.rx_thd_val, then the receive FIFO DMA interface sends a signal to the DMA indicating characters are available in the UART receive FIFO to transfer to memory.	
4	tx_en	R/W	0	Transmit DMA Channel Enable 0: Disabled. 1: Enabled.	
3:0	tx_thd_val	R/W	0	Transmit FIFO Level DMA Threshold If UARTn_STATUS.tx_IvI < UARTn_DMA.tx_th signal to the DMA indicating the UART transmemory.	

Table 9-18: UART Wake-up Enable

UART Wake-up Enable				UARTn_WKEN	[0x0034]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	rx_thd	R/W	0	Receive FIFO Threshold Wake-up Event	t Enable
				0: Disabled.	
				1: Enabled.	
1	rx_full	R/W	0	Receive FIFO Full Wake-up Event Enabl	le
				0: Disabled.	
				1: Enabled.	
0	rx_ne	R/W	0	Receive FIFO Not Empty Wake-up Even	nt Enable
				0: Disabled.	
				1: Enabled.	

Table 9-19: UART Wake-up Flag Register

UART Wa	ake-up Flag			UARTn_WKFL	[0x0038]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	rx_thd	R/W	0	Receive FIFO Threshold Wake-up Event	
				0: Disabled.	
				1: Enabled.	
1	rx_full	R/W	0	Receive FIFO Full Wake-up Event	
				0: Disabled.	
				1: Enabled.	
0	rx_ne	R/W	0	Receive FIFO Not Empty Wake-up Event	t .
				0: Disabled.	
				1: Enabled.	

Analog Devices Page 145 of 327

10. I²C Controller/Target Serial Communications Peripheral

The I^2C peripherals can be configured as either an I^2C controller or an I^2C target at standard data rates. For simplicity, I2Cn is used throughout this section to refer to any of the I^2C peripherals.

For detailed information on I²C bus operation, refer to Analog Devices Application Note 4024 "SPI/I²C Bus Lines Control Multiple Peripherals" at https://www.maximintegrated.com/en/app-notes/index.mvp/id/4024.

10.1 I²C Controller/Target Features

Each I²C controller/target is compliant with the I²C Bus Specification and includes the following features:

- Communicates through a serial data bus (SDA) and a serial clock line (SCL).
- Operates as either a controller or target device as a transmitter or receiver.
- Supports I²C Standard Mode, Fast Mode, Fast Mode Plus, and High Speed (Hs) Mode.
- Transfers data at rates up to:
 - 100kbps in Standard Mode.
 - 400kbps in Fast Mode.
 - 1Mbps in Fast Mode Plus.
 - 3.4Mbps in Hs Mode.
- Supports multicontroller systems, including support for arbitration and clock synchronization for Standard Mode, Fast Mode, and Fast Mode Plus.
- Supports 7- and 10-bit addressing.
- Supports RESTART condition.
- Supports clock stretching.
- Provides transfer status interrupts and flags.
- Provides DMA data transfer support.
- Supports I²C timing parameters fully controllable through software.
- Provides glitch filter and Schmitt trigger hysteresis on SDA and SCL.
- Provides control, status, and interrupt events for maximum flexibility.
- Provides independent 8-byte receive FIFO and 8-byte transmit FIFO.
- Provides transmit FIFO preloading.
- Provides programmable interrupt threshold levels for the transmit and receive FIFO.

10.2 Instances

The three instances of the peripheral are shown in *Table 10-1*. The table lists the alternate function names of the SDA and SCL signals for each of the I^2 C peripherals.

Table 10-1: MAX32670/MAX32671 I²C Peripheral Pins

I ² C Instance	Alternate Function y = Alternate Function Number (A = AF1, B = AF2, C = AF2, D = AF3, E = AF4)*
12C0	I2C0y_SCL
1200	I2C0y_SDA
I2C1	I2C1y_SCL
12C1	I2C1y_SDA
I2C2	I2C2y_SCL
	I2C2y_SDA

^{*} Refer to the device data sheet for alternate function and port pin mapping. Not all peripherals are available in all packages.

Analog Devices Page 146 of 327

10.3 I²C Overview

10.3.1 I²C Bus Terminology

Table 10-2 contains terms and definitions used in this chapter for the I²C bus terminology.

Table 10-2: I²C Bus Terminology

Term	Definition
Transmitter	The device sending data on the bus.
Receiver	The device receiving data from the bus.
Controller	The device that initiates a transfer, generates the clock signal, and terminates a transfer.
Target	The device addressed by a controller.
Multicontroller	More than one controller can attempt to control the bus simultaneously without corrupting the message.
Arbitration	Procedure to ensure that, if more than one controller simultaneously tries to control the bus, only one can do so, and the resulting message is not corrupted.
Synchronization	The procedure to synchronize the clock signals of two or more devices.
Clock Stretching	When a target device holds SCL low to pause a transfer until it is ready. Clock stretching is an optional feature according to the I ² C specification; thus, a controller does not have to support target clock stretching if none of the targets in the system are capable of clock stretching.

10.3.2 I²C Transfer Protocol Operation

The I²C protocol operates over a two-wire bus: a clock circuit (SCL) and a data circuit (SDA). I²C is a half-duplex protocol: only one device is allowed to transmit on the bus at a time.

Each transfer is initiated when the bus controller sends a START or repeated START condition, followed by the I²C target address of the targeted target device plus a read/write bit. The controller can transmit data to the target (a 'write' operation) or receive data from the target (a 'read' operation). Information is sent most-significant bit (MSB) first. Following the target address, the controller indicates a read or write operation and then exchanges data with the addressed target. An acknowledge bit is sent by the receiving device after each byte is transferred. When all necessary data bytes are transferred, a STOP or RESTART condition is sent by the bus controller to indicate the end of the transaction. After the STOP condition is sent, the bus is idle and ready for the next transaction. After a RESTART condition is sent, the same controller begins a new transmission. The number of bytes that can be transmitted per transfer is unrestricted.

10.3.3 START and STOP Conditions

A START condition occurs when a bus controller pulls SDA from high to low while SCL is high, and a STOP condition occurs when a bus controller allows SDA to be pulled from low to high while SCL is high. Because these are unique conditions that cannot occur during normal data transfer, they are used to denote the beginning and end of the data transfer.

10.3.4 Controller Operation

I²C transmit and receive data transfer operations occur through the *I2Cn_FIFO* register. Writes to the register load the transmit FIFO and reads of the register return data from the receive FIFO. If a target sends a NACK in response to a write operation, the I²C controller generates an interrupt. The I²C controller can be configured to issue a STOP condition to free the bus.

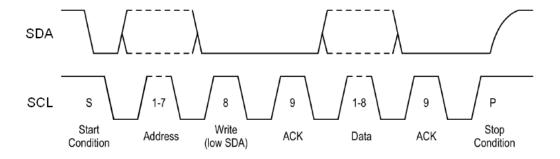
The receive FIFO contains the received data. If the receive FIFO is full or the transmit FIFO is empty, the I²C controller stops the clock to allow time to read bytes from the receive FIFO or load bytes into the transmit FIFO.

Analog Devices Page 147 of 327

10.3.5 Acknowledge and Not Acknowledge

An acknowledge bit (ACK) is generated by the receiver, whether I²C controller or target, after every byte received by pulling SDA low. The ACK bit is how the receiver tells the transmitter that the byte was successfully received, and another byte might be sent.

A Not Acknowledge (NACK) occurs if the receiver does not generate an ACK when the transmitter releases SDA. A NACK is generated by allowing SDA to float high during the acknowledge time slot. The I²C controller can then either generate a STOP condition to abort the transfer or generate a repeated START condition (i.e., send a START condition without an intervening STOP condition) to start a new transfer.


A receiver can generate a NACK after a byte transfer if any of the following conditions occur:

- No receiver is present on the bus with the transmitted address. In that case, no device responds with an acknowledge signal.
- The receiver cannot receive or transmit because it is busy and is not ready to start communication with the controller.
- During the transfer, the receiver receives data or commands it does not understand.
- During the transfer, the receiver is unable to receive any more data.
- If an I²C controller has requested data from a target, it signals the target to stop transmitting by sending a NACK following the last byte it requires.

10.3.6 Bit Transfer Process

Both SDA and SCL circuits are open-drain, bidirectional circuits. Each requires an external pullup resistor that ensures each circuit is high when idle. The I²C specification states that during data transfer, the SDA line can change state only when SCL is low and that SDA is stable and able to be read when SCL is high, as shown in *Figure 10-1*.

Figure 10-1: I²C Write Data Transfer

Analog Devices Page 148 of 327

An example of an I²C data transfer is as follows:

- 1. A bus controller indicates a data transfer to a target with a START condition.
- 2. The controller then transmits one byte with a 7-bit target address and a single read-write bit: a zero for a write or a one for a read.
- 3. During the next SCL clock following the read-write bit, the controller releases SDA. During this clock period, the addressed target responds with an ACK by pulling SDA low.
- 4. The controller senses the ACK condition and begins transferring data. If reading from the target, it floats SDA and allows the target to drive SDA to send data. After each byte, the controller drives SDA low to acknowledge the byte. If writing to the target, the controller drives data on the SDA circuit for each of the eight bits of the byte and then floats SDA during the ninth bit to allow the target to reply with the ACK indication.
- 5. After the last byte is transferred, the controller indicates the transfer is complete by generating a STOP condition. A STOP condition is generated when the controller pulls SDA from low to high while SCL is high.

10.4 Configuration and Usage

10.4.1 SCL and SDA Bus Drivers

SCL and SDA are open-drain signals. In this device, once the I²C peripheral is enabled and the proper GPIO alternate function is selected, the corresponding pad circuits are automatically configured as open-drain outputs.

10.4.2 SCL Clock Configurations

The SCL frequency depends on the values of the I^2C peripheral clock and the values of the external pullup resistor and trace capacitance on the SCL clock line.

Note: An external RC load on the SCL line affects the target SCL frequency calculation.

10.4.3 SCL Clock Generation for Standard, Fast and Fast-Plus Modes

The controller generates the I²C clock on the SCL line. When operating as a controller, the software must configure the I2Cn_CLKHI and I2Cn_CLKLO registers for the desired I²C operating frequency.

The SCL high time is configured in the I²C Clock High Time register field *I2Cn_CLKHI.hi* using *Equation 10-2*. The SCL low time is configured in the I²C Clock Low Time register field *I2Cn_CLKLO.lo* using *Equation 10-3*. Each of these fields is 8 bits. The I²C frequency value is shown in *Equation 10-1*.

Equation 10-1: I²C Clock Frequency

$$f_{I2C_CLK} = \frac{1}{t_{I2C_CLK}}$$
 is either f_{PCLK} or f_{IBRO}

Equation 10-2: I²C Clock High Time Calculation

$$t_{SCL\ HI} = t_{I2C\ CLK} \times (I2Cn_CLKHI.hi + 1)$$

Equation 10-3: I²C Clock Low Time Calculation

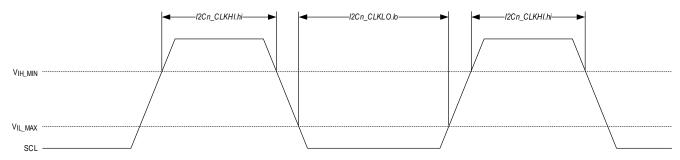

$$t_{SCL\ LO} = t_{I2C\ CLK} \times (I2Cn_CLKLO.lo + 1)$$

Figure 10-2 shows the association between the SCL clock low and high times for Standard Mode, Fast Mode, and Fast Mode Plus I²C frequencies.

Analog Devices Page 149 of 327

Figure 10-2: I²C SCL Timing for Standard, Fast and Fast-Plus Modes

During synchronization, external controllers or external targets can drive SCL simultaneously. This affects the SCL duty cycle. By monitoring SCL, the controller determines if an external controller or target is holding SCL low. In either case, the controller waits until SCL is high before starting to count the number of SCL high cycles. Similarly, if an external controller pulls SCL low before the controller has finished counting SCL high cycles, the controller starts counting SCL low cycles and releases SCL once the time period, *I2Cn_CLKLO.lo*, has expired.

Because the controller does not start counting the high/low time until the input buffer detects the new value, the actual clock behavior is based on many factors, including bus loading, other devices on the bus holding SCL low, and the filter delay time of this device.

10.4.4 SCL Clock Generation for Hs-Mode

The values programmed into the *I2Cn_HSCLK.lo* register and *I2Cn_HSCLK.hi* register must be determined to operate the I²C interface in Hs-Mode at its maximum speed (~3.4MHz). Since the Hs-Mode operation is entered by first using one of the lower speed modes for a preamble, a relevant lower speed mode must also be configured. See *SCL Clock Generation for Standard, Fast and Fast-Plus Modes* for information regarding the configuration of lower speed modes.

10.4.4.1 Hs-Mode Timing

With I²C bus capacitances less than 100pf, the following specifications are extracted from the I²C-bus Specification User Manual Rev. 6 April 2014 https://www.nxp.com/docs/en/user-guide/UM10204.pdf

 $t_{LOW\ MIN}$ = 160ns, the minimum low time for the I²C bus clock.

 $t_{HIGH\ MIN}$ = 60ns, the minimum high time for the I²C bus clock.

 $t_{rCL\ MAX}$ = 40ns, the maximum rise time of the I²C bus clock.

 $t_{fCL\ MAX}$ = 40ns, the maximum fall time of the I²C bus clock.

10.4.4.2 Hs-Mode Clock Configuration

The maximum Hs-Mode bus clock frequency can now be determined. The system clock frequency, f_{SYS_CLK} , must be known. Hs-Mode timing information from $Hs-Mode\ Timing$ must be used.

Equation 10-4: I²C Target SCL Frequency

Desired Target Maximum I^2C Frequency: $f_{SCL} = \frac{1}{t_{SCL}}$.

In Hs-Mode, the analog glitch filter within the device adds a minimum delay of t_{AF_MIN} = 10ns.

Equation 10-5: Determining the I2Cn_HSCLK.lo Register Value

$$I2Cn_HSCLK.lo = MAX \left\{ \left[\left(\frac{t_{LOW_MIN} + t_{FCL_MAX} + t_{I2C_CLK} - t_{AF_MIN}}{t_{I2C_CLK}} \right) \right] - 1, \qquad \frac{t_{SCL}}{t_{I2C_CLK}} - 1 \right\}$$

Analog Devices Page 150 of 327

Equation 10-6: Determining the I2Cn_HSCLK.hi Register Value

$$I2Cn_HSCLK.hi = \left| \left(\frac{t_{HIGH_MIN} + t_{rCL_MAX} + t_{I2C_CLK} - t_{AF_MIN}}{t_{I2C_CLK}} \right) \right| - 1$$

Equation 10-7: The Calculated Frequency of the I²C Bus Clock Using the Results of Equation 10-5 and Equation 10-6

 $Calculated\ Frequency = \big((I2Cn_HS_CLK. hsclk_hi + 1) + (I2Cn_HS_CLK. hsclk_lo + 1) \big) *\ t_{I2C_CLK}$

Table 10-3 shows the I²C bus clock calculated frequencies given different fsys_clk frequencies.

Table 10-3: Calculated I²C Bus Clock Frequencies

f _{SYS_CLK} (MHz)	I2Cn_HSCLK.hi	I2Cn_HSCLK.lo	Calculated Frequency (MHz)
100	4	9	3.3
50	2	4	3.125
25	1	2	2.5

10.4.5 Controller Mode Addressing

After a START condition, the I^2C target address byte is transmitted by the hardware. The I^2C target address is composed of a target address followed by a read/write bit.

Table 10-4: I²C Target Address Format

Target A	ddress Bits	R/W Bit	Description
laiget A	uuress Dits	N/ W DIL	Description
0000	000	0	General Call Address
0000	000	1	START Condition
0000	001	Х	CBUS Address
0000	010	Х	Reserved for different bus format
0000	011	Х	Reserved for future purposes
0000	1xx	Х	HS-mode controller code
1111	1xx	Х	Reserved for future purposes
1111	0xx	х	10-bit target addressing

In 7-bit addressing mode, the controller sends one address byte. First, to address a 7-bit address target, clear the *I2Cn_MSTCTRL.ex_addr_en* field to 0, then write the address to the transmit FIFO formatted as follows, where An is address A6:A0.

Controller writing to target: 7-bit address: [A6 A5 A4 A3 A2 A1 A0 0]

Controller reading from target: 7-bit address: [A6 A5 A4 A3 A2 A1 A0 1]

In 10-bit addressing mode (*I2Cn_MSTCTRL.ex_addr_en* = 1), the first byte the controller sends is the 10-bit target Addressing byte that includes the first two bits of the 10-bit address, followed by a 0 for the R/W bit. That is followed by a second byte representing the remainder of the 10-bit address. If the operation is a write, this is followed by data bytes to be written to the target. If the operation is a read, it is followed by a repeated START. The software then writes the 10-bit address again with a 1 for the R/W bit. This I²C then starts receiving data from the target device.

10.4.6 Controller Mode Operation

The peripheral operates in controller mode when controller mode enable (I2Cn_CTRL.mst_mode) is set to 1. To initiate a transfer, the controller generates a START condition by setting I2Cn_MSTCTRL.start = 1. If the bus is busy, it does not generate a START condition until the bus is available.

Analog Devices Page 151 of 327

A controller can communicate with multiple target devices without relinquishing the bus. Instead of generating a STOP condition after communicating with the first target, the controller generates a Repeated START condition, or RESTART, by setting I2Cn_MSTCTRL.restart = 1. If a transaction is in progress, the peripheral finishes the transaction before generating a RESTART. The peripheral then transmits the target address stored in the transmit FIFO. The I2Cn_MSTCTRL.restart bit is automatically cleared to 0 as soon as the controller begins a RESTART condition.

I2Cn_MSTCTRL.start is automatically cleared to 0 after the controller has completed a transaction and sent a STOP condition.

The controller can also generate a STOP condition by setting I2Cn_MSTCTRL.stop = 1.

If both START and RESTART conditions are enabled simultaneously, a START condition is generated first. Then, at the end of the first transaction, a RESTART condition is generated.

If both RESTART and STOP conditions are enabled simultaneously, a STOP condition is not generated. Instead, a RESTART condition is generated. After the RESTART condition is generated, both bits are cleared.

If START, RESTART, and STOP are all enabled simultaneously, a START condition is first generated. At the end of the first transaction, a RESTART condition is generated. The *I2Cn_MSTCTRL.stop* bit is cleared and ignored.

A target cannot generate START, RESTART, or STOP conditions. Therefore, when controller mode is disabled, the *I2Cn_MSTCTRL.start*, *I2Cn_MSTCTRL.restart*, and *I2Cn_MSTCTRL.starp* bits are all cleared to 0.

For controller mode operation, the following registers should only be configured when either:

- 1. The I²C peripheral is disabled,
 - or
- 2. The I²C bus is guaranteed to be idle/free.

If this peripheral is the only controller on the bus, then changing the registers outside of a transaction (I2Cn_MSTCTRL.start = 0) satisfies this requirement:

- I2Cn CTRL.mst mode
- I2Cn_CTRL.irxm_en
- I2Cn_CTRL.hs_en
- I2Cn RXCTRL1.cnt
- I2Cn_MSTCTRL.ex_addr_en
- I2Cn_CLKLO.lo
- I2Cn_CLKHI.hi
- I2Cn HSCLK.lo
- I2Cn_HSCLK.hi

In contrast to the above set of register fields, the register fields below can be safely (re)programmed at any time:

- All interrupt flags and interrupt enable bits
- I2Cn TXCTRLO.thd val
- I2Cn_RXCTRLO.thd_IvI
- I2Cn_TIMEOUT.scl_to_val
- I2Cn DMA.rx en
- I2Cn_DMA.tx_en
- I2Cn_FIFO.data
- I2Cn MSTCTRL.start
- I2Cn MSTCTRL.restart
- I2Cn_MSTCTRL.stop

Analog Devices Page 152 of 327

10.4.6.1 PC Controller Mode Receiver Operation

When in controller mode, initiating a controller receiver operation begins with the following sequence:

- 1. Write the number of data bytes to receive to the I²C receive count field (I2Cn_RXCTRL1.cnt).
- 2. Write the I²C target address byte to the I2Cn FIFO register with the R/W bit set to 1.
- 3. Send a START condition by setting *I2Cn_MSTCTRL.start* = 1.
- 4. The target address is transmitted by the controller from the *I2Cn_FIFO* register.
- 5. The I^2C controller receives an ACK from the target, and the controller sets the address ACK interrupt flag ($I2Cn_INTFLO.addr_ack = 1$).
- 6. The I²C controller receives data from the target and automatically ACKs each byte. The software must retrieve this data by reading the I2Cn_FIFO register.
- 7. Once <u>I2Cn_RXCTRL1.cnt</u> data bytes are received, the I²C controller sends a NACK to the target and sets the Transfer Done Interrupt Status Flag (<u>I2Cn_INTFL0.done</u> = 1).
- 8. If I2Cn_MSTCTRL.restart or I2Cn_MSTCTRL.stop is set, then the I²C controller sends a repeated START or STOP, respectively.

10.4.6.2 PC Controller Mode Transmitter Operation

When in controller mode, initiating a controller transmitter operation begins with the following sequence:

- 1. Write the I²C target address byte to the I2Cn_FIFO register with the R/W bit set to 0.
- 2. Write the desired data bytes to the *I2Cn_FIFO* register, up to the size of the transmit FIFO. (e.g., If the transmit FIFO size is 8 bytes, the software can write one address byte and seven data bytes before starting the transaction.)
- 3. Send a START condition by setting *I2Cn_MSTCTRL.start* = 1.
- 4. The controller transmits the target address byte written to the *I2Cn_FIFO* register.
- 5. The I^2C controller receives an ACK from the target, and the controller sets the address ACK interrupt flag $(I2Cn_INTFLO.addr_ack = 1)$.
- 6. The I2Cn_FIFO register data bytes are transmitted on the SDA line.
 - a. The I²C controller receives an ACK from the target after each data byte.
 - b. As the transfer proceeds, the software should refill the transmit FIFO by writing to the *I2Cn_FIFO* register as needed.
 - c. If the transmit FIFO goes empty during this process, the controller pauses at the beginning of the byte and waits for the software to either write more data or instruct the controller to send a RESTART or STOP condition.
- 7. Once the software writes all the desired bytes to the *I2Cn_FIFO* register; the software should set either *I2Cn_MSTCTRL*.restart or *I2Cn_MSTCTRL*.stop.
- 8. Once the controller sends all the remaining bytes and empties the transmit FIFO, it sets *I2Cn_INTFL0.done* and proceeds to send out either a RESTART condition if *I2Cn_MSTCTRL.restart* is set or a STOP condition if *I2Cn_MSTCTRL.stop* is set.

10.4.6.3 PC Multicontroller Operation

The I²C protocol supports multiple controllers on the same bus. When the bus is free, two (or more) controllers might try to initiate communication simultaneously. This is a valid bus condition. If this occurs and the two controllers want to transmit different data and/or address different targets, only one controller can remain in controller mode and complete its transaction. The other controller must back off the transmission and wait until the bus is idle. This process by which the winning controller is determined is called bus arbitration.

The controller compares the data being transmitted on SDA to the value observed on SDA to determine which controller wins the arbitration for each address or data bit. If a controller attempts to transmit a 1 on SDA (i.e., the controller lets SDA

Analog Devices Page 153 of 327

float) but senses a 0 instead, then that controller loses arbitration, and the other controller that sent a zero continues with the transaction. The losing controller cedes the bus by switching off its SDA and SCL drivers.

Note: This arbitration scheme works with any number of bus controllers: if more than two controllers begin transmitting simultaneously, the arbitration continues as each controller cedes the bus until only one controller remains transmitting. Data is not corrupted because as soon as each controller realizes it has lost the arbitration, it stops transmitting on SDA, leaving the following data bits sent on SDA intact.

If the I²C controller peripheral detects it has lost the arbitration, it stops generating SCL; sets I2Cn_INTFL0.arb_err; sets I2Cn_INTFL0.tx_lockout, flushing any remaining data in the transmit FIFO; and clears I2Cn_MSTCTRL.start, I2Cn_MSTCTRL.start, and I2Cn_MSTCTRL.stop to 0. As long as the peripheral is not addressed by the winning controller, the I²C peripheral stays in controller mode (I2Cn_CTRL.mst_mode = 1). If, at any time, another controller addresses this peripheral using the address programmed in the I2Cn_SLAVE register, then the I²C peripheral clears I2Cn_CTRL.mst_mode to 0 and begins responding as a target. This can even occur during the same address transmission during which the peripheral lost arbitration.

Note: Arbitration loss is considered an error condition, and like the other error conditions, sets I2Cn_INTFL0.tx_lockout. Therefore, after an arbitration loss, the software needs to clear I2Cn_INTFL0.tx_lockout and reload the transmit FIFO.

Also, in a multicontroller environment, the software does *not* need to wait for the bus to become free before attempting to start a transaction (writing 1 to *I2Cn_MSTCTRL.start*). If the bus is free when *I2Cn_MSTCTRL.start* is set to 1, the transaction begins immediately. If, instead, the bus is busy, then the peripheral:

- 1. Waits for the other controller to complete the transaction(s) by sending a STOP,
- 2. Counts out the bus free time using $t_{BUF} = t_{SCL\ LO}$ (see Equation 10-3), and then
- 3. Sends a START condition and begins transmitting the target address byte(s) in the transmit FIFO, followed by the rest of the transfer.

The I²C controller peripheral is compliant with all bus arbitration and clock synchronization requirements of the I²C specification; this operation is automatic, and no additional programming is required.

10.4.7 Target Mode Operation

When in target mode, the I²C peripheral operates as a target device on the I²C bus and responds to an external controller's requests to transmit or receive data. To configure the I²C peripheral as a target, write the I²Cn_CTRL.mst_mode bit to zero. The controller drives the I²C clock on the bus, so the SCL device pin is driven by the external controller, and I²Cn_STATUS.mst_busy remains a zero. The desired target address must be set by writing to the I²Cn_SLAVE register.

Analog Devices Page 154 of 327

For target mode operation, the following register fields should be configured with the I²C peripheral disabled:

- I2Cn CTRL.mst mode = 0 for target operation.
- I²C target address:
 - Set the target addresses by programming the I2Cn_SLAVE.addr field to the desired address for the device on the bus.
 - For extended addresses, set the I2Cn_SLAVE.ext_addr_en to 1 for 10-bit addressing or 0 for 7-bit addressing.
- I2Cn_CTRL.gc_addr_en
- I2Cn_CTRL.irxm_en
 - The recommended value for this field is 0. Note that a setting of 1 is incompatible with target mode operation with clock stretching disabled (I2Cn CTRL.clkstr dis = 1).
- I2Cn_CTRL.clkstr_dis
- I2Cn_CTRL.hs_en
- I2Cn_RXCTRLO.dnr
 - SMBus/PMBus applications should set this to 0, while other applications should set this to 1.
- I2Cn_TXCTRLO.nack_flush_dis
- I2Cn_TXCTRLO.rd_addr_flush_dis
- I2Cn_TXCTRLO.wr_addr_flush_dis
- I2Cn_TXCTRLO.gc_addr_flush_dis
- I2Cn_TXCTRLO.preload_mode
 - The recommended value is 0 for applications that can tolerate target clock stretching (I2Cn_CTRL.clkstr_dis = 0).
 - ◆ The recommended value is 1 for applications that do not allow target clock stretching (I2Cn_CTRL.clkstr_dis = 1).
- I2Cn CLKHI.hi
 - Applies to target mode when clock stretching is enabled (I2Cn CTRL.clkstr dis = 0)
 - This is used to satisfy $t_{SU;DAT}$ after clock stretching; program it so that the value defined by *Equation 10-2* is $>= t_{SU;DAT(min)}$.
- I2Cn_HSCLK.hi
 - Applies to target mode in Hs Mode when clock stretching is enabled (I2Cn_CTRL.clkstr_dis = 0)
 - This is used to satisfy $t_{SU;DAT}$ after clock stretching during Hs-Mode operation; program it so that the value defined by Equation 10-6 is $>= t_{SU;DAT(min)}$.

Analog Devices Page 155 of 327

In contrast to the above register fields, the following register fields can be safely (re)programmed at any time:

- All interrupt flags and interrupt enables.
- I2Cn_TXCTRL0.thd_val and I2Cn_RXCTRL0.thd_lvl
 - Transmit and receive FIFO threshold levels.
- I2Cn_TXCTRL0.tx_ready_mode
 - Transmit ready (can only be cleared by hardware).
- I2Cn_TIMEOUT.scl_to_val
 - Timeout control.
- I2Cn_DMA.rx_en and I2Cn_DMA.tx_en
 - Transmit and receive DMA enables.
- I2Cn_FIFO.data
 - FIFO access register.

10.4.7.1 Target Transmitter

The device operates as a target transmitter when the received address matches the device target address with the R/W bit set to 1. The controller is then reading from the device target. There two main modes of target transmitter operation: just-in-time mode and preload mode.

10.4.7.1.1 Just-in-Time Target Transmitter

In just-in-time mode, the software waits to write the transmit data to the transmit FIFO until after the controller addresses it for a READ transaction, just in time, to send the data to the controller. This allows the software to defer the determination of what data should be sent until the time of the address match. For example, the transmit data could be based on an immediately preceding I^2C write transaction that requests a certain block of data to be sent. The data could represent the latest, most up-to-date value of a sensor reading. Clock stretching *must* be enabled ($I^2Cn_cTRL.clkstr_dis = 0$) for just-in-time mode operation.

Analog Devices Page 156 of 327

Program flow for target transmit operation in just-in-time mode is as follows:

- 1. With I2Cn_CTRL.en = 0, initialize all relevant registers, including:
 - a. Set the I2Cn_SLAVE.addr field with the desired I2C target addresses.
 - b. Set the I2Cn_SLAVE.ext_addr_en field for either 7-bit or 10-bit addressing.
 - c. Just-in-time mode specific settings:
 - i) I2Cn CTRL. clkstr dis = 0
 - ii) *12Cn TXCTRL0*[5:2] = 0x8
 - iii) I2Cn_TXCTRLO.preload_mode = 0.
 - e. Program I2Cn_CLKHI.hi and I2Cn_HSCLK.hi with appropriate values satisfying tsυ;ρΑτ (and HS tsu;ρΑτ).
- 2. The software sets I2Cn CTRL.en = 1.
 - a. The controller is now listening for its address. For either a transmit (R/W = 1) or receive (R/W = 0) operation, the peripheral responds to its address with an ACK.
 - b. When the address match occurs, the hardware sets I2Cn_INTFL0.addr_match and I2Cn_INTFL0.tx_lockout.
- 3. The software waits for *I2Cn_INTFLO.addr_match* to read 1, either through polling the interrupt flag or setting *I2Cn_INTENO.addr_match* to interrupt the CPU.
- 4. After reading <code>I2Cn_INTFLO.addr_match = 1</code>, the software reads <code>I2Cn_CTRL.read</code> to determine whether the transaction is a transmit (read = 1) or receive (read = 0) operation. In this case, assume read = 1, indicating transmit.
 - a. The hardware holds SCL low until the software clears I2Cn INTFLO.tx lockout and loads data into the FIFO.
- 5. The software clears I2Cn_INTFL0.addr_match and I2Cn_INTFL0.tx_lockout. Now that I2Cn_INTFL0.tx_lockout is 0, the software can begin loading the transmit data into I2Cn_FIFO.
- 6. As soon as there is data in the FIFO, the hardware releases SCL (after counting out *I2Cn_CLKHI.hi*) and sends out the data on the bus.
- 7. While the controller keeps requesting data and sending ACKs, *I2Cn_INTFLO.done* remains 0, and the software should continue to monitor the transmit FIFO and refill it as needed.
 - a. The FIFO level can be monitored synchronously through the transmit FIFO status/interrupt flags or asynchronously by setting I2Cn_TXCTRLO.thd_val and setting the I2Cn_INTENO.tx_thd interrupt.
 - b. If the transmit FIFO ever empties during the transaction, the hardware starts clock stretching and waits for it to be refilled.
- 8. The controller ends the transaction by sending a NACK. Once this happens, the *I2Cn_INTFLO.done* interrupt flag is set, and the software can stop monitoring the transmit FIFO.
 - a. If the software needs to know how many data bytes were transmitted to the controller, it should check the transmit FIFO level as soon as *I2Cn_INTFLO.done* = 1 and use it to determine how many data bytes were successfully sent.

Note: Any data remaining in the transmit FIFO is discarded before the next transmit operation; it is NOT necessary for the software to manually flush the transmit FIFO.

9. The transaction is complete. The software should clear the *I2Cn_INTFLO.done* interrupt flag and clear the *I2Cn_INTFLO.tx_thd* interrupt flag. Return to step 3, waiting on an address match.

Analog Devices Page 157 of 327

10.4.7.1.2 Preload Mode Target Transmit

The other mode of operation for target transmit is preload mode. In this mode, it is assumed that the software knows before the transmit operation what data it should send to the controller. This data is then "preloaded" into the transmit FIFO. Once the address match occurs, this data can be sent out without any software intervention. Preload mode can be used with clock stretching either enabled or disabled, but it is the only option if clock stretching must be disabled.

To use target transmit preload mode:

- 1. With I2Cn CTRL.en = 0, initialize all relevant registers, including:
 - a. Set the I2Cn_SLAVE.addr field with the desired I2C target addresses.
 - b. Set the I2Cn SLAVE.ext addr en field for either 7-bit or 10-bit addressing.
 - c. Preload mode specific settings:
 - i) I2Cn CTRL.clkstr dis = 1
 - ii) $12Cn \ TXCTRLO[5:2] = 0xF$
 - iii) I2Cn_TXCTRLO.preload_mode = 1.
- 2. The software sets I2Cn CTRL.en = 1.
 - a. Even though the controller is enabled, it does not ACK an address match with R/W equal to 1 until the software sets the I2Cn_TXCTRL1.preload_rdy field to 1.
- 3. The software prepares for the transmit operation by loading data into the transmit FIFO, enabling DMA, setting I2Cn_TXCTRLO.thd_val, and setting I2Cn_INTENO.tx_thd interrupt, etc.
 - a. If clock stretching is disabled, an empty transmit FIFO during the transmit operation causes a transmit underrun error. Therefore, the software should take any necessary steps to avoid an underrun *before* setting *I2Cn TXCTRL1.preload rdy* = 1.
 - If clock stretching is enabled, then an empty transmit FIFO does not cause a transmit underrun error.
 However, it is recommended to follow the same preparation steps to minimize the amount of time spent clock stretching, which lets the transaction complete as quickly as possible.
- 4. Once the software has prepared for the transmit operation; it sets I2Cn_TXCTRL1.preload_rdy = 1.
 - a. The controller is now fully enabled and responds with an ACK to an address match.
 - b. The hardware sets <code>I2Cn_INTFLO.addr_match</code> when an address match occurs. <code>I2Cn_INTFLO.tx_lockout</code> is NOT set to 1 and remains 0.
- 5. The software waits for <code>I2Cn_INTFLO.addr_match</code> = 1, either through polling the interrupt flag or by setting <code>I2Cn_INTENO.addr_match</code> to generate an interrupt when the event occurs.
- 6. After seeing <code>I2Cn_INTFLO.addr_match = 1</code>, the software reads <code>I2Cn_CTRL.read</code> to determine if the transaction is a transmit (read = 1) or receive (read = 0) operation. In this case, assume <code>I2Cn_CTRL.read</code>, indicating a transmit.
 - a. The hardware begins sending out the data that is preloaded into the transmit FIFO.
 - b. Once the first data byte is sent, the hardware automatically clears I2Cn TXCTRL1.preload rdy to 0.
- 7. While the controller keeps requesting data and sending ACKs, *I2Cn_INTFLO.done* remains 0, and the software should continue to monitor the transmit FIFO and refill it as needed.
 - a. The FIFO level can be monitored synchronously through the transmit FIFO status/interrupt flags or asynchronously by setting I2Cn_TXCTRLO.thd_val and setting I2Cn_INTENO.tx_thd interrupt.
 - b. If clock stretching is disabled and the transmit FIFO empties during the transaction, the hardware sets \(\begin{align*} \lambda 2Cn_INTFL1.tx_un = 1 \) and sends 0xFF for all following data bytes requested by the controller.
- 8. The controller ends the transaction by sending a NACK, causing the hardware to set the *I2Cn_INTFLO.done* interrupt flag.
 - a. If the transmit FIFO empties simultaneously that the controller indicates the transaction is complete by sending a NACK, this is not considered an underrun event I2Cn_INTFL1.tx_un flag remains 0.
 - b. If the software needs to know how many data bytes are transmitted to the controller, check the transmit FIFO level when the *I2Cn INTFLO.done* flag is set to 1.

Analog Devices Page 158 of 327

- 9. The transaction is complete, the software should "clean up," which includes clearing *I2Cn_INTFLO.done*. Return to step 3 and prepare for the next transaction.
 - a. Any data remaining in the transmit FIFO is not discarded; it is reused for the next transmit operation.
 - i) If this is not desired, the software can flush the transmit FIFO. Flush the transmit and receive FIFOs by writing 0 to I2Cn CTRL.en and the writing 1 to I2Cn CTRL.en.

Once a target starts transmitting from the *I2Cn_FIFO*, detecting an out of sequence STOP, START, or RESTART conditions terminates the current transaction. When a transaction is terminated due to an out of sequence error, *I2Cn_INTFLO.start_err* or *I2Cn_INTFLO.start_err* is set to 1.

If the transmit FIFO is not ready ($I2Cn_TXCTRL1.preload_rdy = 0$) and the I²C controller receives a data read request from the controller, the hardware automatically sends a NACK at the end of the first address byte. The setting of the do not respond field is ignored by the hardware in this case because the only opportunity to send a NACK for an I²C read transaction is after the address byte.

10.4.7.2 Target Receivers

The device operates as a target receiver when the received address matches the device target address with the R/W bit set to 0. The external controller is writing to the target.

Program flow for a receive operation is as follows:

- 1. With I2Cn_CTRL.en = 0, initialize all relevant registers, including:
 - a. Set the I2Cn SLAVE.addr field with the desired I2C target addresses.
 - b. Set the I2Cn_SLAVE.ext_addr_en field for either 7-bit or 10-bit addressing.
- 2. Set *I2Cn_CTRL.en* = 1.
 - a. If an address match with the R/W bit equal to zero occurs, and the receive FIFO is empty, the peripheral responds with an ACK, and the *I2Cn INTFLO.addr match* flag is set.
 - b. If the receive FIFO is not empty, then depending on the value of *I2Cn_RXCTRLO.dnr*, the peripheral NACKs either the address byte (*I2Cn_RXCTRLO.dnr* = 1) or the first data byte (*I2Cn_RXCTRLO.dnr* = 0).
- 3. Wait for I2Cn_INTFLO.addr_match = 1, either by polling or by enabling the wr_addr_match interrupt. Once a successful address match occurs, the hardware sets I2Cn_INTFLO.addr_match = 1.
- 4. Read I2Cn_CTRL.read to determine if the transaction is a transmit (I2Cn_CTRL.read = 1) or a receive (I2Cn_CTRL.read = 0) operation. In this case, assume I2Cn_CTRL.read = 0, indicating receive. The device begins receiving data into the receive FIFO.
- 5. Clear I2Cn_INTFL0.addr_match, and while the controller keeps sending data, I2Cn_INTFL0.done remains 0, and the software should continue to monitor the receive FIFO and empty it as needed.
 - a. The FIFO level can be monitored synchronously through the receive FIFO status/interrupt flags or asynchronously by setting I2Cn_RXCTRLO.thd_IvI and enabling the I2Cn_INTFLO.rx_thd interrupt.
 - b. If the receive FIFO ever fills up during the transaction, then the hardware sets *I2Cn_INTFL1.rx_ov* and then either:
 - If I2Cn_CTRL.clkstr_dis = 0, start clock stretching and wait until the software reads from the receive FIFO, or
 - ii. If I2Cn CTRL.clkstr dis = 1, respond to the controller with a NACK, and the last byte is discarded.
- 6. The controller ends the transaction by sending a RESTART or STOP. Once this happens, the *I2Cn_INTFLO.done* interrupt flag is set, and the software can stop monitoring the receive FIFO.
- 7. Once a target starts receiving into its receive FIFO, detection of an out of sequence STOP, START, or RESTART condition releases the I²C bus to the Idle state, and the hardware sets the I2Cn_INTFLO.start_err field or I2Cn_INTFLO.stop_err field to 1 based on the specific condition.

If the software has not emptied the data in the receive FIFO from the previous transaction by the time a controller addresses it for another write (i.e., receive) transaction, then the controller does *not* participate in the transaction, and no

Analog Devices Page 159 of 327

additional data is written into the FIFO. Although a NACK is sent to the controller, the software can control if the NACK is sent with the initial address match or sent at the end of the first data byte. Setting I2Cn_RXCTRLO.dnr to 1 chooses the former while setting I2Cn_RXCTRLO.dnr to 0 chooses the latter.

10.4.8 Interrupt Sources

The I²C controller has a very flexible interrupt generator that generates an interrupt signal to the interrupt controller on any of several events. On recognizing the I²C interrupt, the software determines the cause of the interrupt by reading the I²C interrupt flags registers *I2Cn INTFLO* and *I2Cn INTFLO*. Interrupts can be generated for the following events:

- Transaction Complete (controller/target).
- Address NACK received from target (controller).
- Data NACK received from target (controller).
- Lost arbitration (controller).
- Transaction timeout (controller/target).
- FIFO is empty, not empty, or full to a configurable threshold level (controller/target).
- Transmit FIFO locked out because it is being flushed (controller/target)
- Out of sequence START and STOP conditions (controller/target).
- Sent a NACK to an external controller because the transmit or receive FIFO was not ready (target).
- Address ACK or NACK received (controller).
- Incoming address match (target)
- Transmit underflow or receive overflow (target).

Interrupts for each event can be enabled or disabled by setting or clearing the corresponding bit in the *I2Cn_INTENO* or *I2Cn_INTEN1* interrupt enable register.

Note: Disabling the interrupt does not prevent the corresponding flag from being set by the hardware but does prevent an interrupt when the interrupt flag is set.

Note: Before enabling an interrupt, the status of the corresponding interrupt flag should be checked and, if necessary, serviced or cleared, preventing a previous interrupt event from interfering with a new I^2C communications session.

10.4.9 Transmit FIFO and Receive FIFO

There are separate transmit and receive FIFOs. Both are accessed using the FIFO data register *I2Cn_FIFO*. Writes to this register enqueue data into the transmit FIFO. Writes to a full transmit FIFO has no effect. Reads from *I2Cn_FIFO* dequeue data from the receive FIFO. Writes to a full transmit FIFO has no effect and reads from an empty receive FIFO return 0xFF.

The transmit and receive FIFO only read or write one byte at a time. Transactions greater than 8 bits can still be performed, however. A 16- or 32-bit write to the transmit FIFO stores just the lowest 8 bits of the write data. A 16- or 32-bit read from the receive FIFO has the valid data in the lowest 8 bits and zeros in the upper bits. In any case, the transmit and receive FIFOs only accept 8 bits at a time for either read or write.

To offload work from the CPU, the DMA can read and write to each FIFO. See *DMA Control* for more information on configuring the DMA.

During a receive transaction (which during controller operation is a READ, and during target operation is a WRITE), received bytes are automatically written to the receive FIFO. The software should monitor the receive FIFO level and unload data from it as needed by reading <code>I2Cn_FIFO</code>. If the receive FIFO becomes full during a controller mode transaction, then the hardware sets the <code>I2Cn_INTFL1.rx_ov</code> the <code>I2Cn_INTFL1.rx_ov</code> bit, and one of two things occur depending on the value of <code>I2Cn_CTRL.clkstr_dis</code>:

• If clock stretching is enabled (I2Cn_CTRL.clkstr_dis = 0), then the hardware stretches the clock until the software makes space available in the receive FIFO by reading I2Cn_FIFO. Once space is available, the hardware moves the

Analog Devices Page 160 of 327

data byte from the shift register into the receive FIFO, the SCL device pin is released, and the controller is free to continue the transaction.

• If clock stretching is disabled (I2Cn_CTRL.clkstr_dis = 1), the hardware responds to the controller with a NACK, and the data byte is lost. The controller can return the bus to idle with a STOP condition or start a new transaction with a RESTART condition.

During a transmit transaction (which during controller operation is a WRITE, and during target operation is a READ), either the software or the DMA can provide data to be transmitted by writing to the transmit FIFO. Once the peripheral finishes transmitting each byte, it removes it from the transmit FIFO and, if available, begins transmitting the next byte.

Interrupts can be generated for the following FIFO status:

- Transmit FIFO level less than or equal to the threshold.
- Receive FIFO level greater than or equal to the threshold.
- Transmit FIFO underflow.
- Receive FIFO overflow.
- Transmit FIFO locked for writing.

Both the receive FIFO and transmit FIFO are flushed when the I2Cn port is disabled by clearing I2Cn_CTRL.en to 0. While the peripheral is disabled, writes to the transmit FIFO have no effect and reads from the receive FIFO return 0xFF.

The transmit FIFO and receive FIFO can be flushed by setting the transmit FIFO flush bit (*I2Cn_TXCTRLO.flush*=1) or the receive FIFO flush bit (*I2Cn_RXCTRLO.flush*=1), respectively. In addition, under certain conditions, the transmit FIFO is automatically locked by the hardware and flushed so stale data is not unintentionally transmitted. The transmit FIFO is automatically flushed and writes locked out from the software under the following conditions:

- General Call Address Match: Automatic flushing and lockout can be disabled by setting I2Cn_TXCTRLO.gc_addr_flush_dis.
- Target Address Match Write: Automatic flushing and lockout can be disabled by setting I2Cn_TXCTRLO.wr_addr_flush_dis.
- Target Address Match Read: Automatic flushing and lockout can be disabled by setting I2Cn_TXCTRLO.rd_addr_flush_dis.
- During operation as a target transmitter, a NACK is received. Automatic flushing and lockout can be disabled by setting I2Cn_TXCTRLO.nack_flush_dis.
- Any of the following interrupts:
 - Arbitration error, timeout error, controller mode address NACK error, controller mode data NACK error, start error, and stop error. Automatic flushing cannot be disabled for these conditions.

When the above conditions occur, the transmit FIFO is flushed so that data intended for a previous transaction is not transmitted unintentionally for a new transaction. In addition to flushing the transmit FIFO, the transmit lockout flag is set (I2Cn_INTFLO.tx_lockout = 1) and writes to the transmit FIFO are ignored until the software acknowledges the external event by clearing I2Cn_INTFLO.tx_lockout.

10.4.10 Transmit FIFO Preloading

There can be situations during target mode operation where the software wants to preload the transmit FIFO before a transmission, such as when clock stretching is disabled. In this scenario, rather than responding to an external controller requesting data with an ACK and clock stretching while the software writes the data to the transmit FIFO, the hardware responds with a NACK until the software has preloaded the requested data into the transmit FIFO.

When transmit FIFO preloading is enabled, the software controls ACKs to the external controller using the transmit ready (I2Cn_TXCTRL1.preload_rdy) bit. When I2Cn_TXCTRL1.preload_rdy is set to 0, the hardware automatically NACKs all read

Analog Devices Page 161 of 327

transactions from the controller. Setting I2Cn_TXCTRL1.preload_rdy to 1 sends an ACK to the controller on the next read transaction and transmits the data in the transmit FIFO. Preloading the transmit FIFO should be complete before setting the I2Cn_TXCTRL1.preload_rdy field to 1.

The required steps for implementing transmit FIFO preloading in software are as follows:

- 1. Enable the transmit FIFO preloading by setting the field *I2Cn_TXCTRL0.preload_mode* to 1. The hardware automatically clears the *I2Cn_TXCTRL1.preload_rdy* field to 0.
- 2. If the transmit FIFO lockout flag (*I2Cn_INTFLO.tx_lockout*) is set to 1, write 1 to clear the flag and enable writes to the transmit FIFO.
- 3. Enable DMA or interrupts if required.
- 4. Load the transmit FIFO with the data to send when the controller sends the next read request.
- 5. Set I2Cn_TXCTRL1.preload_rdy to 1 to automatically let the hardware send the preloaded FIFO on the next read from a controller.
- 6. *I2Cn_TXCTRL1.preload_rdy* is cleared by the hardware once it finishes transmitting the first byte, and data is transmitted from the transmit FIFO. Once cleared, the software can repeat the preloading process or disable transmit FIFO preloading.

Note: To prevent the preloaded data from being cleared when the controller tries to read it, the software must at least set I2Cn_TXCTRLO.rd_addr_flush_dis to 1, disabling auto flush on READ address match. The software determines if the other auto flush disable bits should be set. For example, if a controller uses I²C WRITE transactions to determine what data the target should send in the following READ transactions, the software can clear I2Cn_TXCTRLO.wr_addr_flush_dis to 0. When a WRITE occurs, the transmit FIFO is flushed, giving the software time to load the new data. For the READ transaction, the external controller can poll the target address until the new data is loaded and I2Cn_TXCTRL1.preload_rdy is set, at which point the peripheral responds with an ACK.

10.4.11 Interactive Receive Mode (IRXM)

In some situations, the I2Cn might want to inspect and respond to each byte of received data. In this case, IRXM can be used. IRXM is enabled by setting $I2Cn_CTRL.irxm_en = 1$. If IRXM is enabled, it must occur before any I^2C transfer is initiated.

When IRXM is enabled, after every data byte received, the I2Cn peripheral automatically holds SCL low before the ACK bit. Additionally, after the 8th SCL falling edge, the I2Cn peripheral sets the IRXM interrupt status flag (I2Cn_INTFLO.irxm = 1). Software must read the data and generate a response (ACK or NACK) by setting the IRXM Acknowledge (I2Cn_CTRL.irxm_ack) bit accordingly. Send an ACK by clearing the I2Cn_CTRL.irxm_ack bit to 0. Send a NACK by setting the I2Cn_CTRL.irxm_ack bit to 1.

After setting the <code>I2Cn_CTRL.irxm_ack</code> bit, clear the IRXM interrupt flag. Write 1 to <code>I2Cn_INTFLO.irxm</code> to clear the interrupt flag. When the IRXM interrupt flag is cleared, the I2Cn peripheral hardware releases the SCL line and sends the <code>I2Cn_CTRL.irxm_ack</code> on the SDA line.

While the I2Cn peripheral is waiting for the software to clear the I2Cn_INTFLO.irxm flag, the software can disable IRXM and, if operating as a controller, load the remaining number of bytes to be received for the transaction. This allows the software to examine the initial bytes of a transaction, which might be a command, and then disable IRXM to receive the remaining bytes in normal operation.

During IRXM, received data is not placed in the receive FIFO. Instead, the *I2Cn_FIFO* address is repurposed to directly read the receive shift register, bypassing the receive FIFO. Therefore, before disabling IRXM, the software must first read the data byte from *I2Cn_FIFO.data*. If the IRXM byte is not read, the byte is lost, and the next read from the receive FIFO returns 0xFF.

Note: IRXM only applies to data bytes and does not apply to address bytes, general call address responses, or START byte responses.

Note: When enabling IRXM and operating as a target, clock stretching must remain enabled (I2Cn CTRL.clkstr dis = 0).

Analog Devices Page 162 of 327

10.4.12 Clock Stretching

When the I2Cn peripheral requires some response or intervention from the software to continue with a transaction, it holds SCL low, preventing the transfer from continuing. This is called 'clock stretching' or 'stretching the clock.' While the I²C Bus Specification defines the term 'clock stretching' to only apply to a target device holding the SCL line low, this section describes situations where the I2Cn peripheral holds the SCL line low in either target *or* controller mode and refers to *both* as clock stretching.

When the I2Cn peripheral stretches the clock, it typically does so in response to either a full receive FIFO during a receive operation or an empty transmit FIFO during a transmit operation. Necessarily, this occurs before the next data byte begins, either between the ACK bit and the first data bit or, if at the beginning of a transaction, immediately after a START or RESTART condition. However, when operating in IRXM (I2Cn_CTRL.irxm_en = 1), the peripheral can also clock stretch before the ACK bit, allowing the software to decide if to send an ACK or NACK.

For a transmit operation (as either controller or target), when the transmit FIFO is empty, SCL is automatically held low after the ACK bit and before the next data byte begins. The software must write data to <code>I2Cn_FIFO.data</code> to stop clock stretching and continue the transaction. However, if operating in controller mode instead of sending more data, the software can also set either <code>I2Cn_MSTCTRL.stop</code> or <code>I2Cn_MSTCTRL.restart</code> to send a STOP or RESTART condition, respectively.

For a receive operation (as either controller or target), when both the receive FIFO and the receive shift register are full, SCL is automatically held low until at least one data byte is read from the receive FIFO. The software must read data from I2Cn_FIFO.data to stop clock stretching and continue the transaction. If operating in controller mode and this is the final byte of the transaction, as determined by I2Cn_RXCTRL1.cnt, the software must also set either I2Cn_MSTCTRL.stop or I2Cn_MSTCTRL.restart to send a STOP or RESTART condition, respectively. This must be done in addition to reading from the receive FIFO since the peripheral cannot start sending the STOP or RESTART until the last data byte is moved from the receive shift register into the receive FIFO. This occurs automatically once there is space in the receive FIFO.

Note: Since some controllers do not support other devices stretching the clock, it is possible to completely disable all clock stretching during target mode by setting I2Cn_CTRL.clkstr_dis to 1 and clearing I2Cn_CTRL.irxm_en to 0. In this case, instead of clock stretching, the I2Cn peripheral sends a NACK if receiving data or sends 0xFF if transmitting data.

Note: The clock synchronization required to support other l^2C controller or target devices stretching the clock is built into the peripheral and requires no intervention from the software to operate correctly.

10.4.13 Bus Timeout

The timeout field, <code>I2Cn_TIMEOUT.scl_to_val</code>, is used to detect bus errors. <code>Equation 10-8</code> and <code>Equation 10-9</code> show equations for calculating the maximum and minimum timeout values based on the value loaded into the <code>I2Cn_TIMEOUT.scl_to_val</code> field.

Equation 10-8: I²C Timeout Maximum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{12C_CLK}}\right) \times \left((I2Cn_TIMEOUT.scl_to_val \times 32) + 3\right)$$

Due to clock synchronization, the timeout is guaranteed to meet the following minimum time calculation shown in *Equation 10-9*.

Equation 10-9: I²C Timeout Minimum

$$t_{TIMEOUT} \leq \left(\frac{1}{f_{12C_CLK}}\right) \times \left((I2Cn_TIMEOUT.scl_to_val \times 32) + 2 \right)$$

The timeout feature is disabled when <code>I2Cn_TIMEOUT.scl_to_val = 0</code> and is enabled for any non-zero value. When the timeout is enabled, the timeout timer starts counting when the I2Cn peripheral hardware drives SCL low and is reset by the I2Cn peripheral hardware when the SCL line is released.

Analog Devices Page 163 of 327

The timeout counter only monitors if the I2Cn peripheral hardware is driving the SCL line low. It does not monitor if an external I2Cn device is actively holding the SCL line low. The timeout counter also does not monitor the status of the SDA line.

If the timeout timer expires, a bus error condition occurred. When a timeout error occurs, the I2Cn peripheral hardware releases the SCL and SDA lines, and sets the timeout error interrupt flag to 1 (I2Cn_INTFLO.to_err = 1).

For applications where the device can hold the SCL line low longer than the maximum timeout supported, the timeout can be disabled by setting the timeout field to 0 (*I2Cn_TIMEOUT.scl_to_val* = 0).

10.4.14 DMA Control

There are independent DMA channels for each transmit FIFO, and each receive FIFO. DMA activity is triggered by the transmit FIFO (I2Cn_TXCTRLO.thd_val) and receive FIFO (I2Cn_RXCTRLO.thd_lvl) threshold levels.

When the transmit FIFO byte count (*I2Cn_TXCTRL1.lvI*) is less than or equal to the transmit FIFO threshold level *I2Cn_TXCTRL0.thd_val*, then the DMA transfers data into the transmit FIFO according to the DMA configuration.

The DMA burst size should be set as shown in Equation 10-10 to ensure the DMA does not overflow the transmit FIFO:

Equation 10-10: DMA Burst Size Calculation for I²C Transmit

```
DMA Burst Size \leq TX FIFO Depth - I2Cn_TXCTRL0.thd_val = 8 - I2Cn_TXCTRL0.thd_val where 0 \leq I2Cn_TXCTRL0.thd_val \leq 7
```

Software trying to avoid transmit underflow and/or clock stretching should use a smaller burst size and higher *I2Cn_TXCTRLO.thd_val* setting. This fills up the FIFO more frequently but increases internal bus traffic.

When the receive FIFO count (*I2Cn_RXCTRL1.lvI*) is greater than or equal to the receive FIFO threshold level *I2Cn_RXCTRL0.thd_IvI*, the DMA transfers data out of the receive FIFO according to the DMA configuration. The DMA burst size should be set as shown in *Equation 10-11* to ensure the DMA does not underflow the receive FIFO:

Equation 10-11: DMA Burst Size Calculation for I²C Receive

```
DMA Burst Size \leq I2Cn_RXCTRL0.thd_lvl where 1 \leq I2Cn_RXCTRL0.thd_lvl \leq 8
```

Applications trying to avoid receive overflow and/or clock stretching should use a smaller burst size and lower IZCn RXCTRLO.thd Ivl. This results in reading from the Receive FIFO more frequently but increases internal bus traffic.

Note for receive operations, the length of the DMA transaction (in bytes) must be an integer multiple of $I2Cn_RXCTRLO$.thd_Ivl. Otherwise, the receive transaction ends with some data still in the receive FIFO, but not enough to trigger an interrupt to the DMA, leaving the DMA transaction incomplete. One easy way to ensure this for all transaction lengths is to set burst size to 1 (I2Cn_RXCTRLO.thd_Ivl = 1).

Enable the transmit DMA channel (I2Cn_DMA.tx_en) and/or the receive DMA channel (I2Cn_DMA.rx_en) to enable DMA transfers.

Analog Devices Page 164 of 327

10.5 Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own, independent set of the registers, as shown in *Table 10-5*. Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERALO_CTRL and PERIPHERAL1 CTRL for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific reset.

Table 10-5: Register Summary

Offset	Register	Description
[0x0000]	I2Cn_CTRL	I ² C Control Register
[0x0004]	I2Cn_STATUS	I ² C Status Register
[8000x0]	I2Cn_INTFL0	I ² C Interrupt Flags 0 Register
[0x000C]	I2Cn_INTEN0	I ² C Interrupt Enable 0 Register
[0x0010]	I2Cn_INTFL1	I ² C Interrupt Flags 1 Register
[0x0014]	I2Cn_INTEN1	I ² C Interrupt Enable 1 Register
[0x0018]	I2Cn_FIFOLEN	I ² C FIFO Length Register
[0x001C]	I2Cn_RXCTRL0	I ² C Receive Control 0 Register
[0x0020]	I2Cn_RXCTRL1	I ² C Receive Control 1 Register
[0x0024]	I2Cn_TXCTRL0	I ² C Transmit Control 0 Register
[0x0028]	I2Cn_TXCTRL1	I ² C Transmit Control 1 Register
[0x002C]	I2Cn_FIFO	I ² C Transmit and Receive FIFO Register
[0x0030]	I2Cn_MSTCTRL	I ² C Controller Control Register
[0x0034]	I2Cn_CLKLO	I ² C Clock Low Time Register
[0x0038]	I2Cn_CLKHI	I ² C Clock High Time Register
(0x003C)	I2Cn_HSCLK	I ² C Hs-Mode Clock Control Register
[0x0040]	I2Cn_TIMEOUT	I ² C Timeout Register
[0x0044]	I2Cn_SLAVE	I ² C Target Address 0 Register
[0x0048]	I2Cn_DMA	I ² C DMA Enable Register

10.5.1 Register Details

Table 10-6: I²C Control Register

I ² C Contro	ı			I2Cn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	hs_en	R/W	0	Hs-Mode Enable	
				I ² C high speed mode operation	
				0: Disabled.	
				1: Enabled.	
14:13	-	RO	0	Reserved	
12	clkstr_dis	R/W	0	Target Mode Clock Stretching	
				0: Enabled.	
				1: Disabled.	

Analog Devices Page 165 of 327

I ² C Contro	l			I2Cn_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
11	read	R	0	Target Read/Write Bit Status Returns the logic level of the R/W bit on a received address match (I2Cn_INTFLO.addr_match = 1) or general call match (I2Cn_INTFLO.gc_addr_match = 1). This bit is valid for three system clock cycles after the address match status flag is set.	
10	bb_mode	R/W	0	Software Output Control Enabled Setting this field to 1 enables software bit-bang control of the I2Cn Bus. 0: The I ² C controller manages the SDA and SCL pins in the hardware. 1: SDA and SCL are controlled by the software using the I2Cn_CTRL.sda_out and I2Cn_CTRL.scl_out fields.	
9	sda	R	-	SDA Status 0: SDA pin is logic low. 1: SDA pin is logic high.	
8	scl	R	-	SCL Status 0: SCL pin is logic low. 1: SCL pin is logic high.	
7	sda_out	R/W	0	SDA Pin Output Control Set the state of the SDA hardware pin (actively pull low or float). 0: Pull SDA low. 1: Release SDA. Note: Only valid when I2Cn_CTRL.bb_mode=1	
6	scl_out	R/W	0	SCL Pin Output Control Set the state of the SCL hardware pin (actively pull low or float). 0: Pull SCL low. 1: Release SCL. Note: Only valid when I2Cn_CTRL.bb_mode =1	
5	-	RO	0	Reserved	
4	irxm_ack	R/W	0	IRXM Acknowledge If IRXM is enabled (I2Cn_CTRL.irxm_en = 1), sends an ACK or a NACK to an IRXM transact 0: Respond to IRXM with ACK. 1: Respond to IRXM with NACK.	
3	irxm_en	R/W	0	IRXM Enable When receiving data, this field allows for an IRXM interrupt event after each received byte of data. The I2Cn peripheral hardware can be enabled to send either an ACK or NACK for IRXM. See the Interactive Receive Mode section for detailed information. 0: Disabled. 1: Enabled. Note: Only set this field when the I ² C bus is inactive.	
2	gc_addr_en	R/W	0	General Call Address Enable 0: Ignore general call address. 1: Acknowledge general call address.	
1	mst_mode	R/W	0	Controller Mode Enable 0: Target mode enabled. 1: Controller mode enabled.	

Analog Devices Page 166 of 327

I ² C Control				I2Cn_CTRL [0x0000]	
Bits	Field	Access	Reset	Description	
0	en	R/W	0	I ² C Peripheral Enable	
				0: Disabled.	
				1: Enabled.	

Table 10-7: I²C Status Register

I ² C Status				I2Cn_STATUS	[0x0004]	
Bits	Field	Access	Reset	Description		
31:6	-	RO	0	Reserved		
5	mst_busy	RO	0	Controller Mode I ² C Bus Transaction Active		
				The peripheral is operating in controller mode, and a valid transaction beginning with a START command is in progress on the I ² C bus. This bit reads 1 until the controller ends the transaction with a STOP command. This bit continues to read 1 while a target performs clock stretching.		
				0: Device not actively driving SCL clock cycles.		
				1: Device operating as controller and actively d	riving SCL clock cycles.	
4	tx_full	RO	0	Transmit FIFO Full		
				0: Not full.		
				1: Full.		
3	tx_em	RO	1	Transmit FIFO Empty		
				0: Not empty.		
				1: Empty.		
2	rx_full	RO	0	Receive FIFO Full		
				0: Not full.		
				1: Full.		
1	rx_em	RO	1	Receive FIFO Empty		
				0: Not empty.		
				1: Empty.		
0	busy	RO	0	Controller or Target Mode I ² C Busy Transaction		
				The peripheral is operating in controller or target beginning with a START command is in progress of the peripheral acting as a controller or an external a STOP command. This bit continues to read 1 wh	on the I ² C bus. This bit reads 1 until al controller ends the transaction with	
				0: I ² C bus is idle.		
				1: I ² C bus transaction in progress.		

Table 10-8: I²C Interrupt Flag 0 Register

I ² C Interrupt Flag 0				I2Cn_INTFL0	[0x0008]
Bits	Field	Access	Reset	Description	
31:24	-	RO	0	Reserved	
23	wr_addr_match	R/W1C	0	Target Write Address Match Interrupt Flag If set, the device has been accessed for a write (i mode, and the address received matches the device O: No address match. 1: Address match.	

Analog Devices Page 167 of 327

I ² C Interru	I ² C Interrupt Flag 0			I2Cn_INTFL0	[0x0008]	
Bits	Field	Access	Reset	Description		
22	rd_addr_match	R/W1C	0	Target Read Address Match Interrupt Flag		
				If set, the device has been accessed for a read (i.e., transmit) transaction in target mode, and the address received matches the device target address.		
				0: No address match.		
				1: Address match.		
21:17	-	RO	0	Reserved		
16	mami	R/W1C	0	MAMI Interrupt Flag		
15	tx_lockout	R/W1C	0	Transmit FIFO Locked Interrupt Flag		
				If set, the transmit FIFO is locked, and writes to t set, the transmit FIFO is automatically flushed. W ignored until this flag is cleared. Write 1 to clear.	Vrites to the transmit FIFO are	
				0: transmit FIFO not locked.		
				1: transmit FIFO is locked, and all writes to the	transmit FIFO are ignored.	
14	stop_err	R/W1C	0	Out of Sequence STOP Interrupt Flag		
				This flag is set if a STOP condition occurs out of the expected sequence. Write a clear this field. Writing 0 has no effect.		
				0: Error condition has not occurred.		
				1: Out of sequence STOP condition occurred.		
13	start_err	R/W1C	0	Out of Sequence START Interrupt Flag		
				This flag is set if a START condition occurs out of clear this field. Writing 0 has no effect.	the expected sequence. Write 1 to	
				0: Error condition has not occurred.		
				1: Out of sequence START condition occurred.		
12	dnr_err	R/W1C	0	Target Mode Do Not Respond Interrupt Flag		
				This occurs if an address match is made, but the ready. Write 1 to clear this field. Writing 0 has no		
				0: Error condition has not occurred.		
				1: I ² C address match occurred, and either the t configured.	transmit or receive FIFO is not	
11	data_err	R/W1C	0	Controller Mode Data NACK from External Targ	et Interrupt Flag	
				The hardware sets this flag if a NACK is received the I2Cn peripheral is configured for controller n Write 0 has no effect.		
				0: Error condition has not occurred.		
				1: Data NACK received from a target.		
10	addr_nack_err	R/W1C	0	Controller Mode Address NACK from Target Err	or Flag	
				The hardware sets this flag if an Address NACK is is only valid if the I2Cn peripheral is configured for clear. Write 0 has no effect.	-	
				0: Error condition has not occurred.		
				1: Address NACK received from a target.		

Analog Devices Page 168 of 327

I ² C Interru	upt Flag 0			I2Cn_INTFL0	[0x0008]	
Bits	Field	Access	Reset	Description		
9	to_err	R/W1C	0	Timeout Error Interrupt Flag This flag is set when this device holds SCL low lor value. This field's setting applies to both controll Write 0 has no effect.		
				O: Timeout error has not occurred. 1: Timeout error occurred.		
8	arb_err	R/W1C	0	Controller Mode Arbitration Lost Interrupt Flag Write 1 to clear. Write 0 has no effect. 0: Condition has not occurred.		
7	addr_ack	R/W1C	0	1: Condition occurred. Controller Mode Address ACK from External Tar This field is set when a target address ACK is rece		
				effect. 0: Condition has not occurred. 1: The target device ACK for the address was received.		
6	stop	R/W1C	0	Target Mode STOP Condition Interrupt Flag This flag is set by hardware when a STOP condition is detected. Write 1 to clear. Write 0 has no effect.		
				Condition has not occurred. Condition occurred.		
5	tx_thd	RO	1	Transmit FIFO Threshold Level Interrupt Flag The hardware sets this field if the number of bytes in the Transmit FIFO is less than or equal to the Transmit FIFO threshold level. Write 1 to clear. This field is automatically cleared by the hardware when the transmit FIFO contains fewer bytes than the transmit threshold level.		
				0: Transmit FIFO contains more bytes than the 1: Transmit FIFO contains the transmit thresho		
4	rx_thd	R/W1C	1	Receive FIFO Threshold Level Interrupt Flag The hardware sets this field if the number of byte or equal to the Receive FIFO threshold level. This the receive FIFO contains fewer bytes than the re- 0: receive FIFO contains fewer bytes than the re-	s field is automatically cleared when eceive threshold setting.	
				1: receive FIFO contains at least receive thresh		
3	addr_match	R/W1C	0	Target Mode Incoming Address Match Status In Write 1 to clear. Writing 0 has no effect. 0: Target address match has not occurred. 1: Target address match occurred.	terrupt Flag	
2	gc_addr_match	R/W1C	0	Target Mode General Call Address Match Received Interrupt Flag Write 1 to clear. Writing 0 has no effect. 0: General call address match has not occurred. 1: General call address match occurred.		
1	irxm	R/W1C	0	Interactive Receive Mode Interrupt Flag Write 1 to clear. Writing 0 is ignored. 0: Interrupt condition has not occurred. 1: Interrupt condition occurred.		

Analog Devices Page 169 of 327

I ² C Interrupt Flag 0				I2Cn_INTFL0	[8000x0]
Bits	Field	Access	Reset	Description	
0	done	R/W1C	0	Transfer Complete Interrupt Flag This flag is set for both controller and target mod Write 1 to clear. Writing 0 has no effect.	de once a transaction completes.
				0: Transfer is not complete. 1: Transfer complete.	

Table 10-9: I²C Interrupt Enable 0 Register

I ² C Interrupt Enable 0			I2Cn_INTEN0 [0x000C]			
Bits	Field	Access	Reset	Description		
31:24	-	RO	0	Reserved		
23	wr_addr_match	R/W	0	Target Write Address Match Interrupt Enable This bit is set to enable interrupts when the device is accessed in target mode, and the address received matches the device target addressed for a write transaction. 0: Disabled. 1: Enabled.		
22	rd_addr_match	R/W	0	Target Read Address Match Interrupt Enable This bit is set to enable interrupts when the device is accessed in target mode, and the address received matches the device target addressed for a read transaction.		
				0: Disabled. 1: Enabled.		
21:17	-	RO	0	Reserved		
16	mami	R/W	0	MAMI Interrupt Enable		
15	tx_lockout	R/W	0	Transmit FIFO Lock Out Interrupt Enable 0: Disabled. 1: Enabled.		
14	stop_err	R/W	0	Out of Sequence STOP Condition Detected Interrupt Enable 0: Disabled. 1: Enabled.		
13	start_err	R/W	0	Out of Sequence START Condition Detected Into 0: Disabled. 1: Enabled.	terrupt Enable	
12	dnr_err	R/W	0	Target Mode Do Not Respond Interrupt Enable Set this field to enable interrupts in target mode when the "Do Not Respond" condition occurs. 0: Interrupt disabled. 1: Interrupt enabled.		
11	data_err	R/W	0	Controller Mode Received Data NACK from Target Interrupt Enable 0: Disabled. 1: Enabled.		
10	addr_nack_err	R/W	0	Controller Mode Received Address NACK from 0: Disabled. 1: Enabled.	Target Interrupt Enable	

Analog Devices Page 170 of 327

I ² C Interr	I ² C Interrupt Enable 0			I2Cn_INTEN0	[0x000C]
Bits	Field	Access	Reset	Description	
9	to_err	R/W	0	Timeout Error Interrupt Enable 0: Disabled. 1: Enabled.	
8	arb_err	R/W	0	Controller Mode Arbitration Lost Interrupt Enable 0: Disabled. 1: Enabled.	
7	addr_ack	R/W	0	Received Address ACK from Target Interrupt Enable Set this field to enable interrupts for controller mode target device address ACK events. 0: Interrupt disabled. 1: Interrupt enabled.	
6	stop	R/W	0	STOP Condition Detected Interrupt Enable 0: Disabled. 1: Enabled.	
5	tx_thd	R/W	0	Transmit FIFO Threshold Level Interrupt Enable 0: Disabled. 1: Enabled.	
4	rx_thd	R/W	0	Receive FIFO Threshold Level Interrupt Enable 0: Disabled. 1: Enabled.	
3	addr_match	R/W	0	Target Mode Incoming Address Match Interruption 0: Disabled. 1: Enabled.	ot Enable
2	gc_addr_match	R/W	0	Target Mode General Call Address Match Rece 0: Disabled. 1: Enabled.	ived Interrupt Enable
1	irxm	R/W	0	Interactive Receive Interrupt Enable 0: Disabled. 1: Enabled.	
0	done	R/W	0	Transfer Complete Interrupt Enable 0: Disabled. 1: Enabled.	

Table 10-10: I²C Interrupt Flag 1 Register

I ² C Interru	I ² C Interrupt Status Flags 1			I2Cn_INTFL1	[0x0010]	
Bits	Field	Access	Reset	Description		
31:3	-	RO	0	Reserved		
2	start	R/W1C	0	START Condition Status Flag	START Condition Status Flag	
				If set, a device START condition has been detected	ed.	
				0: START condition not detected.		
				1: START condition detected.		

Analog Devices Page 171 of 327

I ² C Interrupt Status Flags 1				I2Cn_INTFL1	[0x0010]
Bits	Field	Access	Reset	Description	
1	tx_un	R/W1C	0	Target Mode Transmit FIFO Underflow Status Flag In target mode operation, the hardware sets this flag automatically if the transmit FIFO is empty and the controller requests more data by sending an ACK after the previous byte is transferred. 0: Target mode transmit FIFO underflow condition has not occurred. 1: Target mode transmit FIFO underflow condition occurred.	
0	rx_ov	R/W1C	0	1: Target mode transmit FIFO underflow condition occurred. Target Mode Receive FIFO Overflow Status Flag In target mode operation, the hardware sets this flag automatically when a receive FIFO overflow occurs. Write 1 to clear. Writing 0 has no effect. 0: Target mode receive FIFO overflow event has not occurred. 1: Target mode receive FIFO overflow condition occurred (data lost).	

Table 10-11: I²C Interrupt Enable 1 Register

I ² C Interru	I ² C Interrupt Enable 1			I2Cn_INTEN1	[0x0014]
Bits	Field	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2	start	R/W	0	START Condition Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
1	tx_un	R/W	0	Target Mode Transmit FIFO Underflow Interrup	t Enable
				0: Disabled.	
				1: Enabled.	
0	rx_ov	R/W	0	Target Mode Receive FIFO Overflow Interrupt E	nable
				0: Disabled.	
				1: Enabled.	

Table 10-12: I²C FIFO Length Register

I ² C FIFO Length				I2Cn_FIFOLEN	[0x0018]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15:8	tx_depth	RO	8	Transmit FIFO Length This field returns the depth of the transmit FIFO. 8: 8-bytes.	
7:0	rx_depth	RO	8	Receive FIFO Length This field returns the depth of the receive FIFO. 8: 8-bytes.	

Table 10-13: I²C Receive Control 0 Register

I ² C Receive Control 0				I2Cn_RXCTRL0	[0x001C]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	

Analog Devices Page 172 of 327

I ² C Receive Control 0			I2Cn_RXCTRL0 [0x001C]		
Bits	Field	Access	Reset	Description	
11:8	thd_lvl	R/W	0	Receive FIFO Threshold Level	
				Set this field to the required number of bytes to trigger a receive FIFO threshold event. When the number of bytes in the receive FIFO is equal to or greater than this field, the hardware sets the I2Cn_INTFLO.rx_thd bit indicating a receive FIFO threshold level event.	
				0: 0 bytes or more in the receive FIFO causes a	threshold event.
				1: 1+ bytes in the receive FIFO triggers a receive threshold event (recommended minimum value).	
				8: Receive FIFO threshold event only occurs wh	en the receive FIFO is full.
7	flush	R/W10	0	Flush Receive FIFO	
				Write 1 to this field to initiate a receive FIFO flusl FIFO. This field is automatically cleared by the ha completes. Writing 0 has no effect.	
				0: Receive FIFO flush complete or not active.	
				1: Flush the receive FIFO	
6:1	-	RO	0	Reserved	
0	dnr	R/W	0	Target Mode Do Not Respond	
				Target mode operation only. If the device has beand there is still data in the receive FIFO, then:	en addressed for a write operation,
				0: Always respond to an address match with ar bytes with a NACK.	ACK but always respond to data
				1: NACK the address.	

Table 10-14: I²C Receive Control 1 Register

² C Receive Control 1				I2Cn_RXCTRL1	[0x0020]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	
11:8	lvl	R	0	Receive FIFO Byte Count Status	
				This field returns the number of bytes in the	receive FIFO.
				0: 0 bytes (No data).	
				1: 1 byte.	
				2: 2 bytes.	
				3: 3 bytes.	
				4: 4 bytes.	
				5: 5 bytes.	
				6: 6 bytes.	
				7: 7 bytes.	
				8: 8 bytes.	

Analog Devices Page 173 of 327

I ² C Receive Control 1				I2Cn_RXCTRL1	[0x0020]
Bits	Field	Access	Reset	Description	
7:0	cnt	R/W	1	Receive FIFO Transaction Byte Count Config In controller mode, write the number of byte from 1 to 256. 0x00 represents 256. 0: 256 byte receive transaction. 1: 1 byte receive transaction. 2: 2 byte receive transaction.	
				255: 255 byte receive transaction. This field is ignored when I2Cn_CTRL.irxm_eruse I2Cn_CTRL.irxm_en = 1	n = 1. To receive more than 256 bytes,

Table 10-15: I²C Transmit Control 0 Register

I ² C Transm	I ² C Transmit Control 0			I2Cn_TXCTRL0	[0x0024]		
Bits	Field	Access	Reset	Description			
31:12	-	RO	0	Reserved			
11:8	thd_val	R/W	0	Transmit FIFO Threshold Level			
				This field sets the level for a transmit FIFO threshold event interrupt. If the number of bytes remaining in the transmit FIFO falls to this level or lower, the interrupt flag I2Cn_INTFLO.tx_thd is set, indicating a transmit FIFO threshold event occurred.			
				0: 0 bytes remaining in the transmit FIFO trigg	gers a transmit FIFO threshold event.		
				1: 1 byte or fewer remaining in the transmit F threshold event (recommended minimum v			
				7: 7 or fewer bytes remaining in the transmit threshold event	FIFO triggers a transmit FIFO		
7	flush	R/W10	0	0 Transmit FIFO Flush			
				A transmit FIFO flush clears all remaining data for	rom the transmit FIFO.		
				0: Transmit FIFO flush is complete or not activ	ve.		
				1: Flush the transmit FIFO.			
				Note: The hardware automatically clears this big flush is completed.	t to 0 after it is written to 1 when the		
				If I2Cn_INTFLO.tx_lockout = 1, then I2Cn_TXCTR	LO.flush = 1.		
6	-	RO	0	Reserved			
5	nack_flush_dis	R/W	0	Transmit FIFO received NACK Auto Flush Disab	le		
				Various situations or conditions are described in transmit FIFO being flushed and locked out (I2C	<u> </u>		
				0: Received NACK at the end of a target transi	mit operation enabled.		
				1: Received NACK at the end of a target transi	mit operation disabled.		
				Note: Upon entering transmit preload mode, the to 0. The software can subsequently set this bit hardware does not continuously force the bit to	to any value desired (i.e., the		

Analog Devices Page 174 of 327

I ² C Transn	nit Control 0			I2Cn_TXCTRL0	[0x0024]
Bits	Field	Access	Reset	Description	
4	rd_addr_flush_dis	R/W	0	Transmit FIFO Target Address Match Read Auto	o Flush Disable
				Various situations or conditions are described in transmit FIFO being flushed and locked out (I2C	
				0: Enabled. 1: Disabled.	
				Note: Upon entering transmit preload mode, ha 1. The software can subsequently set this bit to does not continuously force the bitfield to 1).	
3	wr_addr_flush_dis	R/W	0	Transmit FIFO Target Address Match Write Aut	o Flush Disable
				Various situations or conditions are described in transmit FIFO being flushed and locked out (I2C)	
				0: Enabled	
				1: Disabled.	
				Note: Upon entering transmit preload mode, ha 1. The software can subsequently set this bit to does not continuously force the bit to 1).	
2	gc_addr_flush_dis	R/W	0	Transmit FIFO General Call Address Match Auto	o Flush Disable
				Various situations or conditions are described in transmit FIFO being flushed and locked out (I2C)	
				0: Enabled.	
				1: Disabled.	
				Note: Upon entering transmit preload mode, ha 1. The software can subsequently set this bit to does not continuously force the bit to 1).	
1	tx_ready_mode	R/W	0	Transmit FIFO Ready Manual Mode	
				0: The hardware controls I2Cn_TXCTRL1.prelo	- '
				1: Software control of I2Cn_TXCTRL1.preload_	rdy.
0	preload_mode	R/W	0	Transmit FIFO Preload Mode Enable	
				0: Normal operation. An address match in targ match, flushes and locks the transmit FIFO I2Cn_INTFLO.tx_lockout.	
				1: Transmit FIFO preload mode. An address m address match, does not lock the transmit I I2Cn_INTFLO.tx_lockout. This allows the sof transmit FIFO. The status of the I ² C is control.	FIFO and does not set tware to preload data into the

Table 10-16: I²C Transmit Control 1 Register

I ² C Transmit Control Register 1				I2Cn_TXCTRL1	[0x0028]
Bits	Field	Access	Reset	Description	
31:12	-	RO	0	Reserved	

Analog Devices Page 175 of 327

I ² C Transmit Control Register 1			I2Cn_TXCTRL1	[0x0028]
Field	Access	Reset	Description	
lvl	R	0	Transmit FIFO Byte Count Status	
			0: 0 bytes (No data).	
			1: 1 byte.	
			2: 2 bytes.	
			3: 3 bytes.	
			4: 4 bytes.	
			5: 5 bytes.	
			6: 6 bytes.	
			7: 7 bytes.	
			8: 8 bytes (max value).	
-	RO	0	Reserved	
preload_rdy	R/W10	1	Transmit FIFO Preload Ready Status	
			When transmit FIFO preload mode is enabled, 12 bit is automatically cleared to 0. While this bit is target address match, a NACK is sent. Once the I has preloaded the transmit FIFO, configured the this bit to 1, so the I2Cn hardware sends an ACK When transmit FIFO preload mode is disabled, 12	0, if the I2Cn hardware receives a 2Cn hardware is ready (the software DMA, etc.), the software must set on a target address match. 2Cn_TXCTRLO.preload_mode = 1, this
	Field IvI	Field Access IvI R - RO	Field Access Reset IVI R 0 - RO 0	Field Access Reset Description Transmit FIFO Byte Count Status 0: 0 bytes (No data). 1: 1 byte. 2: 2 bytes. 3: 3 bytes. 4: 4 bytes. 5: 5 bytes. 6: 6 bytes. 7: 7 bytes. 8: 8 bytes (max value). Preload_rdy R/W1O RO Reserved Transmit FIFO Preload Ready Status When transmit FIFO preload mode is enabled, 12 bit is automatically cleared to 0. While this bit is target address match, a NACK is sent. Once the I has preloaded the transmit FIFO, configured the this bit to 1, so the I2Cn hardware sends an ACK

Table 10-17: I²C Data Register

I ² C Data				I2Cn_FIFO	[0x002C]
Bits	Field	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7:0	data	R/W	0xFF	FIFO Data Reads from this register pop data off the data onto the transmit FIFO. Reading from Writes to a full transmit FIFO are ignored.	ı .

Table 10-18: I²C Controller Control Register

I ² C Controller Control				I2Cn_MSTCTRL	[0x0030]
Bits	Field	Access	Reset	Description	
31:8	-	RO	0	Reserved	
7	ex_addr_en	R/W	0	Target Extended Addressing Enable	
				0: Send a 7-bit address to the target.	
				1: Send a 10-bit address to the targe	et.
6:3	-	RO	0	Reserved	
2	stop	R/W10	0	Send STOP Condition	
				1: Send a STOP Condition at the end	d of the current transaction.
				Note: This bit is automatically cleared begins.	by the hardware when the STOP condition

Analog Devices Page 176 of 327

I ² C Contro	ller Control			I2Cn_MSTCTRL	[0x0030]
Bits	Field	Access	Reset	Description	
1	restart	R/W1O	0	Send Repeated START Condition After sending data to a target, the controller can send another START to retain control of the bus. 1: Send a repeated START condition to the target instead of sending a STOP condition at the end of the current transaction. Note: This bit is automatically cleared by the hardware when the repeated START condition begins.	
0	start	R/W10	0	Start Controller Mode Transfer 1: Start controller mode transfer. Note: This bit is automatically cleared completed or aborted.	by the hardware when the transfer is

Table 10-19: I²C SCL Low Control Register

I ² C Clock L	I ² C Clock Low Control			I2Cn_CLKLO	[0x0034]	
Bits	Field	Acces	s Reset	Description		
31:9	-	RO	0	Reserved		
8:0	lo	R/W	1	Clock Low Time	Clock Low Time	
				In controller mode, this configures the	e SCL low time.	
				$t_{SCL_LO} = f_{I2C_CLK} \times (lo + 1)$		
				Note: 0 is not a valid setting for this fi	eld.	

Table 10-20: I²C SCL High Control Register

I ² C Clock High Control			I2Cn_CLKHI		[0x0038]
Bits	Field	Access	Reset	Description	
31:9	-	RO	0	Reserved	
8:0	hi	R/W	1	Clock High Time In controller mode, this configures the SCL $t_{SCL_HI} = \frac{1}{f_{I2C_CLK}} \times (hi+1)$ In both controller and target mode, this also new data is loaded from the transmit FIFO I2Cn_INTFL0.irxm during IRXM. Note: 0 is not a valid setting for this field.	so configures the time SCL is held low after

Table 10-21: I²C Hs-Mode Clock Control Register

I ² C Hs-Mode Clock Control			I2Cn_HSCLK		[0x003C]
Bits	Field	Access	Reset Description		
31:16	-	R/W	0	Reserved	
15:8	hi	R/W	0	Hs-Mode Clock High Time	
				This field sets the Hs-Mode clock high could held high after data is output on SDA.	nt. In target mode, this is the time SCL is
				Note: See SCL Clock Generation for Hs-Mod Hs-Mode clock high and low times.	de for details on the requirements for the

Analog Devices Page 177 of 327

I ² C Hs-Mo	de Clock Control		I2Cn_HSCLK		[0x003C]	
Bits	Field	Access	Reset	Description		
7:0	lo	R/W	0	Hs-Mode Clock Low Time This field sets the Hs-Mode clock low count. In target mode, this is the time SCL is held low after data is output on SDA.		
				Note: See SCL Clock Generation for Hs-Mod Hs-Mode clock high and low times.	le for details on the requirements for the	

Table 10-22: I²C Timeout Register

I ² C Timeout			I2Cn_TIMEOUT		[0x0040]		
Bits	Field	Access	Reset	Description			
31:16	-	RO	0	Reserved			
15:0	scl_to_val	R/W	0	Bus Error SCL Timeout Period Set this value to the number of I ² C clock cycles desired to cause a bus timeout error.			
				The peripheral timeout timer starts when it pulls SCL low. After the peripheral releases the line, if the line is not pulled high before the timeout number of I^2C clock cycles, a bus error condition is set ($I^2Cn_INTFLO.to_err = 1$), and the peripheral releases the SCL and SDA lines.			
				0: Timeout disabled. All other values result in a timeout calculation of: $t_{BUS_TIMEOUT} = {}^1/{}_{f_{I2C_CLK}} \times scl_to_val$ Note: The timeout counter monitors the I2Cn peripheral's driving of the SCL pin, n an external I²C device driving the SCL pin.			

Table 10-23: I²C Target Address 0 Register

I ² C Target Address				I2Cn_SLAVE	[0x0044]	
Bits	Field	Access	Reset	Description		
31:16	-	RO	0	Reserved		
15	ext_addr_en	R/W	0	Target Mode Extended Address Length Select		
				0: 7-bit addressing.		
				1: 10-bit addressing.		
14:10	-	RO	0	Reserved		
9:0	addr	R/W	0	Target Mode Target Address		
				address for the I ² C port. For 7-bit addr	.mst_mode = 0), set this field to the target ressing, the address occupies the least g, the 9-bits of address occupies the most upies the least significant bit.	
				Note: I2Cn_SLAVE.ext_addr_en contro	ols if this field is a 7-bit or 10-bit address.	

Table 10-24: I²C DMA Register

I ² C DMA				I2Cn_DMA	[0x0048]	
Bits	Field	Access	Reset	Description		
31:2	-	RO	0	Reserved		

Analog Devices Page 178 of 327

I ² C DMA				I2Cn_DMA	[0x0048]	
Bits	Field	Access	Reset	Description		
1	rx_en	R/W	0	Receive DMA Channel Enable		
				0: Disabled.		
				1: Enabled.		
0	tx_en	R/W	0	Transmit DMA Channel Enable		
				0: Disabled.		
				1: Enabled.		

Analog Devices Page 179 of 327

11. Inter-Integrated Sound Interface (I²S)

I²S is a serial audio interface for communicating pulse-code modulation (PCM) encoded streams between devices. The peripheral supports both controller and target modes.

Key features:

- Stereo (2 channel) and mono (left or right channel option) formats.
- Separate DMA channels for transmit and receive.
- Flexible timing
 - Configurable sampling rate from ¹/₆₅₅₃₆ to 1 of the I²S input clock.
- Flexible data format
 - The number of bits per data word can be selected from 1 to 32, typically 8-, 16-, 24-, or 32-bit width.
 - Feature enhancement not in the I²S specification:
 - Word/Channel select polarity control.
 - First bit position selection.
 - Selectable FIFO data alignment to the MSB or the LSB of the sample.
 - Sample size less than the word size with adjustment to MSB or LSB of the word.
 - Optional sign extension.
- Full-duplex serial communication with separate I²S serial data input and serial data output pins.

11.1 Instances

Table 11-1: MAX32670/MAX32671 I²S Instances

Instance	Supported Channels	I2S_CLK Clock Options		Receive FIFO Depth	Transmit FIFO Depth
I2S	Stereo	ERFO	PCLK	8 × 32 bits	8 × 32 bits

Note: The ERFO must be enabled for controller operation; in target operation, external clocking is used for the LRCLK and BCLK input pins.

11.1.1 I²S Bus Lines and Definitions

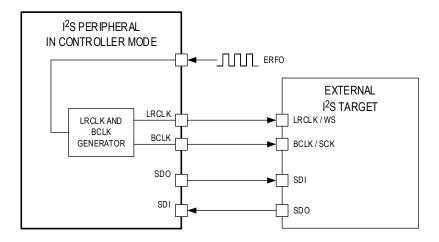
The I²S peripheral includes support for the following signals:

- 1. Bit clock line
 - Continuous serial clock (SCK), referred to as bit clock (BCLK) in this document.
- 2. Word clock line
 - Word select (WS) referred to as left right clock (LRCLK) in this document.
- 3. Serial data input (SDI)
- 4. Serial data output (SDO)
- 5. ERFO is required for operation in controller mode and must be enabled.

Detailed pin and alternate function mapping are shown in *Table 11-2*.

Analog Devices Page 180 of 327

Table 11-2: MAX32670/MAX32671 I²S Pin Mapping

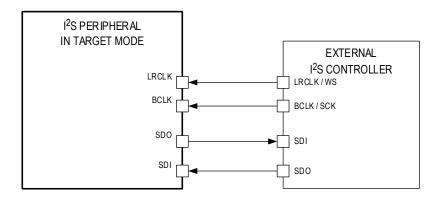

I ² S Signal	Pin Description	Alternate Function Name (y = A, B, or C)*	Notes				
BCLK (SCK)	I ² S bit clock	I2S0y_SCK	Also referred to as serial clock				
LRCLK (WS)	I ² S left/right clock	12S0y_WS	Also referred to as word select				
SDI	I ² S serial data input	I2S0y_SDI					
SDO	I ² S serial data output	I2S0y_SDO					
* Refer to the d	* Refer to the device's data sheet pin description table for alternate function mapping to pin numbers.						

11.2 Details

The I²S supports full-duplex serial communication with separate SDI and SDO pins. *Figure 11-1* shows an interconnect between a peripheral configured in controller mode, communicating with an external I²S target and an external I²S controller. In controller mode, the peripheral hardware generates the BCLK and LRCLK, and each is output to each target device.

Note: Controller operation requires the use of the ERFO to generate the LRCLK and BCLK signals.

Figure 11-1: I²S Controller Mode



Analog Devices Page 181 of 327

Figure 11-2 shows the I^2S peripheral configured for target operation. The LRCLK and BCLK signals are generated externally by the controller and are inputs to the I^2S peripheral.

Figure 11-2: I²S Target Mode

11.3 Controller and Target Mode Configuration

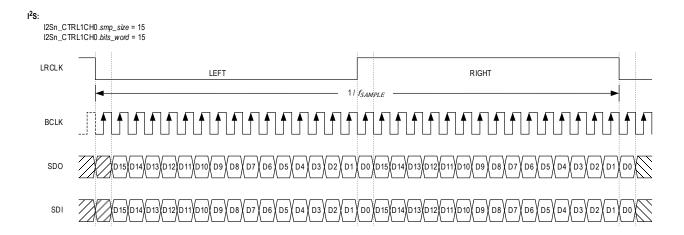

The device supports controller and target modes. In controller mode, the BCLK and LRCLK signals are generated internally and output on the BCLK and LRCLK pins. In target mode, the BCLK and LRCLK pins are configured as inputs, and the external controller's clock source controls the peripheral timing.

Table 11-3: I²S Mode Configuration

Device Mode	I2S_CTRLOCHO.ch_mode	LRCLK	BCLK
Controller	0	Output to target	Output to target
Target	3	Input from controller	Input from controller

11.4 Clocking

Figure 11-3: Audio Interface I²S Signal Diagram

Analog Devices Page 182 of 327

I²S communication is synchronized using two signals, the LRCLK and the BCLK. When the I²S peripheral is configured as a controller, the BCLK and LRCLK signals are generated internally by the peripheral using the ERFO. See *Table 11-2* for details of the I²S pin mapping and alternate function selection. If using the I²S peripheral in controller mode, the ERFO is used to generate the BCLK and LRCLK signals. Set *GCR CLKCTRL*.erfo en to 1 to enable the ERFO.

When the I²S peripheral is configured in target mode, the BCLK and LRCLK pins must be configured as inputs. An external controller generates the BCLK and LRCLK signals, which the peripheral uses to synchronize itself to the I²S bus. *Figure 11-3* shows the default I²S signals and timing for I²S communication.

The BCLK frequency is the product of the sample rate, the number of bits per channel (left and right), and the number of channels. For CD audio sampled at a frequency of 44.1kHz, with 16-bit sample width and stereo audio (left and right), the bit clock frequency, f_{BCLK} , is 1.4112MHz as shown in Equation 11-1.

Equation 11-1: CD Audio Bit Frequency Calculation

$$f_{BCLK} = 44.1 \text{ kHz} \times 16 \times 2 = 1.4112 \text{MHz}$$

11.4.1 BCLK Generation for Controller Mode

As indicated by Equation 11-1, the requirements for determining the BCLK frequency are:

- 1. Audio sample frequency
- 2. Number of bits per sample, referred to as sample width

Equation 11-2 shows the formula to calculate the bit clock frequency for a given audio file using the above requirements.

Equation 11-2: Calculating the Bit Clock Frequency for Audio

$$f_{BCLK} = f_{SAMPLE} \times Sample \ Width \times 2$$

In controller mode, the I^2S external clock input is used to generate the BCLK frequency. The I^2S external clock is divided by the I^2S _CTRL1CH0.clkdiv field to achieve the target BCLK frequency, as shown in Equation 11-3.

Equation 11-3: Controller Mode BCLK Generation Using the I²S External Clock

$$f_{BCLK} = \frac{f_{ERFO}}{(I2S_CTRL1CH0.clkdiv + 1) \times 2}$$

Use Equation 11-4 to determine the I2S clock divider for a target BCLK frequency.

Equation 11-4: Controller Mode Clock Divisor Calculation for a Target Bit Clock Frequency

$$I2S_CTRL1CH0.clkdiv = \frac{f_{ERFO}}{2 \times f_{RCLK}} - 1$$

11.4.2 LRCLK Period Calculation

An I²S data stream can carry mono (either left or right channel) or stereo (left and right channel) data. The LRCLK signal indicates which channel is currently being sent, either left or right channel data, as shown in *Figure 11-3*. The LRCLK is a 50% duty cycle signal and is the same frequency as the audio sampling frequency, f_{SAMPLE} .

The I²S peripheral uses the bits per word field, I2S_CTRL1CHO.bits_word, to define the audio's sample width, equivalent to the number of bit clocks per channel. This value should be set to the sample width of the audio minus 1. For example, the software should set the I2S_CTRL1CHO.bits_word field to 15 for audio sampled using a 16-bit width.

Equation 11-5: Bits Per Word Calculation

$$I2S_CTRL1CH0.bits_word = Sample\ Width - 1$$

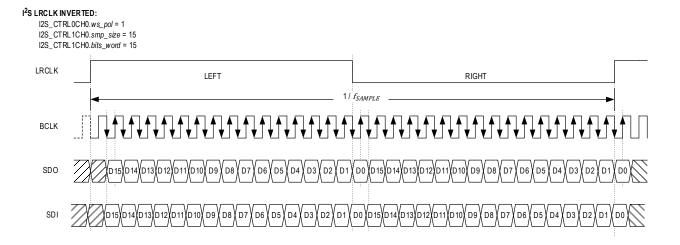
The LRCLK frequency, or word select frequency, is automatically generated by the I²S peripheral hardware when set to operate as a controller. The LRCLK frequency calculation is shown in *Equation 11-6*.

Analog Devices Page 183 of 327

Equation 11-6: LRCLK Frequency Calculation

 $f_{LRCLK} = f_{BCLK} \times (I2Sn_CTRL1CH0.bits_word + 1)$

11.5 Data Formatting

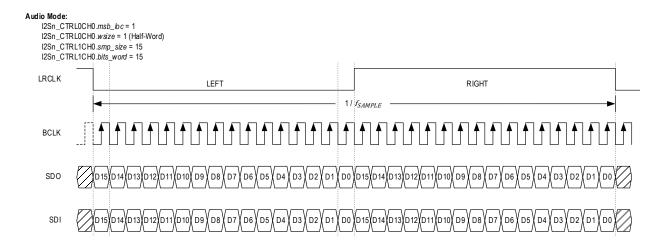

11.5.1 Sample Size

The sample size field, <code>I2S_CTRL1CHO.smp_size</code>, defines the number of desired samples within each channel, left, right or mono, for the peripheral. This field can be less than or equal to the <code>I2S_CTRL1CHO.bits_word</code> field. For example, for 16-bit sample width audio, the <code>I2S_CTRL1CHO.bits_word</code> field must be set to 15. However, the sample size field can be set from 0 to 15. Setting the sample size to 0 is equivalent to setting it to the value of the bits per word field. The sample size field determines how many of the bits per word are transmitted or saved per channel. The sample size field is a 0-based field; therefore, setting <code>I2S_CTRL1CHO.smp_size</code> to 15 collects 16 samples. See <code>Figure 11-6</code> for an example of the bits per word field's setting compared to the sample size field's setting.

11.5.2 Word Select Polarity

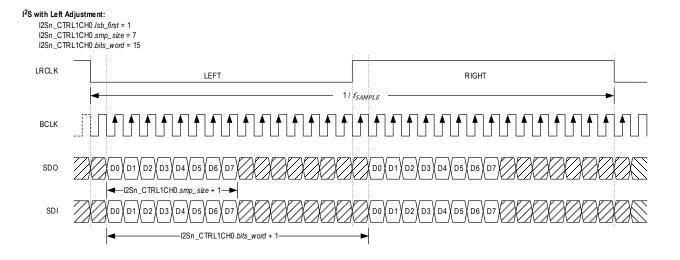
Left channel data, by default, is transferred when the LRCLK signal is low, and right channel data is transferred when the LRCLK signal is high. The polarity of the LRCLK is programmable, allowing left and right data to be swapped. The LRCLK polarity is controlled using the word select polarity field, *I2S_CTRLOCHO.ws_pol*. By default, LRCLK low is for the left channel, high is for the right channel as shown in *Figure 11-3*. Setting *I2S_CTRLOCHO.ws_pol* to 1 inverts the LRCLK polarity, using LRCLK high for the left channel and LRCLK low for the right channel as shown in *Figure 11-4*.

Figure 11-4: Audio Mode with Inverted Word Select Polarity


11.5.3 First Bit Location Control

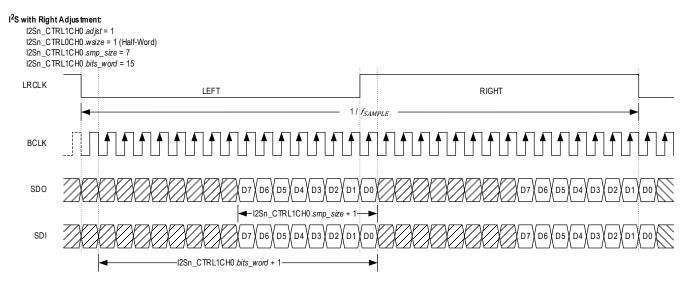
The default setting is for the first bit of I²S data to be located at the second complete BCLK cycle after the LRCLK transition required by the I²S specification. See *Figure 11-3* for the standard data sampling configuration. Optionally, the first bit location can be left justified, resulting in the first bit of data being sampled on the first BCLK cycle after the LRCLK signal transitions as shown in *Figure 11-5*. Set *I2S_CTRLOCHO.msb_loc* to 1 to left justify the data with respect to the LRCLK.

Analog Devices Page 184 of 327

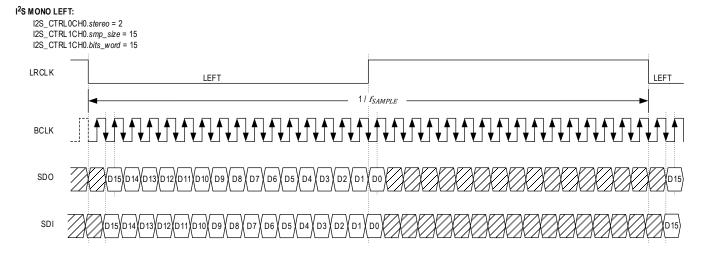

Figure 11-5: Audio Controller Mode Left-Justified First Bit Location

11.5.4 Sample Adjustment

When the sample size field, <code>I2S_CTRL1CH0.smp_size</code>, is less than the bits per word field, <code>I2S_CTRL1CH0.bits_word</code>, use the <code>I2S_CTRL1CH0.adjst</code> field to set which bits are stored in the receive FIFO or transmitted from the transmit FIFO, either from the first sample of the SDI/SDO line or the last sample of the SDI/SDO line for the left and right channels. <code>Figure 11-6</code> shows an example of the default adjustment, MSB, where <code>I2S_CTRL1CH0.smp_size = 7</code> and <code>I2S_CTRL1CH0.bits_word = 15</code>. <code>Figure 11-7</code> shows the adjustment set to the LSB of the SDI/SDO data.

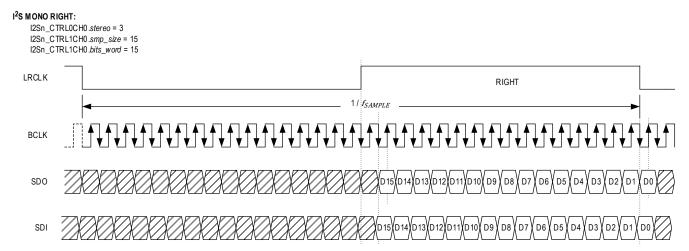

Figure 11-6: MSB Adjustment when Sample Size is Less Than Bits Per Word

Analog Devices Page 185 of 327


Figure 11-7: LSB Adjustment when Sample Size is Less Than Bits Per Word

11.5.5 Stereo/Mono Configuration

The I²S can transfer stereo or mono data based on the I2S_CTRLOCHO.stereo field. In stereo mode, both the left and right channels hold data. In mono mode, only the left or right channel contain data. For stereo mode, set I2S_CTRLOCHO.stereo to 0. Set the I2S_CTRLOCHO.stereo field to 2 for left channel mono. Set the I2S_CTRLOCHO.stereo field to 3 for right channel mono.


Figure 11-8: I²S Mono Left Mode

Analog Devices Page 186 of 327

Figure 11-9: I²S Mono Right Mode

11.6 Transmit and Receive FIFOs

11.6.1 FIFO Data Width

I²S audio data is programmable from 1 to 32 bits using the *I2S_CTRL1CH0.bits_word* field. The software can set the FIFO width to either 8 bits (byte), 16 bits (half-word), or 32 bits (word). Set the FIFO width using the *I2S_CTRL0CH0.wsize* field. For FIFO word sizes less than 32 bits, the data frame, comprising a complete LRCLK cycle, can still be 64 bits; the unused bits are transmitted as zero by the hardware.

11.6.2 Transmit FIFO

An I²S transaction is started by writing data to the transmit FIFO using the I2S_FIFOCHO.data register, either directly or using a DMA channel. The data written is automatically transmitted out by the hardware, a FIFO word, as defined using the I2S_CTRLOCHO.wsize field, at a time, in the order it is written to the transmit FIFO. Use the I²S interrupt flags to monitor the transmit FIFO status and determine when the transfer cycle(s) are complete.

If the transmit FIFO becomes empty, an error condition occurs and results in undefined behavior.

11.6.3 Receive FIFO

The received data is loaded into the receive FIFO, and it can then be unloaded by reading from the *I2S_FIFOCHO.data* register. An overrun event occurs if the receive FIFO is full and another word is shifted into the FIFO.

11.6.4 FIFO Word Control

The data width of the transmit and receive FIFOs can be configured using the I2S_CTRLOCHO.wsize field. The following tables describe the data ordering based on the I2S_CTRLOCHO.wsize setting.

The transmit and receive FIFOs must be flushed, and the peripheral reset by the software before reconfiguration. The software resets the peripheral by setting the <code>I2S_CTRLOCHO.rst</code> field to 1.

Analog Devices Page 187 of 327

Table 11-4: Data Ordering for Byte Data Size (Stereo Mode)

Byte Data Width (I2S_CTRLOCHO.wsize = 0)							
FIFO Entry	MSB			LSB			
FIFO 0	Right Channel	Left Channel	Right Channel	Left Channel			
	Byte 1	Byte 1	Byte 0	Byte 0			
FIFO 1	Right Channel	Left Channel	Right Channel	Left Channel			
	Byte 3	Byte 3	Byte 2	Byte 2			
FIFO 7	Right Channel	Left Channel	Right Channel	Left Channel			
	Byte 14	Byte 14	Byte 13	Byte 13			

Table 11-5: Data Ordering for Half-Word Data Size (Stereo Mode)

alf-Word Data Width (<i>I2S_CTRLOCHO.wsize</i> = 1)						
FIFO Entry	MS Half-Word	LS Half-Word				
FIFO 0	Right Channel Half-Word 0	Left Channel Half-Word 0				
FIFO 1	Right Channel Half-Word 1	Left Channel Half-Word 1				
FIFO 7	Right Channel Half Word 7	Left Channel Half-Word 7				

Table 11-6: Data Ordering for Word Data Size (Stereo Mode)

Nord Data Width (I2S_CTRLOCHO.wsize = 2 or 3)						
FIFO Entry	Word					
FIFO 0	Left Channel Word 0					
FIFO 1	Right Channel Word 0					
FIFO 2	Left Channel Word 1					
FIFO 3	Right Channel Word 1					
FIFO 6	Left Channel Word 3					
FIFO 7	Right Channel Word 3					

Analog Devices Page 188 of 327

11.6.5 FIFO Data Alignment

The I²S data can be left aligned or right aligned using the I2S_CTRLOCHO.align field. The following conditions apply to each setting:

Left aligned: I2S_CTRLOCHO.align = 0

- If the number of bits per word is greater than the FIFO data width:
 - Receive: All bits after the LSB of the FIFO data width are discarded.
 - Transmit: All bits after the LSB of the FIFO data width are sent as 0.
- If the number of bits per word is less than the FIFO data width:
 - Receive: The data received is stored starting at the MSB of the FIFO entry up to the number of bits per word plus one bit.
 - Transmit: The transmit FIFO data is sent from the LSB to the number of bits plus 1.

Right aligned: I2S_CTRLOCHO.align = 1

- If the number of bits per word is greater than the FIFO data width:
 - Receive: The data received is stored in the receive FIFO starting with the LSB up to the FIFO data width, and any additional bits are discarded.
 - Transmit: 0 bits are transmitted for all bits greater than the FIFO data width. For example, if the bits per word field is set to 12 and the FIFO data width is 8, the first 4 bits are transmitted as 0, the 8 bits of data in the FIFO are transmitted.
- If the number of bits per word is less than the FIFO data width:
 - Receive: The data received is sign extended and saved to the receive FIFO.
 - Transmit: The transmit FIFO data is sent from the LSB to the number of bits plus 1.

11.6.6 Typical Audio Configurations

Table 11-7 shows the relationship between the bits per word field and the sample size field. *Equation 11-7* shows the required relationship between the sample size field and the bits per word field.

Equation 11-7: Sample Size Relationship Bits per Word

 $I2Sn_CTRL1CH0.smp_size \leq I2Sn_CTRL1CH0.bits_word$

The I2S_CTRL1CH0.bits_word column in Table 11-7 is set using the equation $\frac{\#BCLK}{Channel} - 1$. The I2S_CTRL1CH0.smp_size column is the number of samples per word captured from the I2S bus and is calculated by the equation $\frac{\#Samples}{Channel} - 1$. Channel refers to the left and right channels of audio.

Analog Devices Page 189 of 327

Audio Sample Width/	# BCLK	# Samples		Sign		
Samples per WS Cycle Channel		Channel	bits_word	smp_size	wsize	extension (align = 1) †
8 bits / 16	8	8	7	7	0	
16 bits / 32	16	16	15	15	1	
20 bits / 40	20	20	19	19	2	sign
24 bits / 48	24	24	23	23	2	sign
24 bits / 64	32	24	31	23	2	sign
32 bits / 64	32	32	31	31	2	

[†] Sign Extension only applies when I2S CTRLOCHO.align is set to 1 and I2S CTRL1CHO.smp_size is less than the FIFO width size setting.

11.7 Interrupt Events

The I²S peripheral generates interrupts for the events shown in *Table 11-8*. An interrupt is generated if the corresponding interrupt enable field is set. The interrupt flags stay set until cleared by the software by writing 1 to the interrupt flag field.

Table 11-8: I²S Interrupt Events

Event	Interrupt Flag	Interrupt Enable
Receive FIFO overrun	I2S_INTFL.rx_ov_ch0	I2S_INTEN.rx_ov_ch0
Receive threshold	I2S_INTFL.rx_thd_ch0	I2S_INTEN.rx_thd_ch0
Transmit FIFO half-empty	I2S_INTFL.tx_he_ch0	I2S_INTEN.tx_he_ch0
Transmit FIFO one byte remaining	I2S_INTFL.tx_ob_ch0	I2S_INTEN.tx_ob_ch0

11.7.1 Receive FIFO Overrun

A receive FIFO overrun event occurs if the number of data words in the receive FIFO, *I2S_DMACH0.rx_lvl* is equal to the RX_FIFO_DEPTH, and another word is shifted into the FIFO. The hardware automatically sets the *I2S_INTFL.rx_ov_ch0* field to 1 when this event occurs.

11.7.2 Receive FIFO Threshold

A receive FIFO threshold event occurs when a word is shifted in and the number of words in the receive FIFO, I2S_DMACHO.rx_IvI, exceeds the I2S_CTRLOCHO.rx_thd_val. The event does not occur if the opposite transition occurs. When this event occurs, hardware automatically sets the I2S_INTFL.rx_thd_ch0 field to 1.

11.7.3 Transmit FIFO Half-Empty

A transmit FIFO half-empty event occurs when the number of words in the transmit FIFO, *I2S_DMACH0.tx_lvl*, is less than ½ of the TX_FIFO_DEPTH as shown in *Equation 11-8*. When this event occurs, the *I2S_INTFL.tx_he_ch0* flag is set to 1 by hardware.

Note: The transmit FIFO half-empty interrupt flag is set by the hardware one BCLK cycle before the actual condition occurring. If the BCLK is much slower than the I²S peripheral clock, the software can receive the interrupt while the actual transmit FIFO level is still equal to ½ of the TX_FIFO_DEPTH. The software should always read the transmit FIFO level before filling it to determine the correct number of words to write to the transmit FIFO. Read the level of the transmit FIFO using the I2S_DMACHO.tx_IVI field.

Equation 11-8: Transmit FIFO Half-Empty Condition

$$I2S_DMACH0.tx_lvl < \left(\frac{TX\;FIFO\;DEPTH}{2}\right)$$

Analog Devices Page 190 of 327

11.7.4 Transmit FIFO One Entry Remaining

A transmit FIFO one entry remaining event occurs when the number of entries in the transmit FIFO is 1, I2S_DMACH0.tx_IvI = 1. When this event occurs, the I2S_INTFL.tx_ob_ch0 flag is set to 1 by the hardware.

Note: The transmit FIFO one entry remaining interrupt flag is set by the hardware one BCLK cycle before the actual condition occurring. If the BCLK is much slower than the I²S peripheral clock, the software can receive the interrupt while the actual transmit FIFO level is still equal to 2. The software should always read the transmit FIFO level before filling it to determine the correct number of words to write to the transmit FIFO. Read the level of the transmit FIFO using the I2S_DMACHO.tx_IVI field.

11.8 Direct Memory Access

The I²S supports DMA for both transmit and receive; separate DMA channels can be assigned to the receive and transmit FIFOs. The following describes the behavior of the receive and transmit DMA requests.

- A receive DMA request is asserted when the number of words in the receive FIFO is greater than or equal to the receive FIFO threshold.
- A transmit DMA request is asserted when the number of valid bytes in the transmit FIFO is less than ½ of the transmit FIFO's depth.

11.9 Block Operation

After exiting a power-on reset, the IP is disabled by default. It must be enabled and configured by the software to establish the I²S serial communication. A typical software sequence is shown below.

- 1. Set GCR_PCLKDIS1.i2s to 0 to enable the I2S peripheral clock source shown in Table 11-1.
- 2. Disable the I²S clock by setting I2S_CTRL1CH0.en to 0.
- 3. Set I2S_CTRLOCHO.rst to 1 to reset the I2S configuration.
- 4. Set I2S_CTRLOCHO.flush to 1 to flush the FIFO buffers.
- 5. Configure the I2S_CTRLOCHO.ch_mode to select the controller or target configuration.
 - a. For controller mode, configure the baud rate by programming the I2S_CTRL1CH0.clkdiv field to achieve the required bit rate, set the I2S_CTRL1CH0.smp_size field to the desired sample size of the data, and the I2S_CTRL1CH0.adjst field if the Sample Size is smaller than the number of bits per word.
- 6. Configure the threshold of the receive FIFO by programming the *I2S_CTRLOCHO.rx_thd_val*. The transmit FIFO threshold is a fixed value, which is half of the transmit FIFO depth.
- 7. If desired, configure DMA operation. See section *Direct Memory Access* for details.
- 8. Enable interrupt functionality by configuring the *I2S INTEN* register if desired.
- 9. Program the *clkdiv* bits in the *I2S_CTRL1CH0* register for the new bit clock frequency.
- 10. For controller operation, load data in the transmit FIFO for transmit.
- 11. Re-enable the bit clock by setting I2S CTRL1CHO.en to 1.

Analog Devices Page 191 of 327

11.10 Registers

See *Table 3-2* for the base address of this peripheral. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 11-9: I²S Register Summary

Offset	Register Name	Description			
[0x0000]	I2S_CTRLOCHO	I ² S Global Mode Control 0 Register			
[0x0010]	I2S_CTRL1CH0	S Controller Mode Configuration Register			
[0x0030]	I2S_DMACH0	I ² S DMA Control Channel Register			
[0x0040]	I2S_FIFOCH0	I ² S FIFO Register			
[0x0050]	I2S_INTFL	I ² S Interrupt Status Register			
[0x0054]	I2S_INTEN	I ² S Interrupt Enable Register			

11.10.1 Register Details

Table 11-10: I²S Control 0 Register

I ² S Contro	I ² S Control 0 Register			I2S_CTRLOCH0	[0x0000]
Bits	Field	Access	Reset	Description	
31:24	rx_thd_val	R/W	0	Receive FIFO Interrupt Threshold This field specifies the level of the receive FIFO for the threshold interrupt generation. Values of 0 or greater than the RX_FIFO_DEPTH are ignored.	
23:21	-	RO	0	Reserved	
20	fifo_lsb	R/W	0	FIFO Bit Field Control Only used if the FIFO size is larger than the sample size and I2S_CTRLOCHO.align = 0. For transmit, the LSB part is sent from the FIFO. For receive, store the LSB part in the FIFO without sign extension. 0: Disabled. 1: Enabled.	
19	rst	R/W1O	0	Reset Write 1 to reset the I ² S peripheral. The hardware automatically clears this field to 0 when the reset is complete. 0: Reset not in process. 1: Reset peripheral.	
18	flush	R/W1O	0	FIFO Flush Write 1 to start a flush of the receive FIFO and the transmit FIFO. The hardware automatically clears this field when the operation is complete. 0: Flush complete or not in process. 1: Flush receive and transmit FIFOs.	
17	rx_en	R/W	0	Receive Enable Enable receive mode for the I ² S peripheral. 0: Disabled. 1: Enabled.	

Analog Devices Page 192 of 327

I ² S Contro	ol 0 Register			I2S_CTRLOCHO	[0x0000]	
Bits	Field	Access	Reset	Description		
16	tx_en	R/W	0	Transmit Enable		
				Enable transmit mode for the I ² S peripheral.		
				0: Disabled.		
				1: Enabled.		
15:14	wsize	R/W	0x3	Data Size When Reading/Writing FIFO		
				Set this field to the desired width for data writ	es and reads from the FIFO.	
				0: Byte.		
				1: Half-word (16 bits).		
				2-3: Word (32 bits).		
13:12	stereo	R/W	0	I ² S Mode		
				Select the mode for the I ² S to stereo, mono le only.	ft channel only, or mono right channel	
				0-1: Stereo.		
				2: Mono left channel.		
				3: Mono right channel.		
11	-	RO	0	Reserved		
10	align	R/W	0	FIFO Data Alignment		
				Set this field to control the alignment of the dather FIFO data width, I2S_CTRLOCHO.wsize, is n	-	
				0: MSB.		
				1: LSB.		
9	msb_loc	R/W	0	First Bit Location Sampling		
				This field controls when the first bit is transmifirst bit is transmitted/received on SDO/SDI or		
				default. Set this field to 1 to transmit/received		
				LRCLK cycle.		
				0: Second complete LRCLK cycle is the first b	it of the data.	
				1: First complete LRCLK cycle is the first bit of	of the data.	
8	ws_pol	R/W	0	LRCLK Polarity Select		
				This field determines the polarity of the LRCLK		
				data. Set this field to 1 to associate the left chadefault setting is the standard I ² S association.	annel with the LRCLK high state. The	
				0: LRCLK low for the left channel.		
				1: LRCLK high for the left channel.		
7:6	ch_mode	R/W	0	Mode		
				Set this field to indicate controller or target I ² S the ERFO must be used to generate the LRCLK	-	
				0: Controller mode, internal generation of LRCLK/BCLK using the ERFO.		
				1-2: Reserved.		
				3: Target mode, external generation of LRCL	K/BCLK.	
5:2	-	DNM	0	Reserved, Do Not Modify		

Analog Devices Page 193 of 327

I ² S Control 0 Register				I2S_CTRLOCH0	[0x0000]	
Bits	Field	Access	Reset	Description		
1	lsb_first	R/W	0	LSB First		
				Setting this field to 1 indicates the least significant bit of the data is transmitted/received first on the SDI/SDO pins. The default setting, 0, indicates the most significant bit of the data is received first.		
				0: Disabled.		
				1: Enabled.		
0	-	RO	0	Reserved		

Table 11-11: I²S Controller Mode Configuration Register

I ² S Contro	oller Mode Config	uration		I2S_CTRL1CH0 [0x0010]			
Bits	Field	Access	Reset	Description			
31:16	clkdiv	R/W	0	I ² S Frequency Divisor Set this field to the required divisor to achieve the desired frequency for the I ² S BCLK. See BCLK Generation for Controller Mode for detailed information. Note: This field only applies when the I ² S peripheral is set to controller mode, I2S_CTRLOCHO.ch_mode = 0.			
15	adjust	R/W	0	Data Justification When Sample Size is Less than Bits Per Word This field is used to determine which bits are used if the sample size is less than the bits per word. 0: Left adjustment. 1: Right adjustment.			
14	-	RO	0	Reserved			
13:9	smp_size	R/W	0	Sample Size This field is the desired sample size of the data received or transmitted with respect to the Bits per Word field. In most use cases, the sample size is equal to the bits per word. However, in some situations, fewer bits are required by the application, which allows flexibility. An example use case would be for 16-bit audio being received, and the application only needs 8 bits of resolution. See Sample Size for additional details. Note: The sample size is equal to I2S_CTRL1CHO.bits_word when I2S_CTRL1CHO.smp_size = 0 or I2S_CTRL1CHO.smp_size > I2S_CTRL1CHO.bits_word.			
8	en	R/W	0	I ² S Enable For controller mode operation, this field is used to start generating the I ² S LRCL BCLK outputs. In target mode, this field enables the peripheral to begin receivin on the I ² S interface. O: Disabled. 1: Enabled.			
7:5	-	RO	0	Reserved			
4:0	bits_word	R/W	0	I ² S Word Length This field is defined as the I ² S data bits per left and right channel. Example: If the bit clocks is 16 per half frame, bits_word is 15.			

Analog Devices Page 194 of 327

Table 11-12: I²S DMA Control Register

I ² S DMA	Control			12S_DMACH0 [0x0030]				
Bits	Field	Access	Reset	Description Description				
31:24	rx_lvl	RO	0	Receive FIFO Level				
				This field is the number of data words in the receive FIFO.				
23:16	tx_lvl	RO	0	Transmit FIFO Level				
				This field is the number of data words in the transmit FIFO.				
15	dma_rx_en	R/W	0	DMA Receive Channel Enable				
				0: Disabled.				
				1: Enabled.				
14:8	dma_rx_thd_val	R/W	0	0 DMA Receive FIFO Event Threshold				
				If the receive FIFO level is greater than this value, then the receive FIFO DMA inte				
				sends a signal to the system DMA indicating the receive FIFO has characters to to memory.				
7	dma_tx_en	R/W	0	DMA Transmit Channel Enable				
				0: Disabled.				
				1: Enabled.				
6:0	dma_tx_thd_val	RO	0	DMA Transmit FIFO Event Threshold				
				If the transmit FIFO level is less than this value	e, then the transmit FIFO DMA interface			
				sends a signal to system DMA, indicating the t memory.	ransmit FIFO is ready to receive data from			

Table 11-13: I²S FIFO Register

I ² S FIFO Register				12S_FIFOCH0 [0x0040]	
Bits	Field	Access	Reset	Reset Description	
31:0	data	R/W	0	I ² S FIFO Writing to this field loads the next character in I ² S_DMACHO.tx_IvI. Writes are ignored if the	
				Reads of this field return the next character as decrement the I2S_DMACH0.rx_lvl. The value	

Table 11-14: I²S Interrupt Flag Register

I ² S Interr	² S Interrupt Flag			I2S_INTFL [0x0050]			
Bits	Field	Access	Reset	Description			
31:4	-	DNM	0	Reserved, Do Not Modify			
3	tx_he_ch0	W1C	0	f this field is set to 1, the event has occurred. Write 1 to clear. 0: No event. 1: Event occurred.			
2	tx_ob_ch0	W1C	0	Transmit FIFO One Entry Remaining Event Int If this field is set to 1, the event has occurred. 0: No event. 1: Event occurred.	. •		

Analog Devices Page 195 of 327

I ² S Interro	I ² S Interrupt Flag			I2S_INTFL	[0x0050]		
Bits	Field	Access	Reset	et Description			
1	rx_thd_ch0	W1C	0	Receive FIFO Threshold Event Interrupt Flag If this field is set to 1, the event has occurred. Write 1 to clear. 0: No event. 1: Event occurred.			
0	rx_ov_ch0	W1C	0	Receive FIFO Overrun Event Interrupt Flag If this field is set to 1, the event has occurred. 0: No event. 1: Event occurred.	Write 1 to clear.		

Table 11-15: I²S Interrupt Enable Register

I ² S Interr	upt Enable			12S_INTEN [0x0054]				
Bits	Field	Access	Reset	Description				
31:4	-	DNM	0	eserved, Do Not Modify				
3	tx_he_ch0	R/W	0	Transmit FIFO Half-Empty Event Interrupt Enable				
				Set this field to 1 to enable interrupts for this even	t.			
				0: Disabled.				
				1: Enabled.				
2	tx_ob_ch0	R/W	0	Transmit FIFO One Entry Remaining Event Interrupt Enable				
				Set this field to 1 to enable interrupts for this even	t.			
				0: Disabled.				
				1: Enabled.				
1	rx_thd_ch0	R/W	0	Receive FIFO Threshold Event Interrupt Enable				
				Set this field to 1 to enable interrupts for this even	t.			
				0: Disabled.				
				1: Enabled.				
0	rx_ov_ch0	R/W	0	Receive FIFO Overrun Event Interrupt Enable				
				Set this field to 1 to enable interrupts for this even	t.			
				0: Disabled.				
				1: Enabled.				

Analog Devices Page 196 of 327

12. Serial Peripheral Interface (SPI)

The SPI peripheral is a configurable, flexible, and efficient synchronous interface between multiple SPI devices on a single bus. The SPI bus uses a single clock signal, single, dual, or quad data lines, and one or more target select lines for communication with external SPI devices.

The provided SPI ports support full-duplex, bi-direction I/O, and each SPI includes a bit rate generator (BRG) for generating the clock signal when operating in controller mode. Each SPI port operates independently and requires minimal processor overhead. All instances of the SPI peripheral support both controller and target modes and support single controller and multi-controller networks.

Features include:

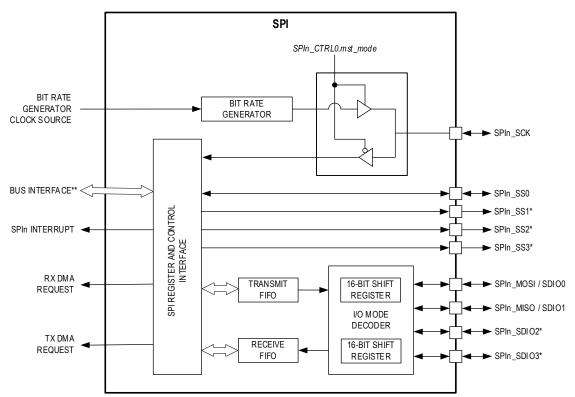

- Dedicated BRG for precision serial clock generation in controller mode
 - Up to $\frac{f_{PCLK}}{2}$ for instances on the APB bus.
 - Up to $\frac{f_{HCLK}}{2}$ for instances on the AHB bus.
 - Programmable SCK duty cycle timing.
- Full-duplex, synchronous communication of 2 to 16-bit characters
 - 1-bit and 9-bit characters are not supported.
 - 2-bit and 10-bit characters do not support maximum clock speed. SPIn_CLKCTRL.clkdiv must be > 0.
- 3-wire and 4-wire SPI operation for single-bit communication.
- Single, Dual, or Quad I/O operation.
- Byte-wide transmit and receive FIFOs with 32-byte depth
 - For character sizes greater than 8, each character uses 2 entries per character resulting in 16 entries for the transmit and receive FIFO.
- Transmit and receive DMA support.
- SPI modes 0, 1, 2, 3.
- Configurable target select lines
 - Programmable target select level.
- Programmable target select timing with respect to the SCK starting edge and ending edge.
- Multi-controller mode fault detection.

Figure 12-1 shows a high-level block diagram of the SPI peripheral. See *Table 12-1* for the peripheral-specific peripheral bus assignment and BRG clock source.

Analog Devices Page 197 of 327

Figure 12-1: SPI Block Diagram

^{*} The number of target select and SDIO signals can vary for each instance of the peripheral.

** The bus interface (APB or AHB) can vary for each instance of the peripheral.

12.1 **Instances**

There are two instances of the SPI peripheral, as shown in *Table 12-1*.

Table 12-1: MAX32670/MAX32671 SPI Instances

		Formats				Bit Rate
Instance	3-Wire	4-Wire	Dual	Quad	Hardware Bus	Generator Clock Source
SPI0	Yes	Yes	No	No	APB	$f_{ extit{PCLK}}$
SPI1	Yes	Yes	No	No	АРВ	$f_{ extsf{PCLK}}$
SPI2	Yes	Yes	No	No	АРВ	$f_{ extsf{PCLK}}$

Note: Refer to the device data sheet's pin description table for the list of alternate function assignments for each peripheral instance.

Analog Devices Page 198 of 327

12.2 Formats

12.2.1 Four-Wire SPI

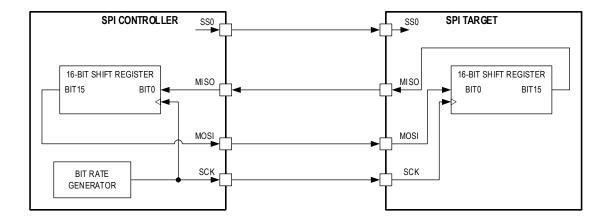

SPI devices operate as either a controller or target device. Four signals are required for communication in four-wire SPI, as shown in *Table 12-2*.

Table 12-2: Four-Wire Format Signals

Signal	Description	Direction
SCK	Serial Clock	The controller generates the SCK signal, an output from the controller, and an input to the target.
MOSI	Controller Output Target Input	This signal is used as an output for sending data to the target in controller mode. In target mode, this is the input data from the controller.
MISO	Controller Input Target Output	In controller mode, this signal is used as an input for receiving data from the target. This signal is an output for transmitting data to the controller in target mode.
66	Tarant Calant	This signal is an output used to select a target device before communication in controller mode. Peripherals may have multiple target select outputs to communicate with one or more external target devices.
SS	Target Select	SPIn_SSO is a dedicated input in target mode that indicates an external controller is starting communication. Other target select signals into the peripheral are ignored in target mode.

The SPI controller starts communication with a target by asserting the target select output. The controller then starts the SPI clock through the SCK output pin. When a target device's target select pin is deasserted, the target device is required to put the SPI pins in tri-state mode.

Figure 12-2: 4-Wire SPI Connection Diagram

12.2.2 Three-Wire SPI

The signals in three-wire SPI operation are shown in *Table 12-3*. The MOSI signal is used as a bidirectional, half-duplex I/O referred to as target input target output (SISO). Three-wire SPI also uses a serial clock signal generated by the controller and a target select pin controlled by the controller.

Analog Devices Page 199 of 327

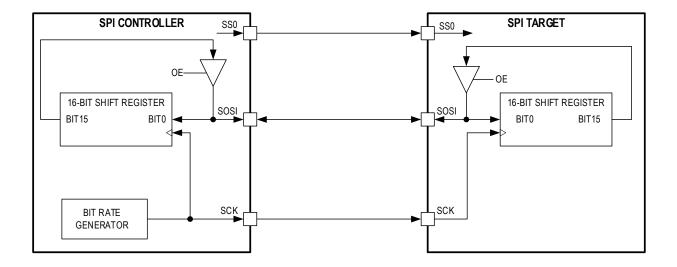


Table 12-3: Three-Wire Format Signals

Signal	Description	Direction
SCK		The controller generates the serial clock signal, an output from the controller, and an input to the target.
MOSI		This is a half-duplex, bidirectional I/O pin used for communication between the SPI controller and target. This signal is used to transmit data from the controller to the target and to receive data from the target by the controller.
SS	Ç	In controller mode, this signal is an output used to select a target device before communication. In target mode, SPIn_SSO is a dedicated input that indicates an external controller is going to start communication. Other target select signals into the target are ignored in target mode

A three-wire SPI network is shown in *Figure 12-3*. The controller device selects the target device using the target select output. The communication starts with the controller asserting the target select line and then starting the clock (SCK). In three-wire SPI communication, the controller and target must both know the intended direction of the data to prevent bus contention. For a write, the controller drives the data out the SISO pin. For a read, the controller must release the SISO line and let the target drive the SISO line. The direction of transmission is controlled using the FIFO. Writing to the FIFO starts the three-wire SPI write, and reading from the FIFO starts a three-wire SPI read transaction.

Figure 12-3: Generic 3-Wire SPI Controller to Target Connection

12.3 Pin Configuration

Before configuring the SPI peripheral, first, disable any SPI activity for the port by clearing the SPIn_CTRLO.en field to 0.

12.3.1 SPI Alternate Function Mapping

Pin selection and configuration are required to use the SPI port. The following information applies to SPI controller and target operation as well as three-wire, four-wire, dual, and quad mode communications. Determine the pins required for the SPI type and mode in the application, and configure the required GPIO as described in the following sections. Refer to the MAX32670/MAX32671 data sheet for pin availability for a specific package.

When the SPI port is disabled, *SPIn_CTRLO.en* = 0, the GPIO pins enabled for SPI alternate function are placed in high-impedance input mode.

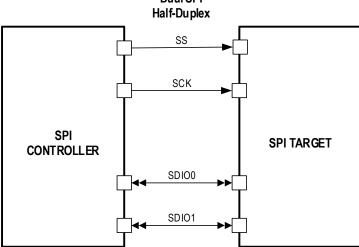
Analog Devices Page 200 of 327

12.3.2 Four-Wire Format Configuration

Four-wire SPI uses SCK, MISO, MOSI, and one or more SS pins. Four-wire SPI may use more than one target select pin for a transaction, resulting in more than four wires total. However, the communication is referred to as four-wire for historical reasons.

Note: Select the pins mapped to the SPI external device in the design and modify the setup accordingly. There is no restriction on which alternate function is used for a specific SPI pin, and each SPI pin can be used independently from the other pins chosen. However, it is recommended that only one set of GPIO port pins be used for any network.

12.3.3 Three-Wire Format Configuration


Three-wire SPI uses SCK, MOSI, and one or more target select pins for an SPI transaction. Three-wire SPI configuration is identical to the four-wire configuration, except SPIn_MISO does not need to be set up for the SPI alternate function. The direction of communication in three-wire SPI mode is controlled by the transmit and receive FIFO enables. Enabling the receive FIFO and disabling the transmit FIFO indicates a read transaction. Enabling the transmit FIFO and disabling the Receive FIFO indicates a write transaction. It is an illegal condition to enable both the transmit and receive FIFOs in three-wire SPI operation.

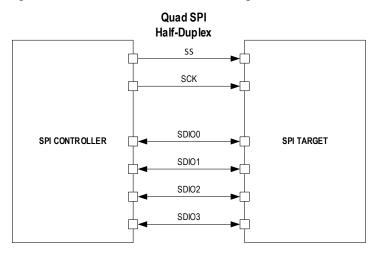
12.3.4 Dual-Mode Format Configuration

In dual-mode SPI, two I/O pins are used to transmit 2-bits of data per SCK clock cycle. The communication is half-duplex, and the direction of the data transmission must be known by both the controller and target for a given transaction. Dual-mode SPI uses SCK, SDIOO, SDIO1, and one or more target select lines, as shown in *Figure 12-4*. The configuration of the GPIO pins for dual-mode SPI is identical to four-wire SPI, and the mode is controlled by setting *SPIn_CTRL2.data_width* to 1, indicating to the SPI hardware to use SDIOO and SDIO1 for half-duplex communication rather than full-duplex communication.

Figure 12-4: Dual Mode SPI Connection Diagram

Dual SPI

12.3.5 Quad-Mode Format Pin Configuration


Quad-mode SPI uses four I/O pins to transmit four bits of data per transaction. In quad-mode SPI, the communication is half-duplex, and the controller and target must know the direction of transmission for each transaction. Quad-mode SPI uses SCK, SDIO0, SDIO1, SDIO2, SDIO3, and one or more target select pins.

Quad-mode SPI transmits four bits per SCK cycle. Select quad-mode SPI by setting SPIn_CTRL2.data_width to 2.

Analog Devices Page 201 of 327

Figure 12-5: Quad Mode SPI Connection Diagram

12.4 Configuration

12.4.1 Serial Clock

The SCK signal synchronizes data movement in and out of the device. The controller drives SCK as an output to the target's SCK pin. When SPI is set to controller mode, the SPI bit rate generator creates the serial clock and outputs it on the configured SPIn_SCK pin. When SPI is configured for target operation, the SPIn_SCK pin is an input from the external controller, and the SPI hardware synchronizes communications using the SCK input. Operating as a target, if an SPI target select input is not asserted, the SPI ignores any signals on the serial clock and serial data lines.

In both controller and target devices, data is shifted on one edge of the SCK and is sampled on the opposite edge where data is stable. Data availability and sampling time are controlled using the SPI phase control field, SPIn_CTRL2.clkpha. The SCK clock polarity field, SPIn_CTRL2.clkpol, controls if the SCK signal is active high or active low.

The SPI peripheral supports four combinations of SCK phase and polarity referred to as SPI modes 0, 1, 2, and 3. Clock Polarity (SPIn_CTRL2.clkpol) selects an active low/high clock and has no effect on the transfer format. Clock Phase (SPIn_CTRL2.clkpha) selects one of two different transfer formats.

For proper data transmission, the clock phase and polarity must be identical for the SPI controller and target. The controller always places data on the MOSI line a half-cycle before the SCK edge for the target to latch the data. See section *Clock Phase and Polarity Control* for additional details.

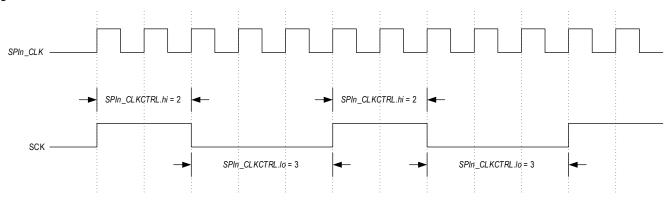
12.4.2 Peripheral Clock

See *Table 12-1* for the specific input clock, f_{INPUT_CLK} , used for each SPI instance. For SPI instances assigned to the AHB bus, the SPI input clock is the system clock, SYS_CLK. For SPI instances mapped to the APB bus, the SPI input clock is the system peripheral clock, PCLK. The SPI input clock drives the SPI peripheral clock. The SPI provides an internal clock, SPI_CLK , that is used within the SPI peripheral for the base clock to control the module and generate the SCK clock when in controller mode. Set the SPI internal clock using the field $SPIn_CLKCTRL.clkdiv$ as shown in *Equation 12-1*. Valid settings for $SPIn_CLKCTRL.clkdiv$ are 0 to 8, allowing a divisor of 1 to 256.

Equation 12-1: SPI Peripheral Clock

$$f_{SPI_CLK} = \frac{f_{INPUT_CLK}}{2^{clkdiv}}$$

12.4.3 Controller Mode Serial Clock Generation


In controller and multi-controller mode, the SCK clock is generated by the controller. The SPI peripheral provides control for both the high time and low time of the SCK clock. This control allows setting the high and low times for the SCK to duty

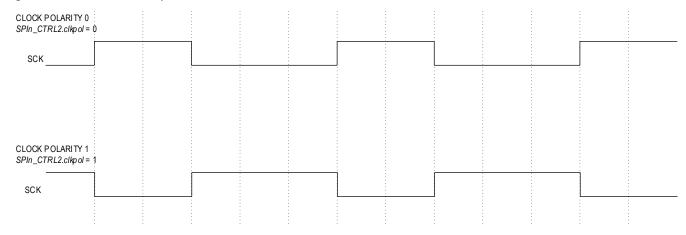
Analog Devices Page 202 of 327

cycles other than 50% if required. The SCK clock uses the SPI peripheral clock as a base value, and the high and low values are a count of the number of f_{SPI_CLK} clocks. Figure 12-6 visually represents the use of the $SPIn_CLKCTRL.hi$ and $SPIn_CLKCTRL.lo$ fields for a non-50% duty cycle serial clock generation. See Equation 12-2 and Equation 12-3 for calculating the SCK high and low time from the $SPIn_CLKCTRL.hi$ and $SPIn_CLKCTRL.hi$ field values.

Figure 12-6: SCK Clock Rate Control

Equation 12-2: SCK High Time

 $t_{SCK_HI} = t_{SPIn_CLK} \times SPIn_CLKCTRL.hi$


Equation 12-3: SCK Low Time

 $t_{SCK_LOW} = t_{SPIn_CLK} \times SPIn_CLKCTRL. lo$

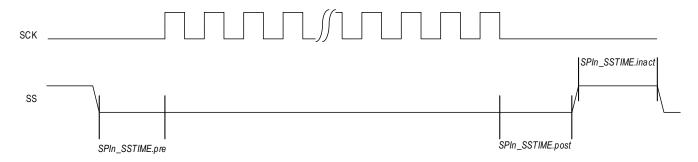
12.4.4 Clock Phase and Polarity Control

SPI supports four combinations of clock and phase polarity, as shown in *Table 12-4*. Clock polarity is controlled using the bit *SPIn_CTRL2.clkpol* and determines if the clock is active high or active low, as shown in *Figure 12-7*. Clock polarity does not affect the transfer format for SPI. The clock phase determines when the data must be stable for sampling. Setting the clock phase to 0, *SPIn_CTRL2.clkpha* = 0, dictates the SPI data is sampled on the initial SPI clock edge regardless of clock polarity. Phase 1, *SPIn_CTRL2.clkpha* = 1, results in data sample occurring on the second edge of the clock regardless of clock polarity.

Figure 12-7: SPI Clock Polarity

For proper data transmission, the clock phase and polarity must be identical for the SPI controller and target. The controller always places data on the MOSI line a half-cycle before the SCK edge for the target to latch the data.

Analog Devices Page 203 of 327


Table 12-4: SPI Modes Clock Phase and Polarity Operation
--

SPI Mode	SPIn_CTRL2.clkpol	SPIn_CTRL2.clkpha	SCK Transmit Edge	SCK Receive Edge	SCK Idle State	SCLK ≥ 20MHz
0	0	0	Falling	Rising	Low	SPIn_CTRL2.sclk_fb_inv = 1
1	0	1	Rising	Falling	High	SPIn_CTRL2.sclk_fb_inv = 0
2	1	0	Rising	Falling	Low	SPIn_CTRL2.sclk_fb_inv = 1
3	1	1	Falling	Rising	High	SPIn_CTRL2.sclk_fb_inv = 0

12.4.5 Target Select Configuration

The SPI supports additional controller mode configuration for fine tuning the target select lines timing with respect to the time between SPI transactions as well as how many clock cycles between target select going active and the first SCK transition and the last SCK transition to target select going inactive. The register fields for controlling each of these portions of the target control signal (SPIn_SS) are shown in *Figure 12-8*. Each of these fields selects the number of system clocks for the delay from 1 to 256. Each of these fields defaults to the maximum setting of 256 system clocks.

Figure 12-8: Target Select Configuration Using SPIn_SSTIME Register

12.4.6 Transmit and Receive FIFOs

The transmit FIFO hardware is 32 bytes deep. The write data width can be 8-, 16- or 32-bits wide. A 16-bit write queues a 16-bit word to the FIFO hardware. A 32-bit write queues two 16-bit words to the FIFO hardware with the least significant word dequeued first. Bytes must be written to two consecutive byte addresses, with the odd byte as the most significant byte and the even byte as the least significant byte. The FIFO logic waits for both the odd and even bytes to be written to this register space before dequeuing the 16-bit result to the FIFO.

The receive FIFO hardware is 32 bytes deep. Read data width can be 8-, 16- or 32-bits. A byte read from this register dequeues one byte from the FIFO. A 16-bit read from this register dequeues two bytes from the FIFO, least significant byte first. A 32-bit read from this register dequeues four bytes from the FIFO, least significant byte first.

12.4.7 Interrupts and Wakeups

The SPI supports multiple interrupt sources. Status flags for each interrupt are set regardless of the state of the interrupt enable bit for that event. The event happens once when the condition is satisfied. The status flag must be cleared by the software by writing a 1 to the interrupt flag.

Analog Devices Page 204 of 327

The following FIFO interrupts are supported:

- Transmit FIFO Empty.
- Transmit FIFO Threshold.
- Receive FIFO Full.
- Receive FIFO Threshold.
- Transmit FIFO Underrun.
 - Target mode only, controller mode stalls the serial clock.
- Transmit FIFO Overrun.
- Receive FIFO Underrun.
- Receive FIFO Overrun.
 - Target mode only, controller mode stalls the serial clock.
- SPI supports interrupts for the internal state of the SPI as well as external signals. The following transmission interrupts are supported:
 - SS asserted or deasserted.
 - SPI transaction complete.
 - Controller mode only.
 - Target mode transaction aborted.
 - Multi-controller fault.

The SPI port can wake up the microcontroller from low-power modes when the wake event is enabled. SPI events that can wake the microcontroller are:

- Receive FIFO full.
- Transmit FIFO empty.
- · Receive FIFO threshold.
- Transmit FIFO threshold.

12.5 Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple instances of the peripheral are provided, each instance has its own, independent set of registers, as shown in *Table 12-5*. Register names for a specific instance are defined by replacing "n" with the instance number. As an example, a register PERIPHERALn_CTRL resolves to PERIPHERALO_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 12-5: SPI Register Summary

Offset	Register Name	Description
[0x0000]	SPIn_FIFO32	SPI FIFO Data Register
[0x0000]	SPIn_FIFO16	SPI 16-bit FIFO Data Register
[0x0000]	SPIn_FIFO8	SPI 8-bit FIFO Data Register
[0x0004]	SPIn_CTRL0	SPI Controller Signals Control Register
[0x0008]	SPIn_CTRL1	SPI Transmit Packet Size Register
[0x000C]	SPIn_CTRL2	SPI Static Configuration Register
[0x0010]	SPIn_SSTIME	SPI Target Select Timing Register

Analog Devices Page 205 of 327

Offset	Register Name	Description			
[0x0014]	SPIn_CLKCTRL	SPI Controller Clock Configuration Register			
[0x001C]	SPIn_DMA	SPI DMA Control Register			
[0x0020]	SPIn_INTFL	SPI Interrupt Flag Register			
[0x0024]	SPIn_INTEN	SPI Interrupt Enable Register			
[0x0028]	SPIn_WKFL	SPI Wakeup Flags Register			
[0x002C]	SPIn_WKEN	SPI Wakeup Enable Register			
[0x0030]	SPIn_STAT	PI Status Register			

12.5.1 Register Details

Table 12-6: SPI FIFO32 Register

SPI FIFO Data				SPIn_FIFO32	[0x0000]	
Bits	Name	Access	Reset	t Description		
31:0	data	R/W	0	SPI FIFO Data Register		
				characters to the Transmit FIFO. Read a	ceive FIFO, and writing to this register adds	

Table 12-7: SPI 16-bit FIFO Register

SPI FIFO Data				SPIn_FIFO16	[0x0000]		
Bits	Name	Access	Reset	Description			
31:16	-	R/W	0	Reserved	Reserved		
15:0	data	R/W	0	SPI 16-bit FIFO Data Register	SPI 16-bit FIFO Data Register		
				register returns characters from the Recharacters to the Transmit FIFO. Read a	This register is used for the SPI Transmit and Receive FIFO. Reading from this register returns characters from the Receive FIFO, and writing to this register adds characters to the Transmit FIFO. Read and write this register in 2-byte width only for 16-bit FIFO access. Reading from an empty FIFO or writing to a full FIFO results		

Table 12-8: SPI 8-bit FIFO Register

SPI 8-bit F	SPI 8-bit FIFO Data			SPIn_FIFO8	[0x0000]		
Bits	Name	Access	Reset	Description			
31:8	-	R/W	0	Reserved	Reserved		
7:0	data	R/W	0	SPI 8-bit FIFO Data Register			
				This register is used for the SPI Transmit and Receive FIFO. Reading from this register returns characters from the Receive FIFO, and writing to this register adds characters to the Transmit FIFO. Read and write this register in 1-byte width only for 8-bit FIFO access. Reading from an empty FIFO or writing to a full FIFO results in undefined behavior.			

Analog Devices Page 206 of 327

Table 12-9: SPI Control O Register

SPI Control 0				SPIn_CTRL0	[0x0004]	
Bits	Name	Access	Reset	Description		
31:20	-	R/W	0	Reserved	Reserved	
19:16	ss_active	R/W	0	Controller Target Select		
				The SPI includes up to four target select lines for each port. This field selects which target select pin is active when the next SPI transaction is started (SPIn_CTRLO.start = 1). One or more target select pins can be selected for each SPI transaction by setting the bit for each target select pin. For example, use SPIn_SSC and SPIn_SS2 by setting this field to 0b0101 or select all target selects by setting this field to 0b1111.		
				Note: This field is only used when to (SPIn_CTRLO.mst_mode = 1).	he SPI is configured for controller mode	
15:9	-	R/W	0	Reserved		
8	ss_ctrl	R/W	0	Controller Target Select Control		
				This field controls the behavior of the target select pins at the completion of a transaction. The default behavior, $ss_ctrl = 0$, deasserts the target select pin at the completion of the transaction. Set this field to 1 to leave the target select pins asserted at the completion of the transaction. If the external device supports this behavior, leaving the target select pins asserted allows multiple transactions without the delay associated with deassertion of the target select pin between transactions.		
				0: Target select is deasserted at t 1: Target select stays asserted at		
7:6	-	R/W	0	Reserved.		
5	start	R/W10	0	Controller Start Data Transmission	1	
				Set this field to 1 to start an SPI con		
				0: No controller mode transactio 1: Initiate the data transmission. complete before setting this fi	Ensure that all pending transactions are	
				Note: This field is only used when to (SPIn_CTRLO.mst_mode = 1).	he SPI is configured for controller mode	
4	ss_io	R/W	0	Controller Target Select Signal Direction for	ection	
				0: Target select is an output. 1: Target select is an input.		
				Note: This field is only used when the SPI is configured for controller mode (SPIn_CTRLO.mst_mode = 1).		
3:2	-	R/W	0	Reserved		
1	mst_mode	R/W	0	SPI Controller Mode Enable		
					node and controller mode operation for the SPI e as an SPI target. Set this field to 1 to set the	
				0: Target mode SPI operation. 1: Controller mode SPI operation	ı.	

Analog Devices Page 207 of 327

SPI Control 0				SPIn_CTRL0	[0x0004]		
Bits	Name	Access	Reset	Description			
0	en	R/W	0	SPI Enable/Disable	SPI Enable/Disable		
				to 0. Disabling the SPI port does no	This field enables and disables the SPI port. Disable the SPI port by setting this field to 0. Disabling the SPI port does not affect the SPI FIFOs or register settings. Access to SPI registers is always available.		
				0: SPI port is disabled. 1: SPI port is enabled.			

Table 12-10: SPI Control 1 Register

SPI Transn	SPI Transmit Packet Size			SPIn_CTRL1	[0x0008]	
Bits	Name	Access	Reset	Description		
31:16	rx_num_char	R	0	Number of Receive Characters		
				This field returns the number of characters to receive in receive FIFO.		
				Note: If the SPI port is set to operate in 4-wire mode, this field is ignored, and the SPIn_CTRL1.tx_num_char field is used for both the number of characters to receive and transmit.		
15:0	tx_num_char	R	0	Number of Transmit Characters		
				This field returns the number of char	acters to transmit from transmit FIFO.	
				Note: If the SPI port is set to operate in number of characters to receive and t	in 4-wire mode, this field is used for both the transmit.	

Table 12-11: SPI Control 2 Register

SPI Contro	12			SPIn_CTRL2	[0x000C]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved	
19:16	ss_pol	R/W	0	Target Select Polarity	
				Controls the polarity of each individual SS signal. SPIn_SSO is control is controlled with bit position 2. For each bit position:	•
				0: SS is active low. 1: SS is active high.	
15	three_wire	R/W	0	Three-Wire SPI Enable	
				Set this field to 1 to enable three-wire SPI co four-wire full-duplex SPI communication.	ommunication. Set this field to 0 for
				0: Four-wire full-duplex mode enabled. 1: Three-wire mode enabled.	
				Note: This field is ignored for Dual SPI, SPIn_ SPIn_CTRL2.data_width =2.	CTRL2.data_width =1, and Quad SPI,
14	-	R/W	0	Reserved	

Analog Devices Page 208 of 327

SPI Control	2			SPIn_CTRL2	[0x000C]
Bits	Name	Access	Reset	Description	
13:12	data_width	R/W	0b00	SPI Data Width This field controls the number of data lines Three-wire SPI: data_width = 0. Set this field to 0, indicating SPIn_MOSI is u Four-wire full-duplex SPI: data_width = 0. Set this field to 0, indicating SPIn_MOSI and output and input, respectively. Dual-mode SPI: data_width = 1. Set this field to 1, indicating SPIn_SDIO0 and communication. Quad-mode SPI: data_width = 2. Set this field to 2, indicating SPIn_SDIO0, SPISPIn_SDIO3 are used for half-duplex communication. 0: 1-bit per SCK cycle (Three-wire half-duplex)	sed for half-duplex communication. I SPIn_MISO are used for the SPI data d SPIn_SDIO1 are used for half-duplex In_SDIO1, SPIn_SDIO2, and unication.
				1: 2-bits per SCK cycle (Dual mode SPI). 2: 4-bits per SCK cycle (Quad mode SPI). 3: Reserved. Note: When this field is set to 0, use the field either Three-Wire SPI or Four-Wire SPI open.	d SPIn_CTRL2.three_wire to select
11:8	numbits	R/W	0	Number of Bits per Character Set this field to the number of bits per character this field to 0 indicates a character size of 10	_
				0: 16-bits per character. 1: 1-bit per character (not supported). 2: 2-bits per character 14: 14-bits per character. 15: 15-bits per character. Note: 1-bit and 9-bit character lengths are recontroller mode. SPIn_CLKCTRL.clkdiv must Note: For Dual and Quad mode SPI, the character of bits per SCK cycle.	not support maximum SCK speeds in be > 0.
7:5	-	RO	0	Reserved	
4	sclk_fb_inv	R/W	0	Invert SCLK Feedback in Controller Mode Set this bit to 1 to invert the SCLK feedback operating at an SCLK rate ≥ 20MHz. This fiel 0: SCLK feedback is not inverted. 1: SCLK feedback is inverted.	
3:2	=	RO	0	Reserved	
1	clkpol	R/W	0	Clock Polarity This field controls the SCK polarity. The defamode 1 operation and is active high. Invert mode 3 operation. 0: Standard SCK for use in SPI mode 0 and 1: Inverted SCK for use in SPI mode 2 and	the SCK polarity for SPI mode 2 and I mode 1.
0	clkpha	R/W	0	Clock Phase 0: Data sampled on clock rising edge. Use 1: Data sampled on clock falling edge. Use	when in SPI mode 0 and mode 2.

Analog Devices Page 209 of 327

Table 12-12: SPI Target Select Timing Register

SPI Target S	PI Target Select Timing		SPIn_SSTIME [0x0010]		
Bits	Name	Access	Reset	Description	
31:24	-	R/W	0	Reserved	
23:16	inact	R/W	0	Inactive Stretch This field controls the number of system clocks the bus is inactive between the e of a transaction (target select inactive) and the start of the next transaction (target select active).	
					settings only apply when SPI is operating in mode = 1).
15:8	post	R/W	0	<pre>controller mode (SPIn_CTRLO.mst_mode = 1). Target Select Hold Post Last SCK Set this field to the number of system clock cycles for SS to remain active after the last SCK edge. 0: 256. 1: 1. 2: 2. 3: 3: 254: 254. 255: 255. Note: The SPIn_SSTIME register bit settings only apply when SPI is operating in controller mode (SPIn_CTRLO.mst_mode = 1).</pre>	
7:0	pre	R/W	0	first SCK edge. 0: 256. 1: 1. 2: 2. 3: 3. : 254: 254. 255: 255.	settings only apply when SPI is operating in mode = 1).

Table 12-13: SPI Controller Clock Configuration Registers

SPI Controller Clock Configuration				SPIn_CLKCTRL	[0x0014]
Bits	Name	Access	Reset	Description	
31:20	-	R/W	0	Reserved	

Analog Devices Page 210 of 327

SPI Controller Clock Configuration			SPIn_CLKCTRL	[0x0014]	
Bits	Name	Access	Reset	Description	
19:16	clkdiv	R/W	0	SPI Peripheral Clock Scale Scales the SPI input clock by 2 ^{clkdiv} to gene details of the SPI input clock for each inst	erate the SPI peripheral clock. See <i>Table 12-1</i> for ance.
				$f_{SPInCLK} = rac{f_{SPIn_INPUT_CLK}}{2^{clkdiv}}$ Valid values for scale are 0 to 8 inclusive.	Values greater than 8 are received
				Note: 1-bit and 9-bit character lengths ar	
15:8	hi	R/W	0	SCK Hi Clock Cycles Control 0: Hi duty cycle control disabled. Only valid if SPIn_CLKCTRL.clkdiv = 0. 1 - 15: The number of SPI peripheral clocks, f _{SPInCLK} , that SCK is high. Note: 1-bit and 9-bit character lengths are not supported. Note: If SPIn_CLKCTRL.clkdiv = 0, SPIn_CLKCTRL.hi = 0, and SPIn_CLKCTRL.lo = 0, character sizes of 2 and 10 bits are not supported.	
7:0	lo	R/W	0	in combination with the SPIn_CLKCTRL.hi 0: Low duty cycle control disabled. Sett SPIn_CLKCTRL.clkdiv = 0. 1 to 15: The number of SPI peripheral c Note: 1-bit and 9-bit character lengths ar	ing this field to 0 is only valid if locks, $f_{SPInCLK}$, that the SCK signal is low.

Table 12-14: SPI DMA Control Registers

SPI DMA C	ontrol		SPIn_DMA		[0x001C]	
Bits	Name	Access	Reset	Description		
31	dma_rx_en	R/W	0	Receive DMA Enable 0: Disabled. Any pending 1: Enabled.	0: Disabled. Any pending DMA requests are cleared.	
30:24	dma_rx_en	R	0	•	Number of Bytes in the Receive FIFO Read returns the number of bytes currently in the receive FIFO.	
23	rx_flush	R/W10	-	should be done when	Clear the Receive FIFO 1: Clear the receive FIFO and any pending receive FIFO flags in SPIn_INTFL. This should be done when the receive FIFO is inactive.	
22	rx_fifo_en	R/W	0	Receive FIFO Enabled 0: Disabled. 1: Enabled.	0: Disabled.	
21	-	R/W	0	Reserved		

Analog Devices Page 211 of 327

SPI DMA C	SPI DMA Control		SPIn_DMA		[0x001C]
Bits	Name	Access	Reset	Description	
20:16	rx_thd_val	R/W	0	Receive FIFO Threshold Level	
				level crosses above this setting	ceive FIFO threshold level. When the receive FIFO a DMA request is triggered if enabled d SPIn_INTFL.rx_thd is set. Valid values are 0 to
				Note: 31 is an invalid setting.	
15	dma_tx_en	R/W	0	Transmit DMA Enable	
				0: Disabled. Any pending DMA requests are cleared. 1: Transmit DMA is enabled.	
14:8	tx_lvl	RO	0	Number of Bytes in the Transn	nit FIFO
				Read this field to determine the	e number of bytes currently in the transmit FIFO.
7	tx_flush	R/W	0	Transmit FIFO Clear	
				Set this bit to clear the transmi register.	t FIFO and all transmit FIFO flags in the SPIn_INTFL
				Note: The transmit FIFO should setting this field.	be disabled (SPIn_DMA.tx_fifo_en = 0) before
				Note: Setting this field to 0 has	no effect.
6	tx_fifo_en	R/W	0	Transmit FIFO Enabled	
				0: Disabled.	
				1: Enabled.	
5	-	R/W	0	Reserved	
4:0	tx_thd_val	R/W	0x10		
				FIFO count (SPIn_DMA.tx_IvI) fa	nsmit FIFO threshold level. When the transmit alls below this value, a DMA request is triggered if $n = 1$, and SPIn_INTFL.tx_thd becomes set.

Table 12-15: SPI Interrupt Status Flags Registers

SPI Interru	pt Status Flags	<u> </u>		SPIn_INTFL	[0x0020]	
Bits	Name	Access	Reset	Description		
31:16	-	R/W	0	Reserved		
15	rx_un	R/1	0	Receive FIFO Underrun Flag Set when a read is attempted from an emp	ty receive FIFO.	
14	rx_ov	R/W1C	0	,	Set if SPI is in target mode, and a write to a full receive FIFO is attempted. If the SPI is in controller mode, this bit is not set as the SPI stalls the clock until data is read from the	
13	tx_un	R/W1C	0	Transmit FIFO Underrun Flag Set if SPI is in target mode, and a read from empty transmit FIFO is attempted. If SPI is in controller mode, this bit is not set as the SPI stalls the clock until data is written to the empty transmit FIFO.		
12	tx_ov	R/W1C	0	Transmit FIFO Overrun Flag Set when a write is attempted, and the transmit FIFO is full.		
11	mst_done	R/W1C	0	Controller Data Transmission Done Flag Set if SPI is in controller mode and all trans SPIn_CTRL1.tx_num_char has been reached	·	

Analog Devices Page 212 of 327

SPI Interru	pt Status Flags	;		SPIn_INTFL	[0x0020]
Bits	Name	Access	Reset	Description	
10	-	R/W	0	Reserved	
9	abort	R/W1C	0	Target Mode Transaction Abort Detected Flag Set if the SPI is in target mode, and SS is deasserted before a complete character is received.	
8	fault	R/W1C	0	Multi-Controller Fault Flag Set if the SPI is in controller mode, multi-controller mode is enabled, and a target select input is asserted. A collision also sets this flag.	
7:6	-	R/W	0	Reserved	
5	ssd	R/W1C	0	Target Select Deasserted Flag	
4	ssa	R/W1C	0	Target Select Asserted Flag	
3	rx_full	R/W1C	0	Receive FIFO Full Flag	
2	rx_thd	R/W1C	0	Receive FIFO Threshold Level Crossed Flag Set when the receive FIFO exceeds the valu FIFO level drops below SPIn_DMA.rx_lvl.	ne in SPIn_DMA.rx_lvl. Cleared once receive
1	tx_em	R/W1C	1	Transmit FIFO Empty Flag This field is set to 1 by hardware if the transmit FIFO is empty.	
0	tx_thd	R/W1C	0	Transmit FIFO Threshold Level Crossed Flag This field is set to 1 by hardware when the SPIn_DMA.tx_lvl. This field is cleared by har SPIn_DMA.tx_lvl.	transmit FIFO is less than the value in

Table 12-16: SPI Interrupt Enable Registers

SPI Interru	upt Enable			SPIn_INTEN	[0x0024]
Bits	Name	Access	Reset	Description	
31:16	-	R/W	0	Reserved	
15	rx_un	R/W	0	Receive FIFO Underrun Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
14	rx_ov	R/W	0	Receive FIFO Overrun Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
13	tx_un	R/W	0	Transmit FIFO Underrun Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
12	tx_ov	R/W	0	Transmit FIFO Overrun Interrupt Enable	
				0: Disabled.	
				1: Enabled.	
11	mst_done	R/W	0	Controller Data Transmission Done Interrupt E	nable
				0: Disabled.	
				1: Enabled.	
10	-	R/W	0	Reserved	

Analog Devices Page 213 of 327

SPI Interru	PI Interrupt Enable			SPIn_INTEN	[0x0024]
Bits	Name	Access	Reset	Description	
9	abort	R/W	0	Target Mode Abort Detected Interrupt Enable 0: Disabled. 1: Enabled.	
8	fault	R/W	0	Multi-Controller Fault Interrupt Enable 0: Disabled. 1: Enabled.	
7:6	-	R/W	0	Reserved	
5	ssd	R/W	0	Target Select Deasserted Interrupt Enable 0: Disabled. 1: Enabled.	
4	ssa	R/W	0	Target Select Asserted Interrupt Enable 0: Disabled. 1: Enabled.	
3	rx_full	R/W	0	Receive FIFO Full Interrupt Enable 0: Disabled. 1: Enabled.	
2	rx_thd	R/W	0	Receive FIFO Threshold Level Crossed Interrup 0: Disabled. 1: Enabled.	ot Enable
1	tx_em	R/W	0	Transmit FIFO Empty Interrupt Enable 0: Disabled. 1: Enabled.	
0	tx_thd	R/W	0	Transmit FIFO Threshold Level Crossed Interru 0: Disabled. 1: Enabled.	pt Enable

Analog Devices Page 214 of 327

Table 12-17: SPI Wakeup Status Flags Registers

SPI Wakeu	ıp Flags			SPIn_WKFL	[0x0028]
Bits	Name	Access	Reset	Description	
31:4	-	R/W	0	Reserved	
3	rx_full	R/W1C	0	Wake on Receive FIFO Full Flag 0: Normal operation. 1: Wake condition occurred.	
2	rx_thd	R/W1C	0	Wake on Receive FIFO Threshold Level 0: Normal operation. 1: Wake condition occurred.	l Crossed Flag
1	tx_em	R/W1C	0	Wake on Transmit FIFO Empty Flag 0: Normal operation. 1: Wake condition occurred.	
0	tx_thd	R/W1C	0	Wake on Transmit FIFO Threshold Level 0: Normal operation. 1: Wake condition occurred.	el Crossed Flag

Table 12-18: SPI Wakeup Enable Registers

SPI Wakeu	p Enable			SPIn_WKEN	[0x002C]	
Bits	Name	Access	Reset	Description		
31:4	-	R/W	0	Reserved		
3	rx_full	R/W	0	Wake On Receive FIFO Full Enable 0: Wake event is disabled. 1: Wake event is enabled.		
2	rx_thd	R/W	0	Wake On Receive FIFO Threshold Leve 0: Wake event is disabled. 1: Wake event is enabled.	l Crossed Enable	
1	tx_em	R/W	0	Wake On Transmit FIFO Empty Enable 0: Wake event is disabled. 1: Wake event is enabled.		
0	tx_thd	R/W	0	Wake On Transmit FIFO Threshold Lev 0: Wake event is disabled. 1: Wake event is enabled.	el Crossed Enable	

Table 12-19: SPI Target Select Timing Registers

SPI Status				SPIn_STAT [0x0030]	
Bits	Name	Access	Reset	Description	
31:1	-	R/W	0	Reserved	

Analog Devices Page 215 of 327

SPI Status	SPI Status			SPIn_STAT	[0x0030]
Bits	Name	Access	Reset	Description	
0	busy	R	0	SPI Active Status This field returns the SPI status.	
				0: SPI is not active. In controller mode, the <i>busy</i> flag is cleared when the last character is sent. In target mode, the <i>busy</i> field is cleared when the configured target select input is deasserted.	
				*	he busy flag is set when a transaction starts. In hen a configured target select input is asserted.
				Note: SPIn_CTRLO, SPIn_CTRL1, SPIn_C not be configured if this bit is set.	TRL2, SPIn_SSTIME, and SPIn_CLKCTRL should

Analog Devices Page 216 of 327

13. Timers (TMR/LPTMR)

Multiple 32-bit and dual 16-bit, reloadable timers are provided.

The features include:

- Operation as a single 32-bit counter or single/dual 16-bit counter(s)
- Programmable clock prescaler with values from 1 to 4096
- Capture, compare, and capture/compare capability
- Timer input and output signals available, mapped as alternate functions
- Configurable input pin for event triggering, clock gating, or capture signal
- Timer output pin for event output and pulse-width modulated (PWM) signal generation.
- Multiple clock source options.

Instances denoted as LPTMR, shown in *Table 13-1*, are configurable to operate in any of the low-power modes and wake the device from the low-power modes to *ACTIVE*.

Each timer supports multiple operating modes:

- One-shot: the timer counts up to terminal value then halts.
- Continuous: the timer counts up to terminal value then repeats.
- Counter: the timer counts input edges received on the timer input pin.
- PWM / PWM differential.
- Capture: the timer captures a snapshot of the current timer count when the timer's input edge transitions.
- Compare: the timer pin toggles when the timer's count exceeds the terminal count.
- Gated: the timer increments only when the timer's input pin is asserted.
- Capture/Compare: the timer counts when the timer input pin is asserted; the timer captures the timer's count when the input pin is deasserted.

Analog Devices Page 217 of 327

13.1 Instances

Instances of the peripheral are listed in *Table 13-1*. Both the TMR and LPTMR are functionally very similar, so for convenience, they are referred to as just TMR. The LPTMR instances can function while the device is in *DEEPSLEEP* and *BACKUP*. TMR instances can operate in dual 16-bit mode or cascaded 32-bit mode if supported. *LPTMR* instances provide a single 32-bit timer and can select clock sources that are available in *DEEPSLEEP* and *BACKUP*.

Table 13-1: MAX32670/MAX32671 TMR/LPTMR

Instance	Register Access Name	Single 32-bit Mode	Cascade 32-bit Mode	Dual 16-bit Mode	Operating Modes	CLK0	CLK1	CLK2	CLK3
TMR0	TMR0								
TMR1	TMR1	No	Yes	Yes	ACTIVE	PCLK	EXT CLK1	BRO	ERFO
TMR2	TMR2	INO	163	163	SLEEP	PCLK	EXI_CLKI	BKO	LINIO
TMR3	TMR3								
1 DTN 100			NI-	ACTIVE SLEEP	AOD_CLK	EXT_CLK2	ERTCO	INRO¹	
LPTMR0	TMR4	Yes	No	No	DEEPSLEEP BACKUP	N/A	EXT_CLK2	ERTCO	INRO¹
L DTN 4D4	TMDE	Vos	No	No	ACTIVE SLEEP	AOD_CLK	EXT_CLK2	ERTCO	INRO¹
LPTMR1	TMR5	Yes	INO	INO	DEEPSLEEP BACKUP	N/A	EXT_CLK2	ERTCO	INRO ¹
1. INRO ac	1. INRO accuracy varies up to ±50% across temperature and voltage.								

Table 13-2: MAX32670/MAX32671 TMR/LPTMR Instances Capture Events

Instance	Capture Event 0		
TMR0	Timer Input Pin		
TMR1	Timer Input Pin		
TMR2	Timer Input Pin		
TMR3	Timer Input Pin		
LPTMR0	LPTMR0 Input Pin		
LPTMR1	LPTMR1 Input Pin		

13.2 Basic Timer Operation

The timer modes operate by incrementing the *TMRn_CNT* register, driven by either the timer clock, an external stimulus on the timer pin, or a combination of both. The *TMRn_CNT* register is always readable, even while the timer is enabled and counting.

Each timer mode has a user-configurable timer period, which terminates on the timer clock cycle following the end of the timer period condition. Each timer mode has a different response at the end of a timer period, which can include changing the state of the timer pin, capturing a timer value, reloading *TMRn_CNT* with a new starting value, or disabling the counter. The end of a timer period always sets the corresponding interrupt bit and can generate an interrupt, if enabled.

In most modes, the timer peripheral automatically sets *TMRn_CNT* to 0x0000 0001 at the end of a timer period, but *TMRn_CNT* is set to 0x0000 0000 following a system reset. This means the first timer period following a system reset is one timer clock longer than subsequent timer periods if *TMRn_CNT* is not initialized to 0x0000 0001 during the timer configuration step.

Analog Devices Page 218 of 327

13.3 32-Bit Single / 32-Bit Cascade / Dual 16-Bit

Most instances contain two 16-bit timers, which may support combinations of single or cascaded 32-bit modes, and single or dual 16-bit modes, as shown in *Table 13-1*. In most cases, the two 16-bit timers have the same functionality.

The terminology TimerA and TimerB are used to differentiate the organization of the 32-bit registers shown in *Table 13-3*. Most of the other registers have the same fields duplicated in the upper and lower 16 bits and are differentiated with the _a and _b suffixes.

In the 32-bit modes, the fields and controls associated with TimerA are used to control the 32-bit timer functionality. In single 16-bit timer mode, the TimerA fields are used to control the single 16-bit timer and the TimerB fields are ignored. In dual 16-bit timer modes, both TimerA and TimerB fields are used to control the dual timers; TimerB fields control the upper 16-bit timer and TimerA fields control the lower 16-bit timer. In dual 16-bit timer modes, TimerB can be used as a single 16-bit timer.

Register	Cascade 32-Bit Mode	Dual 16-Bit Mode		Single 16-Bit Mode
Timer Counter	TimerA Count =	TimerA Compare =	TimerB Count =	TimerA Compare =
	TMRn_CNT[31:0]	TMRn_CNT[15:0]	TMRn_CNT[31:16]	TMRn_CNT[15:0]
Timer Compare	TimerA Compare =	TimerA Compare =	TimerB Compare =	TimerA Compare =
	TMRn_CMP[31:0]	TMRn_CMP[15:0]	TMRn_CMP[31:16]	TMRn_CMP[15:0]
Timer PWM	TimerA Count =	TimerA Count =	TimerB Count =	TimerA Count =
	TMRn_PWM[31:0]	TMRn_PWM[15:0]	TMRn_PWM[31:16]	TMRn_PWM[15:0]

13.4 Timer Clock Sources

Clocking of timer functions is driven by the timer clock frequency, f_{CNT_CLK} , which is a function of the selected clock source shown in *Table 13-1*. Most modes support multiple clock sources and prescaler values, which can be chosen independently for TimerA and TimerB when the peripheral is operating in dual 16-bit mode. The prescaler can be set from 1 to 4096 using the *TMRn_CTRLO.clkdiv* field.

Note: The low-power timers must use the same clock selection for both TimerA and TimerB. Software must write both fields, TMRn_CTRL1.clksel_a and TMRn_CTRL1.clksel_b to the same value simultaneously.

Equation 13-1: Timer Peripheral Clock Equation

$$f_{CNT_CLK} = \frac{f_{CLK_SOURCE}}{prescaler}$$

The software configures and controls the timer by reading and writing to the timer's registers. External events on timer pins are asynchronous events to the timer's clock frequency. The external events are latched on the next rising edge of the timer's clock. Since it is not possible to externally synchronize to the timer's internal clock, input events may require up to 50% of the timer's internal clock cycle before the hardware recognizes the event.

Analog Devices Page 219 of 327

The software must configure the timer's clock source by performing the following steps:

- 1. Disable the timer peripheral.
 - a. Clear TMRn CTRLO.en to 0 to disable the timer.
 - b. Read the TMRn_CTRL1.clken field until it returns 0, confirming the timer peripheral is disabled.
- 2. Set TMRn CTRL1.clksel to the new desired clock source.

Note: In cascade 32-bit mode, the TMRn_CTRL1.clksel_a and TMRn_CTRL1.clksel_b fields must be set to the same clock source for proper operation.

- 3. Set the desired clock divider by setting the *TMRn_CTRLO.clkdiv* field.
- 4. Configure the timer for the desired operating mode. See *Operating Modes* for details on mode configuration.
- 5. Enable the timer clock source:
 - a. Set the TMRn_CTRLO.clken field to 1 to enable the timer's clock source.
 - b. Read the TMRn CTRL1.clkrdy field until it returns 1, confirming the timer clock source is enabled.

Disable the timer peripheral while changing any of the configuration registers in the peripheral.

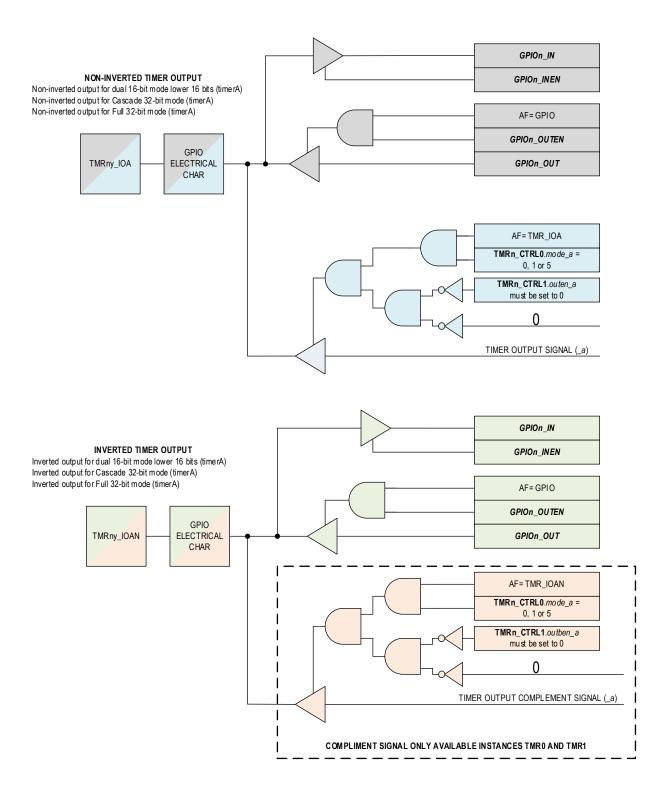
13.5 Timer Pin Functionality

Each timer instance may have an input signal and/or output signal depending on the operating mode. Not all instances of the peripheral are available in all packages. The number of input and output signals per peripheral instance may vary as well. Refer to the device data sheet for I/O signal configurations and alternate functions for each timer instance.

The physical pin location of the timer input and/or output signals may vary between packages. The timer functionality, however, is always expressed on the same GPIO pin in the same alternate function mode.

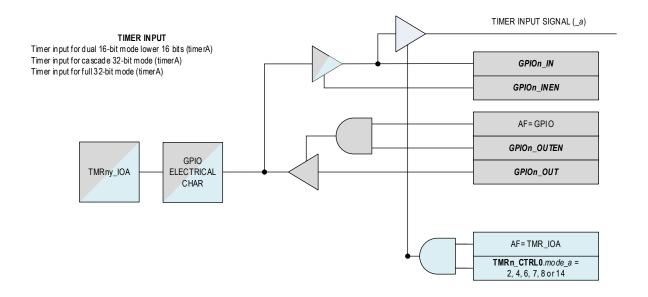
The timer pin functionality is mapped as an alternate function that is shared with a GPIO. When the timer pin alternate function is enabled, the timer pin has the same electrical characteristics, such as pullup/pulldown strength, drive strength, as the GPIO mode settings for that pin. The pin characteristics must be configured before enabling the timer. When configured as an output, the corresponding bit in the <code>GPIOn_OUT</code> and the <code>GPIOn_OUTEN</code> registers should be configured to match the inactive state of the timer pin for that mode. Consult the <code>General-Purpose I/O (GPIO)</code> and Alternate Function Pins chapter for details on how to configure the electrical characteristics for the pin.

Figure 13-1: Timer I/O Signal Naming Conventions



The TimerA output controls for modes 0, 1, 3, and 5 output signals are shown in *Figure 13-2*. The TimerA input controls for modes 2, 4, 6, 7, 8, and 14 input signals are shown in *Figure 13-3*.

Analog Devices Page 220 of 327


Figure 13-2: MAX32670/MAX32671 TimerA Output Functionality, Modes 0/1/3/5

Analog Devices Page 221 of 327

Figure 13-3: MAX32670/MAX32671 TimerA Input Functionality, Modes 2/4/6/7/8/14

13.6 Wakeup Events

The system clock may be turned off in low-power modes to conserve power. In this case, a wakeup event can be configured to wakeup the clock control logic and re-enable the system clock. The wakeup conditions are the same as the interrupts.

Programming Sequence Example:

- 1. Disable the timer peripheral and set the timer clock source as described in *Timer Clock Sources*.
- 2. Configure the timer operating mode as described in the section *Operating Modes*.
- 3. Enable the timer by setting TMRn_CTRLO.en to 1.
- 4. Poll TMRn_CTRL1.clkrdy until it reads 1.
- 5. Set the TMRn_CTRL1.we field to 1 to enable wake-up events for the timer.
- 6. If desired, enable the timer interrupt and provide a TMRn_IRQn interrupt handler for the timer.
- 7. Enter a low-power mode as described in the section *Operating Modes*.
- 8. When the device wakes up from the low-power mode, check the *TMRn_WKFL* register to determine if the timer is the result of the wake-up event.

13.7 LPTMR Wakeup Events

LPTMR instances can continue to run if they are configured to run from the clock sources shown in *Table 13-1*. In this case, a wake-up event can be enabled to wake up the clock control logic and return the device to *ACTIVE*.

Each LPTMR clock must be enabled, and if using a LPTMR input or output pin, the LPTMR must also be configured for operation in *DEEPSLEEP* or *BACKUP*.

Table 13-4: MAX32670/MAX32671 Low-Power Timer Pin Configuration for DEEPSLEEP and BACKUP

Timer	Input Pin Enable	Output Pin Enable	Clock Disable
LPTMR0	MCR_LPPIOCTRL.lptmr0_i	MCR_LPPIOCTRL.lptmr0_o	MCR_CLKDIS.lptmr0
LPTMR1	MCR_LPPIOCTRL.lptmr1_i	MCR_LPPIOCTRL.lptmr0_o	MCR_CLKDIS.lptmr1

Analog Devices Page 222 of 327

Low-power timer programming sequence example:

- 1. Disable the timer peripheral and set the timer clock source as described in *Timer Clock Sources*.
 - a. For operation in DEEPSLEEP and BACKUP, select either the ERTCO or INRO.
- 2. Configure the timer operating mode as described in the section *Operating Modes*.
- 3. If using a timer input or output pin during low-power modes, set the corresponding enable bit shown in Table 13-4.
- 4. If using the timer during low-power modes, enable the timer's low-power clock by writing 0 to either the MCR_CLKDIS.lptmr0 field or the MCR_CLKDIS.lptmr1 field.

Note: The low-power timer's clock must be disabled to return the timer's input and output to standard GPIO.

- 5. Enable the timer by setting TMRn_CTRLO.en to 1.
- 6. Poll TMRn_CTRL1.clkrdy until it reads 1.
- 7. Set the *TMRn_CTRL1.we* field to 1 to enable wake-up events for the timer.
- 8. If desired, enable the timer interrupt and provide a TMRn IRQn for the timer.
- 9. Enter a low-power mode as described in the *Operating Modes* section.
- 10. When the device wakes up from the low-power mode, check the *PWRSEQ_LPPWKST* register to determine if the timer caused the wake-up event.

Table 13-5: MAX32670/MAX32671 Low-Power Timer Wake-up Events

Condition	Peripheral Wake-up Flag TMRn_INTFL	Peripheral Wake-up Enable	Low-Power Peripheral Wake-up Flag	Low-Power Peripheral Wake-up Enable	Power Management Wake-up Enable
Any event for LPTMR0	irq_a	N/A	PWRSEQ_LPPWKST.lptmr0	PWRSEQ_LPPWKEN.lptmr0	GCR_PM.lptmr0_we
Any event for LPTMR1	irq_a	N/A	PWRSEQ_LPPWKST.lptmr1	PWRSEQ_LPPWKEN.lptmr1	GCR_PM.lptmr1_we

13.8 Operating Modes

Multiple operating modes are supported. The availability of some operating modes is dependent on the device and package-specific implementation of the external input and output signals. Refer to the device data sheet for I/O signal configurations and alternate functions for each timer instance.

In *Table 13-6* and *Table 13-7*, the timer's signal name is generically shown where *n* is the timer number (0, 1, 2, 3, etc.) and *y* is the port mapping alternate function. See *Figure 13-1* for details of the timer's naming convention for I/O signals.

Table 13-6: MAX32670/MAX32671 Operating Mode Signals for Timer 0 through Timer 3

Timer Mode	TMR0/TMR1/TMR2/TMR3	I/O Signal Name [†]	Pin Required
	TimerA Output Signal	TMR <i>ny</i> _IOA	Optional
One Shot Marda (O)	TimerA Complementary Output Signal	TMR <i>ny</i> _IOAN	Optional
One-Shot Mode (0)	TimerB Output Signal	TMR <i>ny</i> _IOB	Optional
	TimerB Complementary Output Signal	TMR <i>ny</i> _IOBN	Optional
	TimerA Output Signal	TMR <i>ny</i> _IOA	Optional
Continuous Manda (1)	TimerA Complementary Output Signal	TMRny_IOAN	Optional
Continuous Mode (1)	TimerB Output Signal	TMRny_IOB	Optional
	TimerB Complementary Output Signal	TMR <i>ny</i> _IOBN	Optional

Analog Devices Page 223 of 327

Timer Mode	TMR0/TMR1/TMR2/TMR3	I/O Signal Name†	Pin Required
Country Manda (2)	TimerA Input Signal	TMRny_IOA	Yes
Counter Mode (2)	TimerB Input Signal	TMRny_IOB	Yes
DIA/A A A A - d - /2\	TimerA Output Signal	TMRny_IOA	Yes
PWM Mode (3)	TimerB Output Signal	TMRny_IOB	Yes
Continue Adada (A)	TimerA Input Signal	TMRny_IOA	Yes
Capture Mode (4)	TimerB Input Signal	TMR <i>ny</i> _IOB	Yes
	TimerA Output Signal	TMRny_IOA	Optional
Company Adada (5)	TimerA Complementary Output Signal	TMR <i>ny</i> _IOAN	Optional
Compare Mode (5)	TimerB Output Signal	TMRny_IOB	Optional
	TimerB Complementary Output Signal	TMR <i>ny</i> _IOBN	Optional
Catalana da (C)	TimerA Input Signal	TMRny_IOA	Yes
Gated Mode (6)	TimerB Input Signal	TMRny_IOB	Yes
Contract (Consequent Adada (7)	TimerA Input Signal	TMRny_IOA	Yes
Capture/Compare Mode (7)	TimerB Input Signal	TMR <i>ny</i> _IOB	Yes
Dural Educa Countries Adada (0)	TimerA Input Signal	TMRny_IOA	Yes
Dual-Edge Capture Mode (8)	TimerB Input Signal	TMR <i>ny</i> _IOB	Yes
Reserved (9 - 13)	-	-	-
In action Cated Made (44)	TimerA Input Signal	TMRny_IOA	Yes
Inactive Gated Mode (14)	TimerB Input Signal	TMR <i>ny</i> _IOB	Yes
Reserved (15)	-	-	-

[†] See Figure 13-1 for details on the timer I/O signal naming convention and the device data sheet for the alternate functions.

Table 13-7: MAX32670/MAX32671 Operating Mode Signals for Low-Power Timer 0 (TMR4) and Low-Power Timer 1 (TMR5)

Timer mode	TMR4/TMR5	I/O Signal Name †	Required?
One-Shot Mode (0)	TimerA Output Signal	LPTMRny_IOB	Optional
Continuous Mode (1)	TimerA Output Signal	LPTMR <i>ny</i> _IOB	Optional
Counter Mode (2)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
PWM Mode (3)	TimerA Output Signal	LPTMR <i>ny</i> _IOB	Yes
Capture Mode (4)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
Compare Mode (5)	TimerA Output Signal	LPTMR <i>ny</i> _IOB	Optional
Gated Mode (6)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
Capture/Compare Mode (7)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
Dual-Edge Capture Mode (8)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
Reserved (9 - 13)	-	-	-
Inactive Gated Mode (14)	TimerA Input Signal	LPTMR <i>ny</i> _IOB	Yes
Reserved (15)	-	-	-

[†] See Figure 13-1 for details on the timer I/O signal naming convention and the device data sheet for the alternate functions.

Analog Devices Page 224 of 327

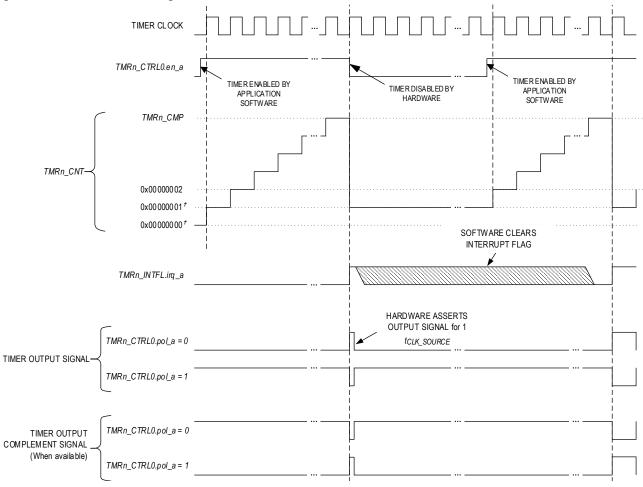
13.8.1 One-Shot Mode (0)

In one-shot mode, the timer peripheral increments the timer's *TMRn_CNT* register until it reaches the timer's *TMRn_CMP* register and the timer is then disabled. If the timer's output is enabled, the output signal is driven active for one timer source clock cycle. For example, if the timer source clock (fclk_Source), is PCLK, the output is driven active for 1 PCLK cycle. One-shot mode provides exactly one timer period and is automatically disabled.

The timer period ends on the timer clock following *TMRn_CNT* = *TMRn_CMP*. The timer peripheral hardware automatically performs the following actions at the end of the timer period:

- The TMRn_CNT register is set to 0x0000 0001.
- The timer is disabled (TMRn_CTRL0.en = 0).
- The timer output, if enabled, is driven to its active state for one timer clock period.
- The *TMRn_INTFL.irq* field is set to 1 to indicate a timer interrupt event occurred.

The timer period is calculated using Equation 13-2.


Equation 13-2: One-Shot Mode Timer Period

$$One\text{-}shot\ mode\ timer\ period\ in\ seconds = \frac{TMRn_CMP - TMRn_CNT_{INITIAL_VALUE} + 1}{f_{CNT_CLK}(Hz)}$$

Analog Devices Page 225 of 327

This examples uses the following configuration in addition to the settings shown above: TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)

 $TMRn_CTRL0.mode_a = 0$ (On e-shot)

Analog Devices Page 226 of 327

[†] TMRn_CNT defaults to 0x00000000 on a timer reset. TMRn_CNT reloads to 0x00000001 for all following timer periods.

Configure the timer for one-shot mode by performing the following steps:

- 1. Disable the timer peripheral and set the timer clock source as described in *Timer Clock Sources*.
- 2. Set the TMRn CTRLO.mode field to 0 to select one-shot mode.
- 3. Set the TMRn_CTRLO.clkdiv field to set the prescaler for the required timer frequency.
- 4. If using the timer output function:
 - a. Set TMRn CTRLO.pol to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
- 5. Or, if using the inverted timer output function:
 - a. Set *TMRn_CTRLO.pol* to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
- 6. If using the timer interrupt, enable corresponding field in the *TMRn_CTRL1* register.
- 7. Write the compare value to the *TMRn CMP* register.
- 8. If desired, write an initial value to *TMRn_CNT* register.
 - a. The initial value only affects the first period; subsequent timer periods always reset the *TMRn_CNT* register to 0x0000 0001.
 - b. Read the *TMRn_INTFL.wrdone* field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRLO.clken = 1).

- 9. Enable the timer by writing 1 to the TMRn CTRLO.en field.
 - a. Read the TMRn CTRLO.en field until it returns 1 to confirm the timer is enabled.

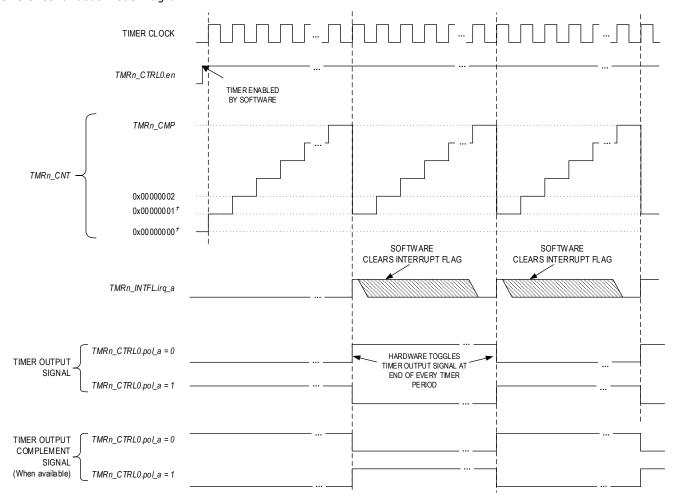
13.8.2 Continuous Mode (1)

In continuous mode, the *TMRn_CNT* register increments until it matches the *TMRn_CMP* register; the *TMRn_CNT* register is then set to 0x0000 0001 and the count continues to increment. Optionally, the software can configure continuous mode to toggle the timer output pin at the end of each timer period. A continuous mode timer period ends when the timer count field reaches the timer compare field (*TMRn_CNT* = *TMRn_CMP*).

The timer peripheral hardware automatically performs the following actions on the timer clock cycle after the period ends:

- The TMRn_CNT register is set to 0x0000 0001.
- If the timer output signal is toggled, the corresponding *TMRn_INTFL.irq* field is set to 1 to indicate a timer interrupt event occurred.

The continuous mode timer period is calculated using *Equation 13-3*.


Equation 13-3: Continuous Mode Timer Period

$$Continuous\ mode\ timer\ period\ (s) = \frac{TMRn_CMP - TMRn_CNT_{INITIAL_VALUE} + 1}{f_{CNT_CLK}\ (Hz)}$$

Analog Devices Page 227 of 327

Figure 13-5: Continuous Mode Diagram

This examples uses the following configuration in addition to the settings shown above:
TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)
TMRn_CTRL0.mode_a = 1 (Continuous)

Analog Devices Page 228 of 327

[†] TMRn_CNT defaults to 0x00000000 on a timer reset. TMRn_CNT reloads to 0x00000001 for all following timer periods.

Configure the timer for continuous mode by performing the following steps:

- 1. Disable the timer peripheral and set the timer clock as described in *Timer Clock Sources*.
- 2. Set the TMRn CTRLO.mode field to 1 to select continuous mode.
- 3. Set the TMRn_CTRLO.clkdiv field to set the prescaler that determines the timer frequency.
- 4. If using the timer output function:
 - a. Set TMRn CTRLO.pol to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
- 5. Or, if using the inverted timer output function:
 - a. Set TMRn_CTRLO.pol to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
- 6. If using the timer interrupt, enable the corresponding field in the TMRn_CTRL1 register.
- 7. Write the compare value to the *TMRn CMP* register.
- 8. If desired, write an initial value to the *TMRn_CNT* register.
 - a. The initial value only affects the first period; subsequent timer periods always reset the *TMRn_CNT* register to 0x0000 0001.
 - b. Read the TMRn_INTFL.wrdone field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRL0.clken = 1).

- 9. Enable the timer by writing 1 to the *TMRn CTRLO.en* field.
 - a. Read the TMRn_CTRLO.en field until it returns 1 to confirm the timer is enabled.

13.8.3 Counter Mode (2)

In counter mode, the timer peripheral increments the $TMRn_CNT$ each time a transition occurs on the timer input signal. The transition must be greater than $4 \times PCLK$ for a count to occur. When the $TMRn_CNT$ reaches the $TMRn_CMP$ register, the hardware automatically sets the interrupt bit to 1 ($TMRn_INTFL.irq$), sets the $TMRn_CNT$ register to 0x0000 0001, and continues incrementing. The timer can be configured to increment on either the rising edge or falling edge of the timer's input signal, but not both. Use the $TMRn_CTRL0.pol$ field to select which edge is used for the timer's input signal count.

The timer prescaler setting has no effect in this mode. The frequency of the timer's input signal (f_{CTR_CLK}) must not exceed 25% of the PCLK frequency, as shown in *Equation 13-4*.

Note: If the input signal's frequency is equal to f_{PCLK} , it is possible the transition can be missed by the timer hardware due to PCLK being an asynchronous internal clock. A minimum of 4 PCLK cycles is required for a count to occur. To guarantee a count occurs, the timer input signal should be greater than 4 PCLK cycles in frequency.

Equation 13-4: Counter Mode Maximum Clock Frequency

$$f_{CTR_CLK} \le \frac{f_{PCLK}(Hz)}{4}$$

The timer period ends on the rising edge of PCLK following TMRn_CNT = TMRn_CMP.

Analog Devices Page 229 of 327

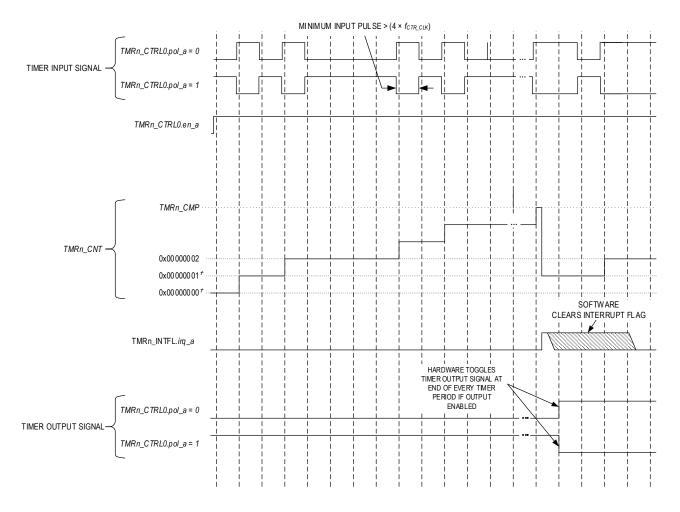
The timer peripheral's hardware automatically performs the following actions at the end of the timer period:

- The TMRn CNT register is set to 0x0000 0001.
- The timer output signal is toggled if the timer output pin is enabled.
- The TMRn_INTFL.irq field to 1 indicating a timer interrupt event occurred.
- The timer remains enabled and continues incrementing.

Note: The software must clear the interrupt flag by writing 1 to the TMRn_INTFL.irq field. If the timer period ends and the interrupt flag is already set to 1, a second interrupt does not occur.

In counter mode, the number of timer input transitions that occurred during a period is equal to the *TMRn_CMP* register's setting. Use *Equation 13-5* to determine the number of transitions that occurred before the end of the timer's period.

Note: Equation 13-5 is only valid during an active timer count before the end of the timer's period.


Equation 13-5: Counter Mode Timer Input Transitions

 $Counter\ mode\ timer\ input\ transitions = TMR_CNT_{CURRENT_VALUE}$

Analog Devices Page 230 of 327

Figure 13-6: Counter Mode Diagram

This examples uses the following configuration in addition to the settings shown a bove: $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}^{n}} \frac{$

TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)

 $TMRn_CTRL0.mode_a = 2$ (Counter)

Analog Devices Page 231 of 327

 $^{^{\}dagger}\textit{TMRn_CNT} \; \text{defaults to } \; 0 \; \text{x} \\ 0 \; \text{$

Configure the timer for counter mode by performing the following:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set TMRn_CTRLO.mode to 2 to select counter mode.
- 4. Configure the timer input function:
 - a. Set TMRn_CTRLO.pol to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Set TMRn_CTRL1.outen_a and TMRn_CTRL1.outben_a to the values shown in the Operating Modes section.
 - d. Select the correct alternate function mode for the timer input pin.
- 5. Write the compare value to *TMRn_CMP*.
- If desired, write an initial value to TMRn_CNT. This affects only the first period; subsequent timer periods always reset TMRn_CNT = 0x0000 0001.
 - a. Read the TMRn_INTFL.wrdone field until it reads 1.

Note: The $TMRn_CNT$ register is only writable if the timer clock is enabled ($TMRn_CTRL0.clk_en = 1$).

- 7. Enable the timer by writing 1 to the TMRn_CTRLO.en field.
 - a. Read the TMRn_CTRLO.en field until it returns 1 to confirm the timer is enabled.

13.8.4 PWM Mode (3)

In PWM mode, the timer sends a PWM output using the timer's output signal. The timer first counts up to the match value stored in the *TMRn_PWM* register. At the end of the cycle where the *TMRn_CNT* value matches the *TMRn_PWM*, the timer output signal toggles state. The timer continues counting until it reaches the *TMRn_CMP* value.

The timer period ends on the rising edge of f_{CNT} CLK following $TMRn_CNT = TMRn_CMP$.

The timer peripheral automatically performs the following actions at the end of the timer period:

- The TMRn CNT is reset to 0x0000 0001 and the timer resumes counting.
- The timer output signal is toggled.
- The corresponding TMRn_INTFL.irq field is set to 1 to indicate a timer interrupt event occurred.

When $TMRn_CTRLO.pol = 0$, the timer output signal starts low and then transitions to high when the $TMRn_CNT$ value matches the $TMRn_PWM$ value. The timer output signal remains high until the $TMRn_CNT$ value reaches the $TMRn_CNT$ value resulting in the timer output signal transitioning low, and the $TMRn_CNT$ value resetting to 0x0000 0001.

When *TMRn_CTRLO.pol* = 1, the timer output signal starts high and transitions low when the *TMRn_CNT* value matches the *TMRn_PWM* value. The timer output signal remains low until the *TMRn_CNT* value reaches *TMRn_CMP*, resulting in the timer output signal transitioning high, and the *TMRn_CNT* value resetting to 0x0000 0001.

Analog Devices Page 232 of 327

Complete the following steps to configure a timer for PWM mode and initiate the PWM operation:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set the TMRn_CTRLO.mode field to 3 to select PWM mode.
- 4. Set the TMRn CTRLO.clkdiv field to set the prescaler that determines the timer frequency.
- 5. Configure the pin as a timer input and configure the electrical characteristics as needed.
- 6. Set TMRn_CTRLO.pol to match the desired initial (inactive) state.
- 7. Set TMRn_CTRL0.pol to select the initial logic level (high or low) and PWM transition state for the timer's output.
- 8. Set TMRn CNT initial value if desired.
 - a. The initial *TMRn_CNT* value only affects the initial period in PWM mode with subsequent periods always setting *TMRn_CNT* to 0x0000 0001.
 - b. Read the TMRn INTFL.wrdone field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRLO.clk_en = 1).

- 9. Set the *TMRn PWM* value to the transition period count.
 - a. If using the timer in dual 16-bit mode, disable both timers before writing the *TMRn_PWM* register.
 - b. Read the TMRn_INTFL.wrdone field until it reads 1.

Note: The TMRn_PWM register is only writable if the timer clock is enabled (TMRn_CTRLO.clk_en = 1).

- 10. Set the *TMRn_CMP* value for the PWM second transition period. The *TMRn_CMP* must be greater than the *TMRn_PWM* value.
 - a. If using the timer in dual 16-bit mode, disable both timers before writing the TMRn_CMP register.
- 11. If using the timer interrupt, set the interrupt priority and enable the interrupt.
- 12. Enable the timer by writing 1 to the TMRn CTRLO.en field.
 - a. Read the TMRn_CTRLO.en field until it returns 1 to confirm the timer is enabled.

Equation 13-6 shows the formula for calculating the timer PWM period.

Equation 13-6: Timer PWM Period

$$PWM \ period \ (s) = \frac{TMRn_CNT}{f_{CNT \ CLK} \ (Hz)}$$

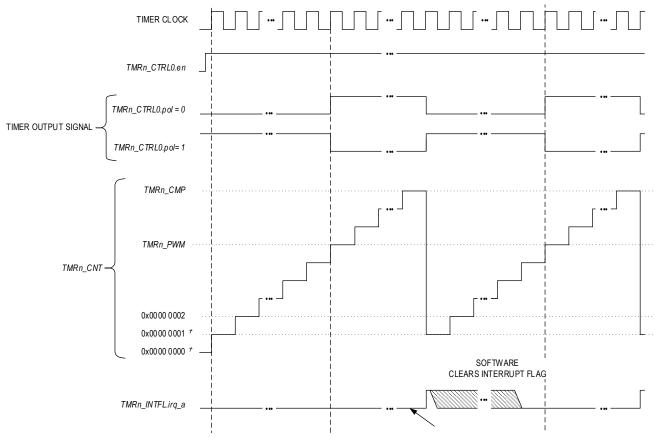
If an initial starting value other than 0x0000 0001 is loaded into the *TMRn_CNT* register, use the one-shot mode equation, *Equation 13-2*, to determine the initial PWM period.

If TMRn_CTRLO.pol is 0, the ratio of the PWM output high time to the total period is calculated using Equation 13-7.

Equation 13-7: Timer PWM Output High Time Ratio with Polarity 0

PWM output high time ratio (%) =
$$\frac{(TMR_CMP - TMR_PWM)}{TMR_CMP} \times 100$$

If TMRn_CTRLO.pol is set to 1, the ratio of the PWM output high time to the total period is calculated using Equation 13-8.


Equation 13-8: Timer PWM Output High Time Ratio with Polarity 1

PWM output high time ratio (%) =
$$\frac{TMR_PWM}{TMR\ CMP} \times 100$$

Analog Devices Page 233 of 327

Figure 13-7: PWM Mode Diagram

This examples uses the following configuration in addition to the settings shown above:

TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)

 $TMRn_CTRL0.mode_a = 3 (PWM)$

13.8.5 Capture Mode (4)

Capture mode is used to measure the time between software-determined events. The timer starts incrementing the timer's count field until a transition occurs on the timer's input pin or a rollover event occurs. A capture event is triggered by the hardware when the timer's input pin transitions state. *Equation 13-9* shows the formula for calculating the capture event's elapsed time.

If a capture event does not occur before the timer's count value reaching the timer's compare value (TMRn_CNT = TMRn_CMP), a rollover event occurs. Both the capture event and the rollover event set the timer's interrupt flag, TMRn_INTFL.irq, to 1 and result in an interrupt if the timer's interrupt is enabled.

A capture event can occur before or after a rollover event. The software must track the number of rollover events that occur before a capture event to determine the elapsed time of the capture event. When a capture event occurs, the software should reset the count of rollover events.

Note: A capture event does not stop the timer's counter from incrementing and does not reset the timer's count value; a rollover event still occurs when the timer's count value reaches the timer's compare value.

Analog Devices Page 234 of 327

[†] TMRn_CNT defaults to 0x00000000 on a timer reset. TMRn_CNT reloads to 0x00000001 for all following timer periods.

13.8.5.1 Capture Event

When a capture event occurs, the timer hardware, on the next timer clock cycle, automatically performs the following actions:

- The *TMRn_CNT* value is copied to the *TMRn_PWM* register.
- The TMRn_INTFL.irq field is set to 1.
- The timer remains enabled and continues counting.

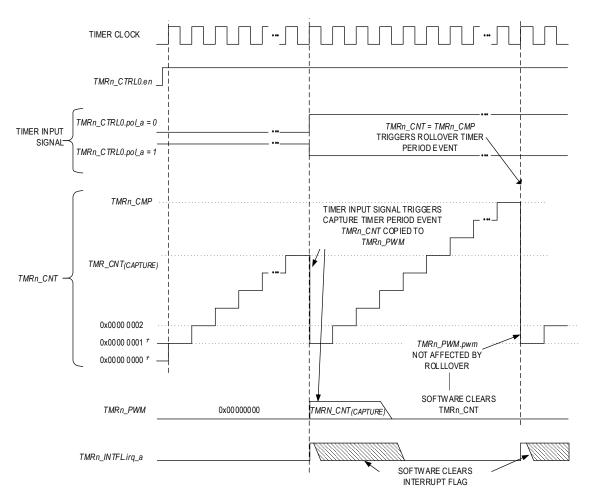
The software must check the value of the TMRn_PWM register to determine the trigger of the timer interrupt.

Equation 13-9: Capture Mode Elapsed Time Calculation in Seconds

```
 \begin{aligned} & \textit{Capture elapsed time (s)} \\ &= \frac{\left(\textit{TMR\_PWM} - \textit{TMR\_CNT}_{\textit{INITIAL\_VALUE}}\right) + \left(\left(\textit{Number of rollover events}\right) \times \left(\textit{TMR\_CMP} - \textit{TMR\_CNT}_{\textit{INITIAL\_VALUE}}\right)\right)}{f_{\textit{CNT\_CLK}}} \end{aligned}
```

Note: The capture elapsed time calculation is only valid after the capture event occurs and the timer stores the captured count in the TMRn_PWM register.

13.8.5.2 Rollover Event


A rollover event occurs when the timer's count value reaches the timer's compare value (*TMRn_CNT* = *TMRn_CMP*). A rollover event indicates that a capture event did not occur within the set timer period. When a rollover event occurs, the timer hardware automatically performs the following actions during the next timer clock period:

- The TMRn_CNT register is set to 0x0000 0001.
- The TMRn INTFL.irg field is set to 1.
- The timer remains enabled and continues counting.

Analog Devices Page 235 of 327

Figure 13-8: Capture Mode Diagram

THIS EXAMPLES USES THE FOLLOWING CONFIGURATION IN ADDITION TO THE SETTINGS SHOWN ABOVE: $TMRn_CTRL1.cascade = 1 \ (32-BIT\ CASCADE\ TIMER) \\ TMRn_CTRL0.mode_a = 2 \ (COUNTER)$

Analog Devices Page 236 of 327

 $^{^{\}it t} \it TMRn_{\tt CNT} \, {\tt DEFAULTS} \, {\tt TO} \, 0x000000000 \, {\tt ON} \, {\tt A} \, {\tt TIMER} \, {\tt RESET}. \, \textit{TMRn_{\tt CNT}} \, {\tt RELOADS} \, {\tt TO} \, 0x00000001 \, {\tt FORALL} \, {\tt FOLLOWING} \, {\tt TIMER} \, {\tt PERIODS}.$

Configure the timer for Capture mode by doing the following:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set *TMRn_CTRLO.mode* to 4 to select capture mode.
- 4. Configure the timer input function:
 - a. Set TMRn CTRLO.pol to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
- 5. Write the initial value to TMRn CNT, if desired.
 - a. This affects only the first period; subsequent timer periods always reset TMRn CNT = 0x0000 0001.
 - b. Read the TMRn_INTFL.wrdone field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRL0.clk_en = 1).

- 6 Write the compare value to the *TMRn_CMP* register.
- 7. Select the capture event by setting *TMRn CTRL1.capevent sel*.
- 8. Enable the timer by writing 1 to the *TMRn_CTRLO.en* field.
 - a. Read the TMRn_CTRLO.en field until it returns 1 to confirm the timer is enabled.

The timer period is calculated using the following equation:

Equation 13-10: Capture Mode Elapsed Time Calculation in Seconds

$$Capture \ elapsed \ time \ in \ seconds = \frac{TMR_PWM - TMR_CNT_{INITIAL_VALUE}}{f_{CNT_CLK}}$$

Note: The capture elapsed time calculation is only valid after the capture event occurs, and the timer stores the captured count in the TMRn_PWM register.

13.8.6 Compare Mode (5)

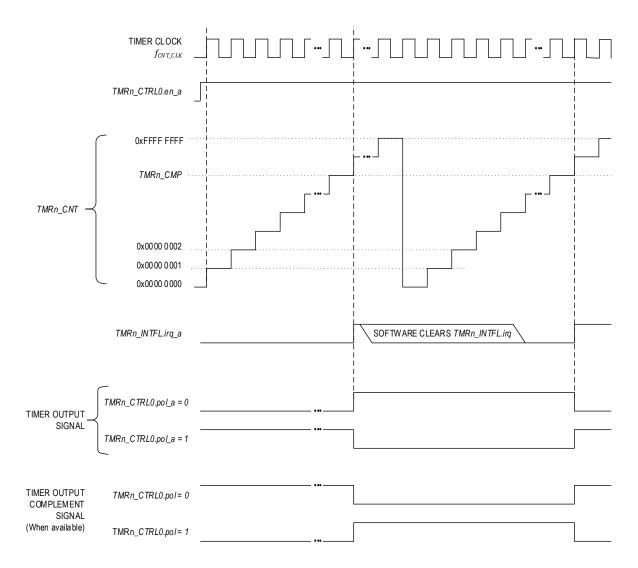
In compare mode, the timer peripheral increments continually from 0x0000 0000 (after the first timer period) to the maximum value of the 32- or 16-bit mode, then rolls over to 0x0000 0000 and continues incrementing. The end of the timer period event occurs when the timer value matches the compare value, but the timer continues to increment until the count reaches 0xFFFF FFFF. The timer counter then rolls over and continues counting from 0x0000 0000.

The timer period ends on the timer clock following TMRn CNT = TMRn CMP.

The timer peripheral automatically performs the following actions when a timer period event occurs:

- Unlike other modes, *TMRn_CNT* is reset to 0x0000 00000, not 0x0000 0001 at the end of the timer period. The timer remains enabled and continues incrementing.
- The corresponding TMRn INTFL.irq field is set to 1 to indicate a timer interrupt event occurred.
- The hardware toggles the state of the timer output signal. The timer output pin changes state if the timer output is enabled.

The compare mode timer period is calculated using *Equation 13-11*.


Equation 13-11: Compare Mode Timer Period

$$Compare\ mode\ timer\ period\ in\ second = \frac{(TMR_CMP - TMR_CNT_{INITIAL_VALUE} + 1)}{f_{CNT_CLK}(Hz)}$$

Analog Devices Page 237 of 327

Figure 13-9: Compare Mode Diagram

This examples uses the following configuration in addition to the settings shown above: TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)
TMRn_CTRL0.mode_a = 5 (Compare)

Analog Devices Page 238 of 327

Configure the timer for compare mode by doing the following:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set *TMRn_CTRLO.mode* to 5 to select Compare mode.
- 4. Set *TMRn_CTRLO.clkdiv* to set the prescaler that determines the timer frequency.
- 5. If using the timer output function:
 - a. Set TMRn_CTRLO.pol to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer output pin.
- 6. If using the inverted timer output function:
 - a. Set *TMRn_CTRLO.pol* to match the desired (inactive) state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the inverted timer output pin.
- 7. If using the timer interrupt, enable the corresponding field in the *TMRn CTRL1* register.
- 8. Write the compare value to *TMRn_CMP*.
- 9. If desired, write an initial value to TMRn_CNT.
 - a. This affects only the first period; subsequent timer periods always reset TMRn CNT = 0x0000 0000.
 - b. Read the TMRn INTFL.wrdone field until it reads 1.

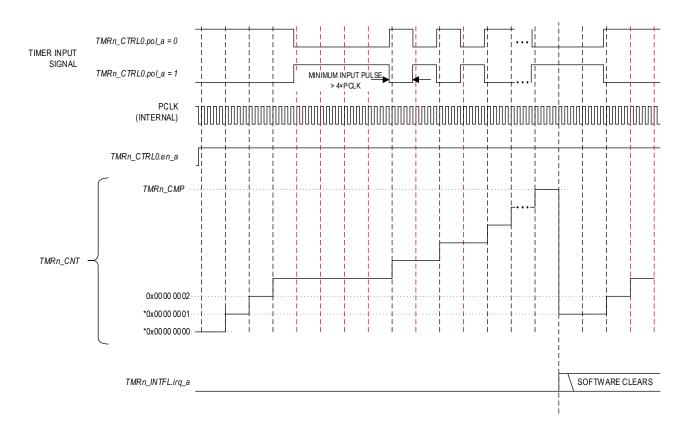
Note: The TMRn CNT register is only writable if the timer clock is enabled (TMRn CTRLO.clk en = 1).

- 10. Enable the timer by writing 1 to the TMRn_CTRLO.en field.
 - a. Read the *TMRn_CTRLO.en* field until it returns 1 to confirm the timer is enabled.

13.8.7 Gated Mode (6)

Gated mode is similar to continuous mode, except that *TMRn_CNT* only increments when the timer input signal is in its active state.

The timer period ends on the timer clock following TMRn_CNT = TMRn_CMP.


The timer peripheral automatically performs the following actions at the end of the timer period:

- The TMRn CNT register is set to 0x0000 0001.
- The timer remains enabled and continues incrementing.
- The timer output pin changes state if the timer output is enabled.
- The corresponding TMRn_INTFL.irq field is set to 1 to indicate a timer interrupt event occurred.

Analog Devices Page 239 of 327

Figure 13-10: Gated Mode Diagram

This examples uses the following configuration in addition to the settings shown above:
TMRn_CTRL1.cascade = 1 (32-bit Cascade Timer)
TMRn_CTRL0.mode_a = 6 (Gated)

Analog Devices Page 240 of 327

 $^{^{\}it TMRn_CNT} \ {\rm defaults} \ {\rm to} \ 0 {\rm x} 000000000 \ {\rm on} \ {\rm a} \ {\rm timer} \ {\rm reset}. \ {\it TMRn_CNT} \ {\rm reloads} \ {\rm to} \ 0 {\rm x} 000000001 \ {\rm for} \ {\rm all} \ {\rm following} \ {\rm timer} \ {\rm periods}.$

Configure the timer for gated mode by doing the following:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set *TMRn_CTRLO.mode* to 6 to select gated mode.
- 4. Configure the timer input function:
 - a. Set TMRn CTRLO.pol to match the desired inactive state.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
- 5. If desired, write an initial value to the *TMRn_CNT* register.
 - a. This affects only the first period; subsequent timer periods always reset TMRn_CNT = 0x0000 0001.
 - b. Read the *TMRn_INTFL*.wrdone field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRL0.clk_en = 1).

- 6 Write the compare value to *TMRn_CMP*.
- 7. Enable the timer by writing 1 to the *TMRn CTRLO.en* field.
 - a. Read the TMRn_CTRLO.en field until it returns 1 to confirm the timer is enabled.

13.8.8 Capture/Compare Mode (7)

In Capture/Compare mode, the timer starts counting after the first external timer input transition occurs. The transition, a rising edge or falling edge on the timer's input signal, is set using the *TMRn_CTRLO.pol* bit.

Each subsequent transition, after the first transition of the timer input signal, captures the *TMRn_CNT* value, writing it to the *TMRn_PWM* register (capture event). When a capture event occurs, a timer interrupt is generated, the *TMRn_CNT* value is reset to 0x0000 0001, and the timer resumes counting.

If no capture event occurs, the timer counts up to *TMRn_CMP*. At the end of the cycle where the *TMRn_CNT* equals the *TMRn_CMP*, a timer interrupt is generated, the *TMRn_CNT* value is reset to 0x0000 0001, and the timer resumes counting.

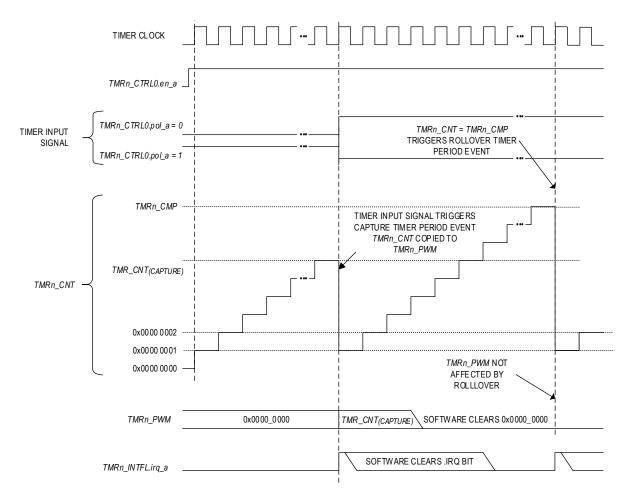
The timer period ends when the selected transition occurs on the timer pin, or on the clock cycle following $TMRn_CNT = TMRn_CMP$.

The actions performed at the end of the timer period are dependent on the event that ended the timer period.

If the end of the timer period is caused by a transition on the timer pin, the hardware automatically performs the following:

- The value in *TMRn CNT* register is copied to the *TMRn PWM* register.
- The TMRn CNT register is set to 0x0000 0001.
- The timer remains enabled and continues incrementing.
- The corresponding TMRn_INTFL.irq field is set to 1 to indicate a timer interrupt event occurred.

In capture/compare mode, the elapsed time from the timer start to the capture event is calculated using Equation 13-12.


Equation 13-12: Capture Mode Elapsed Time

$$Capture \ elapsed \ time \ (seconds) = \frac{TMRn_PWM - TMRn_CNT_{INITIAL_CNT_VALUE}}{f_{CNT_CLK}(Hz)}$$

Analog Devices Page 241 of 327

Figure 13-11: Capture/Compare Mode Diagram

THIS EXAMPLES USES THE FOLLOWING CONFIGURATION IN ADDITION TO THE SETTINGS SHOWN ABOVE:

TMRn_CTRL1.cascade = 1 (32-BIT CASCADE TIMER)
TMRn_CTRL0.mode_a = 7 (CAPTURE/COMPARE)

Analog Devices Page 242 of 327

^{*} TMRn_CNT DEFAULTS TO 0x0000000 ON A TIMER RESET. TMRn_CNT RELOADS TO 0x00000001 FOR ALL FOLLOWING TIMER PERIODS.

Configure the timer for Capture/Compare mode by doing the following:

- 1. Disable the timer peripheral as described in *Timer Clock Sources*.
- 2. If desired, change the timer clock source as described in *Timer Clock Sources*.
- 3. Set *TMRn_CTRLO.mode* to 7 to select Capture/Compare mode.
- 4. Configure the timer input function:
 - a. Set TMRn_CTRL0.pol to select the positive edge (TMRn_CTRL0.pol = 1) or negative edge (TMRn_CTRL0.pol = 0) transition to cause the capture event.
 - b. Configure the GPIO electrical characteristics as desired.
 - c. Select the correct alternate function mode for the timer input pin.
- 5. If desired, write an initial value to the *TMRn CNT* register.
 - a. This affects only the first period; subsequent timer periods always reset TMRn_CNT = 0x0000 0001.
 - b. Read the TMRn INTFL.wrdone field until it reads 1.

Note: The TMRn_CNT register is only writable if the timer clock is enabled (TMRn_CTRLO.clk_en = 1).

- 6 Write the compare value to *TMRn_CMP*.
- 7. Enable the timer by writing 1 to the *TMRn CTRLO.en* field.
 - a. Read the *TMRn_CTRLO.en* field until it returns 1 to confirm the timer is enabled.

Note: No interrupt is generated by the first transition of the input signal.

13.8.9 Dual-Edge Capture Mode (8)

Dual-edge capture mode is similar to capture mode, except the counter can capture on both edges of the timer input pin.

13.8.10 Inactive Gated Mode (14)

Inactive gated mode is similar to gated mode, except the interrupt is triggered when the timer input pin is in its inactive state.

13.9 Registers

See *Table 3-2* for the base address of this peripheral/module. If multiple peripheral instances are provided, each instance has its own independent set of registers, as shown in *Table 13-8*. Register names for a specific instance are defined by replacing "n" with the instance number. For example, a register PERIPHERALn_CTRL resolves to PERIPHERALO_CTRL and PERIPHERAL1_CTRL for instances 0 and 1, respectively.

See *Table 1-1* for an explanation of each field's read and write access. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific resets.

Table 13-8: Timer Register Summary

Offset	Register	Description
[0x0000]	TMRn_CNT	Timer Counter Register
[0x0004]	TMRn_CMP	Timer Compare Register
[0x0008]	TMRn_PWM	Timer PWM Register
[0x000C]	TMRn_INTFL	Timer Interrupt Register
[0x0010]	TMRn_CTRL0	Timer Control Register
[0x0014]	TMRn_NOLCMP	Timer Non-Overlapping Compare Register
[0x0018]	TMRn_CTRL1	Timer Configuration Register
[0x001C]	TMRn_WKFL	Timer Wake-up Status Register

Analog Devices Page 243 of 327

13.9.1 Register Details

Table 13-9: Timer Count Register

Timer Count				TMRn_CNT [0x0000]			
Bits	Field	Access	Reset	eset Description			
31:0	-	R/W*	0	Timer Count			
				This field increments at a rate dependent on the selected timer operating mode. The function of the bits in this field are dependent on the 32-bit/16-bit configuration. Reads of this register always return the current value.			
				*Note: This register is only writable if the till (TMRn_CTRL0.clken = 1).	mer clock is enabled		

Table 13-10: Timer Compare Register

Timer Compare				TMRn_CMP [0x0004]	
Bits	Field	Access	Reset	Description	
31:0	-	R/W	0	Timer Compare Value The value in this register is used as the compare value compare field meaning is determined by the spectage mode's detailed configuration section for compared to the com	cific mode of the timer. See the timer

Table 13-11: Timer PWM Register

Timer PWM				TMRn_PWM	[0x0008]
Bits	Field	Access	Reset	Description	
31:0	-	R/W*	0	Timer PWM Match In PWM mode, this field sets the count value for the first transition period of the Force. At the end of the cycle when TMRn_CNT = TMRn_CMP, the PWM output transitions to the second period of the PWM cycle. The second PWM period count stored in TMRn_CMP. TMRn_PWM must be less than TMRn_CMP for PWM mode operation.	
				Timer Capture Value	
				In capture, compare, and capture/compare mode TMRn_CNT value when a Capture, Compare, or C	
				*Note: This register is only writable if the timer cl (TMRn_CTRL0.clken = 1).	ock is enabled

Table 13-12: Timer Interrupt Register

Timer Interrupt				TMRn_INTFL	[0x000C]
Bits	Field	Access	Reset	Description	
31:26	-	RO	0	Reserved	
25	wr_dis_b	R/W	0	TimerB Write Protect in Dual Timer Mode Set this field to 0 to write protect the TimerB fiel TMRn_PWM[31:16]. When this field is set to 0, 3 TMRn_PWM registers only modify the lower 16 0: Enabled. 1: Disabled. Note: This field always reads 0 if the timer is congerted.	32-bit writes to the <i>TMRn_CNT</i> and bits associated with TimerA.

Analog Devices Page 244 of 327

Timer Inte	errupt			TMRn_INTFL [0x000C]	
Bits	Field	Access	Reset	Description	
24	wrdone_b	R	0	TimerB Write Done This field is cleared to 0 by the hardware when the software performs a write to TMRn_CNT[31:16] or TMRn_PWM[31:16] when in dual timer mode. Wait until the	
				field is set to 1 before proceeding. 0: Operation in progress. 1: Operation complete.	
23:17	-	RO	0	Reserved	
16	irq_b	R/W1C	0	TimerB Interrupt Event This field is set when a TimerB interrupt event occurs. Write 1 to clear. 0: No event. 1: Interrupt event occurred.	
15:10	-	RO	0	Reserved	
9	wr_dis_a	R/W	0	TimerA Dual Timer Mode Write Protect This field disables write access to the TMRn_CNT[15:0] and TMRn_PWM[15:0] fields so that only the 16 bits associated with updating TimerA are modified during writes to the TMRn_CNT and TMRn_PWM registers. 0: Enabled. 1: Disabled. Note: This field always reads 0 if the timer is configured as a 32-bit cascade timer.	
8	wrdone_a	R	0	TimerA Write Done This field is cleared to 0 by the hardware when the software performs a write to TMRn_CNT[15:0] or TMRn_PWM[15:0] when in dual 16-bit timer mode. Wait until the field reads 1 before proceeding. 0: Operation in progress. 1: Operation complete.	
7:1	-	RO	0	Reserved	
0	irq_a	W1C	0	TimerA Interrupt Event This field is set when a TimerA interrupt event occurs. Write 1 to clear. 0: No event. 1: Interrupt event occurred.	

Table 13-13: Timer Control 0 Register

Timer Con	Timer Control 0			TMRn_CTRL0	[0x0010]
Bits	Field	Access	Reset	Description	
31	en_b	R/W	0	TimerB Enable 0: Disabled. 1: Enabled.	
30	clken_b	R/W	0	TimerB Clock Enable 0: Disabled. 1: Enabled.	
29	rst_b	R/W10	0	TimerB Reset 0: Normal operation. 1: Reset Timer B.	
28:24	-	RO	0	Reserved	

Analog Devices Page 245 of 327

Timer Cor	ntrol 0			TMRn_CTRL0	[0x0010]
Bits	Field	Access	Reset	Description	
23:20	clkdiv_b	R/W	0	TimerB Prescaler Select The $clkdiv_b$ field selects a prescaler that divides timer's count clock as follows: $f_{CNT_CLK} = \frac{f_{CLK_SOURCE}}{prescaler}$ See the $Operating\ Modes$ section for details on v 0: 1. 1: 2. 2: 4. 3: 8. 4: 16. 5: 32. 6: 64. 7: 128. 8: 256. 9: 512. 10: 1024. 11: 2048. 12: 4096. 13-15: Reserved.	
19:16	mode_b	R/W	0	TimerB Mode Select Set this field to the desired mode for TimerB. 0: One-shot. 1: Continuous. 2: Counter. 3: PWM. 4: Capture. 5: Compare. 6: Gated. 7: Capture/compare. 8: Dual-edge capture. 9-11: Reserved. 12: Internally gated. 13-15: Reserved.	
15	en_a	R/W	0	TimerA Enable 0: Disabled. 1: Enabled.	
14	clken_a	R/W	0	TimerA Clock Enable 0: Disabled. 1: Enabled.	
13	rst_a	R/W10	0	TimerA Reset 0: No action. 1: Reset TimerA.	
12	pwmckbd_a	R/W	1	TimerA PWM Output $\phi A'$ Disable Set this field to 0 to enable the $\phi A'$ output signal default. 0: Enable the PWM $\phi A'$ output signal. 1: Disable PWM $\phi A'$ output signal.	al. The $\phi A'$ output signal is disabled by

Analog Devices Page 246 of 327

Timer Con	ntrol 0			TMRn_CTRL0	[0x0010]
Bits	Field	Access	Reset	Description	
11	nollpol_a	R/W	0	TimerA PWM Output $\phi A'$ Polarity Bit Set this field to 1 to invert the PWM $\phi A'$ signal. 0: Do not invert the PWM $\phi A'$ output signal. 1: Invert the PWM $\phi A'$ output signal.	
10	nolhpol_a	R/W	0	TimerA PWM Output ϕA Polarity Bit Set this field to 1 to invert the PWM ϕA signal. 0: Do not invert the ϕA PWM output signal. 1: Invert the ϕA output signal.	
9	pwmsync_a	R/W	0	TimerA/TimerB PWM Synchronization Mode 0: Disabled. 1: Enabled.	
8	pol_a	R/W	0	TimerA Polarity Selects the polarity of the timer's input and out GPIO is not configured for the timer's alternate are operating mode specific. See the <i>Operating</i> selected.	function. This field's usage and settings
7:4	clkdiv_a	R/W	0	TimerA Prescaler Select The $clkdiv_a$ field selects a prescaler that divide timer's count clock as follows: $f_{CNT_CLK} = \frac{f_{CLK_SOURCE}}{prescaler}$ See the $Operating\ Modes$ section to determine 0: 1. 1: 2. 2: 4. 3: 8. 4: 16. 5: 32. 6: 64. 7: 128. 8: 256. 9: 512. 10: 1024. 11: 2048. 12: 4096. 13-15: Reserved.	

Analog Devices Page 247 of 327

Timer Con	Timer Control 0			TMRn_CTRL0	[0x0010]
Bits	Field	Access	Reset	Description	
3:0	mode_a	R/W	0	TimerA Mode Select Set this field to the desired operating mode for 0: One-shot. 1: Continuous. 2: Counter. 3: PWM. 4: Capture. 5: Compare. 6: Gated. 7: Capture/compare. 8: Dual-edge capture. 9-11: Reserved. 12: Internally gated. 13-15: Reserved.	TimerA.

Table 13-14: Timer Non-Overlapping Compare Register

Timer Nor	n-Overlapping Co	mpare		TMRn_NOLCMP	[0x0014]
Bits	Field	Access	Reset	Description	
31:24	hi_b	R/W	0	TimerA Non-Overlapping High Compare 1 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output $\phi A'$ (phase A prime) and the next rising edge of the PWM output ϕA (phase A).	
23:16	lo_b	R/W	0	TimerA Non-Overlapping Low Compare 1 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output ϕA and the next rising edge of the PWM output $\phi A'$.	
15:8	hi_a	R/W	0	TimerA Non-Overlapping High Compare 0 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output $\phi A'$ and the next rising edge of the PWM output ϕA .	
7:0	lo_a	R/W	0	TimerA Non-Overlapping Low Compare 0 The 8-bit timer count value of non-overlapping time between the falling edge of the PWM output ϕA and the next rising edge of the PWM output $\phi A'$.	

Table 13-15: Timer Control 1 Register

Timer Control 1				TMRn_CTRL1	[0x0018]
Bits	Field	Access	Reset	Description	
31	cascade	R/W	0	32-bit Cascade Timer Enable This field is only supported by Timer instances with support for 32-bit cascade mode. 0: Dual 16-bit timers 1: 32-bit cascade timer	
30:29	-	RO	0	Reserved	
28	we_b	R/W	0	TimerB Wake-up Function 0: Disabled. 1: Enabled.	

Analog Devices Page 248 of 327

Timer Cor	ntrol 1			TMRn_CTRL1	[0x0018]
Bits	Field	Access	Reset	Description	
27	sw_capevent_b	R/W	0	TimerB Software Event Capture Write this field to 1 to initiate a software event capture mode to perform a software event capture. O: No event.	
		- /	•	1: Reserved.	
26:25	capevent_sel_b	R/W	0	TimerB Event Capture Selection Set this field to the desired capture event source event 0 and capture event 1 options.	. See <i>Table 13-2</i> for available capture
24	to to	D ///	0	0-3: Reserved.	
24	ie_b	R/W	0	TimerB Interrupt Enable 0: Disabled. 1: Enabled.	
23	negtrig_b	R/W	0	TimerB Edge Trigger for Event 0: Rising edge triggered. 1: Falling edge triggered. Note: External trigger events for rising-edge events must be active for a minimum of two timer clocks for detection.	
22:20	event_sel_b	R/W	0	TimerB Event Selection 0: Event disabled. 1-7: Reserved.	
19	clkrdy_b	RO	0	TimerB Clock Ready Status This field indicates if the timer clock is ready. 0: Timer clock not ready or synchronization in part of the control of the cont	orogress.
18	clken_b	RO	0	TimerB Clock Enable Status This field indicates the status of the timer enable 0: Timer not enabled or synchronization in programmer is enabled.	
17:16	clksel_b	R/W	0	1: Timer is enabled. TimerB Clock Source See Table 13-1 for the clock sources supported by each instance. Note: In cascade 32-bit mode, this field must be set to the same value as the TMRn_CTRL1.clksel_a field. 0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3.	
15	-	RO	0	Reserved	
14	outben_a	R/W	0	Output B Enable Reserved.	
13	outen_a	R/W	0	Output Enable Reserved.	
12	we_a	R/W	0	TimerA Wake-up Function 0: Disabled. 1: Enabled.	

Analog Devices Page 249 of 327

Timer Cor	itrol 1			TMRn_CTRL1 [0x0018]	
Bits	Field	Access	Reset	Description	
11	sw_capevent_a	R/W	0	TimerA Software Event capture	
				0: Normal operation. 1: Trigger software capture event.	
10:9	capevent_sel_a	R/W	0	TimerA Event capture Selection	
				Set this field to the desired capture event source event 0 and capture event 1 options.	. See <i>Table 13-2</i> for available capture
				0: Capture event 0. 1: Capture event 1. 2: Capture event 2. 3: Capture event 3.	
8	ie_a	R/W	0	TimerA Interrupt Enable	
				0: Disabled. 1: Enabled.	
7	negtrig_a	R/W	0	TimerA Edge Trigger Selection for Event 0: Rising edge triggered. 1: Falling edge triggered. Note: External trigger events for rising-edge events must be active for a minimum of two timer clocks for detection.	
6:4	event_sel_a	R/W	0	TimerA Event Selection	
				0: Event disabled. 1-7: Reserved.	
3	clkrdy_a	RO	0	TimerA Clock Ready	
				This field is set to 1 after the software enables th TMRn_CTRL1.clken_a field.	e TimerA clock by writing 1 to the
				0: Timer not enabled or synchronization in prog 1: TimerA clock is ready.	gress.
2	clken_a	R/W	0	TimerA Clock Enable	
				Write this field to 1 to enable the TimerA clock.	
				0: Timer not enabled or synchronization in prog 1: Timer is enabled.	gress.
1:0	clksel_a	R/W	0	Clock Source TimerA	
				See <i>Table 13-1</i> for the available clock options for	each timer instance.
				Note: In cascade 32-bit mode, set TMRn_CTRL1.c for proper operation.	lksel_b to the same value as this field
				0: Clock option 0. 1: Clock option 1. 2: Clock option 2. 3: Clock option 3.	

Table 13-16: Timer Wake-up Status Register

Timer Wake-up Status				TMRn_WKFL	[0x001C]
Bits	Field	Access	Reset	Description	
31:17	-	RO	0	Reserved	

Analog Devices Page 250 of 327

Timer Wake-up Status				TMRn_WKFL	[0x001C]
Bits	Field	Access	Reset	Description	
16	Ь	R/W1C	1	TimerB Wake-up Event This flag is set when a wake-up event occurs for TimerB. Write 1 to clear. 0: No event. 1: Wake-up event occurred.	
15:1	-	RO	0	Reserved	
0	a	R/W1C	1	TimerA Wake-up Event This flag is set when a wake-up event occurs for TimerA. Write 1 to clear. 0: No event. 1: Wake-up event occurred.	

Analog Devices Page 251 of 327

14. Watchdog Timer (WDT)

The WDT protects against corrupt or unreliable software, power faults, and other system-level problems that can place the IC into an improper operating state. The software must periodically write a unique sequence to a dedicated register to confirm the application is operating correctly. Failure to reset the watchdog timer within a user-specified time frame can first generate an interrupt, allowing the application the opportunity to identify and correct the problem. If the application cannot regain normal operation, the watchdog timer can generate a system reset as a last resort.

Some instances provide a windowed timer function. These instances support an additional feature that can detect watchdog timer resets that occur too early, too late, or never. This could happen if program execution is corrupted and is accidentally forced into a tight loop of code that contains a watchdog sequence. This is not detected with a traditional WDT because the end of the timeout periods is never reached. A new set of "watchdog timer early" fields are available to support the lower limits required for windowing. Traditional watchdog timers can only detect a loss of program control that fails to reset the watchdog timer.

Each time the application performs a reset as early as possible in the application software, examine the peripheral control register to determine if the reset was caused by a WDT late reset event or a WDT early reset event if the window function is enabled. If so, the software should take the desired action as part of its restart sequence.

The WDT is a critical safety feature, and most fields are reset on POR or system reset events only.

Features:

- Single-ended (legacy) watchdog timeout
- Windowed mode adds lower-limit timeout settings to detect loss of control in tight code loops.
- Configurable clock source
- Configurable time-base
- Programmable upper and lower limits for reset and interrupts from 2¹⁶ to 2³² time-base ticks.

Figure 14-1 shows a high-level block diagram of the WDT.

Analog Devices Page 252 of 327

CLK0 CLK1 CLK2 CLK3 CLK4 32-BIT COUNTER CLK5 RESET CLK6 CLK7 WDTn_CTRL.rst_late_val WDTn_CTRL.rst_late * WDTn_CTRL.int_late_val WDTn_CLKSEL.source WDTn_CTRL.int_late * WDT IRQ WDTn_CTRL.en WDTn_CTRL.rst_early_val WDTn_CTRL.rst_early * WDT WAKEUP WRITE WDTn_CTRL.int_e arly_val WDTn_CTRL.int_early * WDTn_RST.reset = 0xA5 WDTn_RST.reset = 0x5A

Figure 14-1: Windowed Watchdog Timer Block Diagram

WINDOWING SUPPORT

14.1 Instances

WDTn_CTRL.win_en

WDTn_CTRL.wdt_rst_en

WDTn_CTRL.wdt_int_en

Table 14-1 shows the peripheral instances, available clock sources, and windowed watchdog support.

Table 14-1: MAX32670/MAX32671 WDT Instances Summary

Instance	Window Support	CLK0	CLK1	CLK2	CLK3	CLK4	CLK5	CLK6	CLK7
WDT0	Yes	PCLK	IPO	IBRO	INRO	ERTCO	EXT_CLK1 GPIO0.12 (AF4)	ERFO	Reserved
WDT1	Yes	PCLK	IPO	IBRO	INRO	ERTCO	EXT_CLK1 GPIO0.12 (AF4)	ERFO	Reserved

Analog Devices Page 253 of 327

^{*} INTERRUPT FLAGS ARE SET REGARDLESS OF THE ENABLED STATE OF WDTn_CTRL.win_en, WDTn_CTRL.wdt_int_en and WDTn_CTRL.wdt_rst_en.

14.2 Usage

When enabled, $WDTn_CNT.count$ is incremented once every t_{WDTCLK} period. The software periodically executes the feed sequence during correct operation, resetting the $WDTn_CNT.count$ field to 0x0000 0000 within the target window.

The upper and lower limits of the target window are user-configurable to accommodate different applications and non-deterministic execution times within an application.

The WDT can generate interrupts and/or reset events in response to the WDT activity. Interrupts are typically configured to respond first to an event outside the target window. The approach is that a minor system event can have temporarily delayed the execution of the feed sequence, so the event can be diagnosed in an interrupt routine and control returned to the system. When the WDT feed sequence occurs much earlier than expected or not at all, a reset event can be generated that forces the system to a known good state before continuing.

Traditional WDTs only detect execution errors that fail to perform the WDT feed sequence. If the counter reaches the WDT late interrupt threshold, the device attempts to regain program control by vectoring to the dedicated WDT interrupt service routine (ISR). The ISR should reset the WDT counter, perform the desired recovery activity, and then return execution to a known good address.

If the execution error prevents the successful execution of the interrupt, the WDT continues to increment until the count reaches the WDT late reset threshold. The WDT generates a late reset event that sets the WDT late reset flag and generates a system interrupt.

Instances that support the window feature (*WDTn_CTRL.win_en* = 1) can generate a WDT early interrupt event if the WDT feed sequence occurs earlier than expected. Analogously, the device attempts to regain program control by vectoring to the dedicated WDT ISR. The WDT ISR should reset the WDT counter, perform the desired recovery activity, and then return execution to a known good address.

A WDT feed sequence that occurs earlier than the WDT early reset threshold indicates the execution error is significant enough to initiate a reset of the device to correct the problem. The WDT generates an early reset event that sets the WDT late reset flag and generates a system interrupt.

The event flags are set regardless of the corresponding interrupt or reset enable and include the early interrupt and early event flags, even if the WDT is disabled ($WDTn_CTRL.win_en = 0$).

14.2.1 Using the WDT as a Long-Interval Timer

One application of the WDT is as a very long interval timer in ACTIVE mode. The timer can be configured to generate a WDT late interrupt event for as long as 2^{32} periods of the selected watchdog clock source. The WDT should not be enabled to generate WDT reset events in this application.

14.2.2 Using the WDT as a Long-Interval Wake-up Timer

The WDT can be used as a very long internal wake-up source. Another application of the WDT is as a very long interval wake-up source from *SLEEP*.

Analog Devices Page 254 of 327

14.3 WDT Protection Sequence

The WDT protection sequence protects the system against unintentional altering of the WDT count, and unintentional enabling or disabling of the timer itself. There are three different protection sequences described below.

14.3.1 WDT Feed Sequence

Two consecutive write instructions to the *WDTn_RST.reset* field are required to reset the *WDTn_CNT.count* = 0. Disable global interrupts immediately before and re-enable after writing to ensure both writes to the *WDTn_RST.reset* field complete without interruption.

- 1. Disable interrupts.
- 2. In consecutive write operations:
 - a. Write WDTn_RST.reset: 0xA5.
 - b. Write WDTn_RST.reset: 0x5A.
- 3. Hardware automatically clears the WDTn CNT.count to 0.
- 3. Re-enable interrupts.

14.3.2 WDT Enable Sequence

Perform the enable sequence immediately before enabling the WDT to prevent accidental triggering of the reset or interrupt as soon as the timer is enabled. There is no timed access window for these write operations; the operations can be separated by any length of time as long as they occur in the required sequence.

- 1. Write the WDTn RST.reset field with 0xFE.
- 2. Write the WDTn_RST.reset field with 0xED.
- 3. The hardware sets WDTn_CTRL.en to 1 automatically.

14.3.3 WDT Disable Sequence

Perform the disable sequence immediately before disabling the WDT to prevent accidental disabling of the WDT by software. There is no timed access window for these write operations; the operations can be separated by any length of time as long as they occur in the required sequence.

- 1. Write the WDTn_RST.reset field with 0xDE.
- 2. Write the WDTn RST.reset field with 0xAD.
- 3. The hardware clears WDTn CTRL.en to 0 automatically.

14.4 WDT Events

Multiple events are supported, as shown in *Table 14-2*. The corresponding event flag is set when the event occurs.

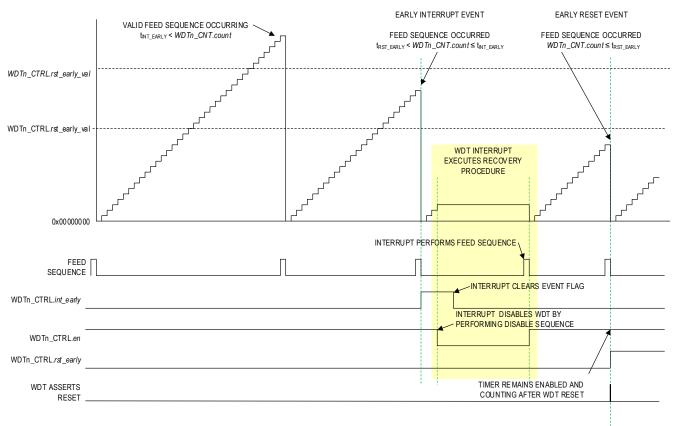
Typically, the system is configured such that the late interrupt events occur before the late reset events, and early interrupts occur when the feed sequence has the least error from the target time before the early reset events.

The event flags are set even if the corresponding interrupt enable or reset enable are not enabled and include the early interrupt flag and early event flag even if the window feature is disabled ($WDTn_CTRL.win_en = 0$).

The software must clear the event flags before enabling the WDT.

Analog Devices Page 255 of 327

Table 14-2: WDT Event Summary


Event	Condition	Peripheral Interrupt Event Flag	Peripheral Interrupt Event Enable
Early Interrupt	Feed sequence occurs while	WDTn_CTRL.int_early	WDTn_CTRL.wdt_int_en
	$WDTn_CTRL.rst_early_val \le WDTn_CNT.count <$		
	WDTn_CTRL.int_early_val		
	WDTn_CTRL.win_en = 1		
Early Reset	Feed sequence occurs while	WDTn_CTRL.rst_early	WDTn_CTRL.wdt_rst_en
,	WDTn_CNT.count < WDTn_CTRL.rst_early_val		
	WDTn_CTRL.win_en = 1		
Interrupt Late	WDTn_CNT.count = WDTn_CTRL.int_late_val	WDTn_CTRL.int_late	WDTn_CTRL.wdt_int_en
Reset Late	WDTn_CNT.count = WDTn_CTRL.rst_late_val	WDTn_CTRL.rst_late	WDTn_CTRL.wdt_rst_en
Timer Enabled	$WDTn_CTRL.clkrdy$ 0 → 1	No event flags are set by	
		a timer enabled event	

14.4.1 WDT Early Reset

The early reset event occurs if the software performs the WDT feed sequence while the WDT count is less than the reset late value (WDTn_CNT.count < WDTn_CTRL.rst_late_val).

Figure 14-2 shows the sequencing details associated with an early reset event.

Figure 14-2: WDT Early Interrupt and Reset Event Sequencing Details

Analog Devices Page 256 of 327

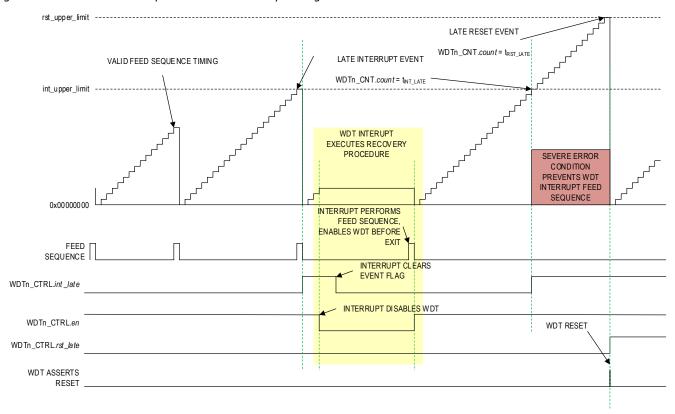
The following occurs when a WDT early reset event occurs:

- 1. The hardware sets WDTn CTRL.rst early to 1.
- 2. The hardware initiates a system reset.
 - a. The hardware resets WDTn_CNT.count to 0x0000 0000 during the system reset event.
 - b. The WDTn_CTRL.en and the WDTn_CTRL.rst_early fields are unaffected by a system reset.
- 3. After the system reset is complete, the WDT continues incrementing.

14.4.2 WDT Early Interrupt

The early interrupt event occurs if the software performs the WDT feed sequence while $WDTn_CTRL.rst_early_val \le WDTn_CNT.count < WDTn_CTRL.int_early_val$, as shown in Table 14-2. Figure 14-2 shows the sequencing details associated with an early reset event, including:

- The sequencing details associated with an early interrupt event.
- The required functions performed by the WDT interrupt handler.


The following occurs when a WDT late interrupt event occurs:

- 1. The hardware sets WDTn_CTRL.int_late to 1.
- 2. The hardware initiates the WDT interrupt, if enabled.

14.4.3 WDT Late Reset

The late reset event occurs if the counter increments to the point where WDTn_CNT.count = WDTn_CTRL.rst_late threshold, as shown in Table 14-2. Figure 14-3 shows the sequencing details associated with a late reset event.

Figure 14-3: WDT Late Interrupt and Reset Event Sequencing Details

Analog Devices Page 257 of 327

The following occurs when a WDT late reset event occurs:

- 1. The hardware sets WDTn CTRL.rst late to 1.
- 2. The hardware initiates a system reset:
 - a. The hardware resets WDTn_CNT.count to 0x0000 0000 during the reset event.
 - b. The WDTn CTRL.en and WDTn CTRL.rst late fields are unaffected by a system reset.
- 3. After the hardware exits the system reset, the WDT continues incrementing after the system reset completes.

14.4.4 WDT Late Interrupt

The late reset event occurs if the counter increments to the point where WDTn_CNT.count = WDTn_CTRL.rst_late threshold as shown in Table 14-2. Figure 14-3 shows the sequencing details associated with a late interrupt event, including the required functions performed by the WDT interrupt handler.

The following occurs when WDT late interrupt event occurs:

- 1. The hardware sets WDTn_CTRL.int_late to 1.
- 2. The hardware initiates the WDT interrupt if enabled.

14.5 Initializing the WDT

The complete procedure for configuring the WDT is as follows:

- 1. Execute the WDT disable sequence and disable the WDT:
 - a. Disable global interrupts.
 - b. Write WDTn RST.reset to 0xDE.
 - c. Write WDTn RST.reset to 0xAD.
 - d. The hardware automatically clears WDTn CTRL.en to 0, disabling the WDT.
 - e. Re-enable global interrupts.
- 2. Verify the peripheral is disabled before proceeding:
 - a. Poll WDTn CTRL.clkrdy until it reads 1.
- 3. Set WDTn_CTRL.clkrdy_ie = 1 to generate a WDT enabled interrupt event.
- 4. Configure WDTn_CLKSEL.source to select the clock source.
- 5. Configure the standard thresholds:
 - a. Configure WDTn CTRL.int late to the desired threshold for the WDT late interrupt event.
 - b. Configure WDTn CTRL.rst late val to the desired threshold for the WDT late reset event.
- 6. If using the optional windowed WDT feature:
 - a. Set WDTn_CTRL.win_en = 1 to enable the windowed WDT feature.
 - b. Configure WDTn CTRL.int_early_val to the desired threshold for the WDT early interrupt event.
 - c. Configure WDTn CTRL.rst early val to the desired threshold for the WDT early reset event.
- 7. Set WDTn_CTRL.wdt_int_en to generate an interrupt when a WDT late interrupt event occurs. If WDTn_CTRL.win_en = 1, an interrupt is generated by both a WDT late interrupt event, and a WDT early interrupt event.
- 8. Set WDTn_CTRL.wdt_rst_en to generate an interrupt when a WDT late reset event occurs. If WDTn_CTRL.win_en = 1, an interrupt is generated by a WDT late reset event and a WDT early reset event.
- 9. Execute the WDT feed sequence to reset the WDT counter.
 - a. Write WDTn_RST.reset to 0xA5.
 - b. Write WDTn RST.reset to 0x5A.

Analog Devices Page 258 of 327

- 10. Execute the WDT enable sequence and enable the WDT:
 - a. Disable global interrupts.
 - b. Write WDTn_RST.reset to 0xFE.
 - c. Write WDTn_RST.reset to 0xAD.
 - d. Set WDTn_CTRL.en to 1 to enable the WDT.
 - e. Re-enable global interrupts.
- 11. Verify the peripheral is enabled before proceeding:
 - a. Poll WDTn_CTRL.clkrdy until it reads 1, or
- 12. Set WDTn_CTRL.clkrdy_ie = 1 to generate a WDT enabled event interrupt.

14.6 Resets

The WDT is a critical safety feature. Most of the fields are reset by a POR or system reset events only; however, the enable field (WDTn_CTRL.en) and the interrupt flag fields are not reset by a system reset event.

14.7 Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 14-3: WDT Register Summary

Offset	Register	Name
[0x0000]	WDTn_CTRL	WDT Control Register
[0x0004]	WDTn_RST	WDT Reset Register
[8000x0]	WDTn_CLKSEL	WDT Clock Select Register
[0x000C]	WDTn_CNT	WDT Count Register

14.7.1 Register Details

Table 14-4: WDT Control Register

WDT Control				WDTn_CTRL	[0x0000]		
Bits	Name	Access	Reset	Description			
31	rst_late	R/W	0	Reset Late Event			
				A watchdog reset event occurred after the time specified in WDTn_CTRL.rst_late_val. This flag is set even if WDTn_CTRL.win_en = 0 or WDTn_CTRL.wdt_rst_en = 0. The software must clear this field to 0.			
				0: Watchdog did not cause a reset event.			
				1: Watchdog reset occurred after WDTn_CTRL.rst_early_val.			
30	rst_early	R/W	0	Reset Early Event			
				A watchdog reset event occurred before the time specified in the WDTn_CTRL.rst_early_val field. This flag is set even if WDTn_CTRL.win_en = 0 or WDTn_CTRL.wdt_rst_en = 0. The software must clear this field to 0.			
				0: Watchdog did not cause a reset event.			
				1: Watchdog reset occurred before the time specified in the WDTn_CTRL.rst_early_val field.			

Analog Devices Page 259 of 327

WDT Control			WDTn_CTRL [0x0000]					
Bits	Name	Access	Reset	Description				
29	win_en	R/W	0	Window Function Enable 0: Disabled. The WDT recognizes interrupt late and reset late events, supporting legacy implementations. 1: Enabled.				
28	clkrdy	R	0	Clock Status This field is cleared to 0 by the hardware when the software changes the state of the WDTn_CTRL.en field. The hardware sets this field to 1 when the change to the requested enable or disable is complete. 0: WDT status change in progress. 1: WDT status change complete.				
27	clkrdy_ie	R/W	0	Clock Switch Ready Interrupt Enable This interrupt prevents the software from needing to poll the WDTn_CTRL.clkrdy field to determine when the WDT clock is ready. When the WDTn_CTRL.clkrdy field transitions from 1 to 0, this interrupt signals the transition is complete. 0: Disabled. 1: Enabled.				
26:24	-	RO	0	Reserved				
23:20	rst_early_val	R/W	0	Reset Early Event Threshold 0x0: 2 ³¹ × t _{WDTCLK} 0x1: 2 ³⁰ × t _{WDTCLK} 0x2: 2 ²⁹ × t _{WDTCLK} 0x3: 2 ²⁸ × t _{WDTCLK} 0x4: 2 ²⁷ × t _{WDTCLK} 0x5: 2 ²⁶ × t _{WDTCLK} 0x6: 2 ²⁵ × t _{WDTCLK} 0x7: 2 ²⁴ × t _{WDTCLK} 0x8: 2 ²³ × t _{WDTCLK} 0x9: 2 ²² × t _{WDTCLK} 0x9: 2 ²¹ × t _{WDTCLK} 0xB: 2 ²⁰ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xF: 2 ¹⁶ × t _{WDTCLK} 0xF: 2 ¹⁶ × t _{WDTCLK} Note: The watchdog timer must be disabled (field.	(WDTn_CTRL.en = 0) before changing this			

Analog Devices Page 260 of 327

WDT Control				WDTn_CTRL	[0x0000]			
Bits	Bits Name Access			Description				
19:16	int_early_val	R/W	0	Interrupt Early Event Threshold 0x0: 2 ³¹ × t _{WDTCLK} 0x1: 2 ³⁰ × t _{WDTCLK} 0x2: 2 ²⁹ × t _{WDTCLK} 0x3: 2 ²⁸ × t _{WDTCLK} 0x4: 2 ²⁷ × t _{WDTCLK} 0x5: 2 ²⁶ × t _{WDTCLK} 0x6: 2 ²⁵ × t _{WDTCLK} 0x7: 2 ²⁴ × t _{WDTCLK} 0x8: 2 ²³ × t _{WDTCLK} 0x9: 2 ²² × t _{WDTCLK} 0x9: 2 ²² × t _{WDTCLK} 0x0: 2 ²¹ × t _{WDTCLK} 0xB: 2 ²⁰ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xC: 2 ¹⁹ × t _{WDTCLK} 0xF: 2 ¹⁶ × t _{WDTCLK} Note: The watchdog timer must be disabled (field.	(WDTn_CTRL.en = 0) before changing this			
15:13	-	RO	0	Reserved				
12	int_early	R/W	0	Interrupt Early Flag A feed sequence is performed earlier than the time determined by the WDTn_CTRL.int_early field. This flag is set even if WDTn_CTRL.win_en = 0. 0: No interrupt event. 1: Interrupt event occurred. Note: A WDT interrupt is generated if the WDT interrupt is enabled (WDTn_CTRL.wdt_int_en = 1).				
11	wdt_rst_en	R/W	0	WDT Reset Enable 0: Disabled. 1: Enabled.				
10	wdt_int_en	R/W	0	WDT Interrupt Enable 0: Disabled. 1: Enabled.				
9	int_late	R/W	0	Interrupt Late Flag A watchdog feed sequence did not occur bef WDTn_CTRL.int_late_val field. 0: No interrupt event. 1: Interrupt event occurred. Note: A WDT interrupt is generated if the WE (WDTn_CTRL.wdt_int_en = 1).				

Analog Devices Page 261 of 327

WDT Control			WDTn_CTRL [0x0000]				
Bits	Name	Access	Reset	Description			
8	en	R/W	0	WDT Enable			
				This field enables/disables the WDT clock into the peripheral. WDTn_CNT.count holds its value while the WDT is disabled. The WDT disable sequence must be performed immediately before setting this field to 0. The WDT enable sequence must be performed immediately before setting this field to 1.			
				0: Disabled.			
				1: Enabled.			
7:4	rst_late_val	R/W	0	Reset Late Event Threshold			
				$0x0: 2^{31} \times t_{WDTCLK}$			
				$0x1: 2^{30} \times t_{WDTCLK}$			
				$0x2: 2^{29} \times t_{WDTCLK}$			
				$0x3: 2^{28} \times t_{WDTCLK}$			
				$0x4: 2^{27} \times t_{WDTCLK}$			
				$0x5: 2^{26} \times t_{WDTCLK}$			
				$0x6: 2^{25} \times t_{WDTCLK}$			
				$0x7: 2^{24} \times t_{WDTCLK}$			
				$0x8: 2^{23} \times t_{WDTCLK}$			
				$0x9: 2^{22} \times t_{WDTCLK}$			
				$0xA: 2^{21} \times t_{WDTCLK}$			
				$0xB: 2^{20} \times t_{WDTCLK}$			
				$0xC: 2^{19} \times t_{WDTCLK}$			
				$0xD: 2^{18} \times t_{WDTCLK}$			
				0xE: 2 ¹⁷ × t _{WDTCLK}			
				OxF: $2^{16} \times t_{WDTCLK}$ Note: The watchdog timer must be disabled	(M/DTs CTD) on = 0) hofors changing this		
				field.	WDTM_CTRL.en = 0) before changing this		
3:0	int_late_val	R/W	0	Interrupt Late Event Threshold			
				$0x0: 2^{31} \times t_{WDTCLK}$			
				$0x1: 2^{30} \times t_{WDTCLK}$			
				$0x2: 2^{29} \times t_{WDTCLK}$			
				$0x3: 2^{28} \times t_{WDTCLK}$			
				$0x4: 2^{27} \times t_{WDTCLK}$			
				$0x5: 2^{26} \times t_{WDTCLK}$			
				$0x6: 2^{25} \times t_{WDTCLK}$			
				$0x7: 2^{24} \times t_{WDTCLK}$			
				$0x8: 2^{23} \times t_{WDTCLK}$			
				0x9: 2 ²² × t _{WDTCLK}			
				0xA: 2 ²¹ × t _{WDTCLK}			
				0xB: 2 ²⁰ × t _{WDTCLK}			
				0xC: 2 ¹⁹ × t _{WDTCLK}			
				$0xD: 2^{18} \times t_{WDTCLK}$ $0xE: 2^{17} \times t_{WDTCLK}$			
				OXE: $2^{17} \times t_{WDTCLK}$ OXF: $2^{16} \times t_{WDTCLK}$			
				Note: The watchdog timer must be disabled (field.	(WDTn_CTRL.en = 0) before changing this		

Analog Devices Page 262 of 327

Table 14-5: WDT Reset Register

WDT Reset				WDTn_RST [0x0004]		
Bits	Name	Access	Reset	Description		
31:8	=	RO	0	Reserved		
7:0	reset	R/W	0 *	Reset Watchdog Timer Count		
				See the WDT Protection Sequence section for details on using this field for resetting the counter, enabling, and disabling the WDT.		
				[†] Note: This field is set to 0 on a POR and is no	ot affected by other resets.	

Table 14-6: WDT Clock Source Select Register

WDT Cloc	ck Source Selec	t		WDTn_CLKSEL	[0x0008]
Bits	Name	Access	Reset	Description	
31:3	-	RO	0	Reserved	
2:0	source	R/W	0 *	Clock Source Select	
				See <i>Table 14-1</i> for the available clock option	S.
				0: CLK0.	
				1: CLK1.	
				2: CLK2.	
				3: CLK3.	
				4: CLK4.	
				5: CLK5.	
				6: CLK6.	
				7: CLK7.	
				[†] Note: This field is only reset on a POR and unaffected by other resets.	
				Note: The watchdog timer must be disabled field.	(WDTn_CTRL.en = 0) before changing this

Table 14-7: WDT Count Register

WDT Count				WDTn_CNT [0x000C]					
Bits	Name	Access	Reset	Description					
31:0	count	R	0	WDT Counter The counter value for debugging. This register is reset by system reset, as well the WDT clock is off, the feeding sequence g width. When the WDT clock is on, the feedin that is a handshake to the WDT clock domain Note: The watchdog timer must be disabled field.	enerates an asynchronous reset of 1 PCLK g sequence generates a synchronous reset n.				

Analog Devices Page 263 of 327

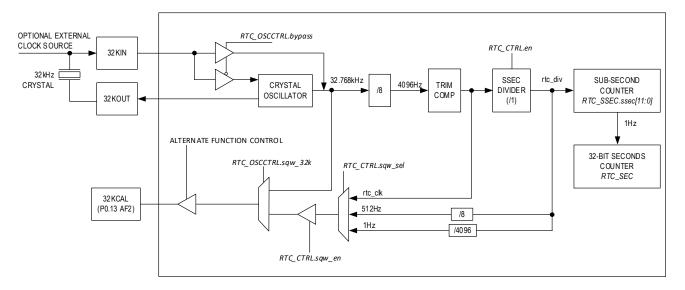
15. Real-Time Clock (RTC)

15.1 Overview

The RTC is a 32-bit binary timer that keeps the time of day up to 136 years. It provides time-of-day and sub-second alarm functionality in the form of system interrupts.

The RTC operates on an external 32.768kHz time base. It can be generated from the internal crystal oscillator driving an external 32.768kHz crystal between the 32KIN and 32KOUT pins or a 32.768kHz square wave driven directly into the 32KIN pin. Refer to the device data sheet for the required electrical characteristics of the external crystal.

A user-configurable, digital frequency trim is provided for applications requiring higher accuracy.


The 32-bit seconds counter register *RTC_SEC* is incremented every time there is a rollover of the *RTC_SSEC.ssec* sub-second counter field.

Two alarm functions are provided:

- 1. A programmable time-of-day alarm provides a single event, alarm timer using the *RTC_TODA* alarm register, *RTC_SEC* register, and *RTC_CTRL.tod_alarm_ie* field.
- 2. A programmable sub-second alarm provides a recurring alarm using the RTC sub-second alarm register, RTC_SSECA, and the RTC_CTRL.ssec_alarm field.

The RTC is powered in the AoD. Disabling the RTC, RTC_CTRL.en cleared to 0, stops incrementing the RTC_SSEC and RTC_SEC, but preserves their current values. The 32kHz oscillator is not affected by the RTC_CTRL.en field. While the RTC is enabled (RTC_CTRL.en = 1), the RTC_TRIM.vrtc_tmr field is also incremented every 32 seconds.

Figure 15-1: MAX32670/MAX32671 RTC Block Diagram

Analog Devices Page 264 of 327

15.2 Instances

One instance of the RTC peripheral is provided. The RTC counter and alarm register details and description are shown in *Table 15-1*.

Note: See Enabling the ERTCO for details on enabling the ERTCO for use with the RTC.

Table 15-1: RTC Seconds, Sub-Seconds, Time-of-Day Alarm, and Sub-Second Alarm Register Details

Field Wid		Counter Increment	Minimum	Maximum	Description
RTC_SEC.sec	32	1 second	1 second	136 years	Seconds counter field
RTC_SSEC.ssec	12	244 μ s ($\frac{1}{4096Hz}$)	244μs	1 second	Sub-second counter field
RTC_TODA.tod_alarm	20	1 second	1 second	12 days	Time-of-day alarm field
RTC_SSECA.ssec_alarm	32	244 μ s ($\frac{1}{4096Hz}$)	244μs	12 days	Sub-second alarm field

15.3 Register Access Control

Access protection mechanisms prevent the software from accessing critical registers and fields while RTC while the hardware is updating them. Monitoring the RTC_CTRL.busy and RTC_CTRL.rdy fields allows the software to determine when it is safe to write to registers and when registers return valid results.

Table 15-2: RTC Register Access

Register	Field	Read Access	Write Access	RTC_CTRL.busy = 1 during writes	Description
RTC_SEC	.sec	$RTC_CTRL.busy = 0$ $RTC_CTRL.rdy = 1^{\dagger}$	RTC_CTRL.busy = 0 RTC_CTRL.rdy = 1 [†]	Υ	Seconds counter
RTC_SSEC	.ssec	$RTC_CTRL.busy = 0$ $RTC_CTRL.rdy = 1^{\dagger}$	RTC_CTRL.busy = 0 RTC_CTRL.rdy = 1 [†]	Υ	Sub-second counter
RTC_TODA	.tod_alarm	Always	RTC_CTRL.busy = 0 and (RTC_CTRL.tod_alarm_ie = 0 or RTC_CTRL.en = 0)	Υ	Time-of-day alarm
RTC_SSECA	.ssec_alarm	Always	RTC_CTRL.busy = 0 RTC_CTRL.ssec_alarm_ie = 0 or RTC_CTRL.en = 0)	Υ	Sub-second alarm
RTC_TRIM	All	Always	RTC_CTRL.busy = 0 RTC_CTRL.wr_en = 1	Υ	Trim
RTC_OSCCTRL	All	Always	RTC_CTRL.wr_en = 1	N	Oscillator control
RTC_CTRL	en	Always	RTC_CTRL.busy = 0 RTC_CTRL.wr_en = 1	Υ	RTC enable field
	All other fields	Always	RTC_CTRL.busy = 0	Υ	
† See the RTC_S	EC and RTC_SSE	C Read Access Control se	ection for details.		

^{15.3.1} RTC_SEC and RTC_SSEC Read Access Control

The software reads of the RTC_SEC and RTC_SSEC registers return invalid results if the read operation occurs on the same cycle that the register is being updated by the hardware ($RTC_CTRL.rdy = 0$). The hardware avoids this by setting the $RTC_CTRL.rdy$ field to 1 for 120µs when the RTC_SEC and RTC_SSEC registers are valid and readable by the software.

Analog Devices Page 265 of 327

Alternately, the software can set the RTC_CTRL.rd_en field to 1 to allow asynchronous reads of both RTC_SEC and RTC_SSEC.

Three methods are available to ensure valid results when reading RTC_SEC and RTC_SSEC:

- 1. The software clears the RTC_CTRL.rdy field to 0.
 - a. The software polls the RTC_CTRL.rdy field until it reads 1 before reading the registers.
 - b. The software must read the RTC_SEC and RTC_SSEC registers within 120µs to ensure valid register data.
- 2. The software sets the RTC_CTRL.rdy_ie field to 1 to generate an RTC interrupt when the hardware sets the RTC_CTRL.rdy field to 1.
 - a. The software must service the RTC interrupt and read the RTC_SEC, RTC_SSEC, or both registers while the RTC_CTRL.rdy field is 1 to ensure valid data, avoiding the overhead associated with polling the RTC_CTRL.rdy field.
- 3. The software sets the RTC_CTRL.rd_en field to 1 enabling asynchronous reads of both the RTC_SEC register and the RTC_SSEC register.
 - a. The software must read consecutive identical values of each of the RTC_SEC register and the RTC_SSEC register to ensure valid data.

15.3.2 RTC Write Access Control

The read-only status field *RTC_CTRL.busy* is set to 1 by the hardware following a software instruction that writes to specific registers. The bit remains 1 while the software updates are being synchronized into the RTC. The software should not write to any of the registers until the hardware indicates the synchronization is complete by clearing *RTC_CTRL.busy* to 0.

15.4 RTC Alarm Functions

The RTC provides time-of-day and sub-second interval alarm functions. The time-of-day alarm is implemented by matching the count values in the counter register with the alarm register's value. The sub-second interval alarm provides an auto-reload timer driven by the trimmed RTC clock source.

15.4.1 Time-of-Day Alarm

Program the RTC time-of-day alarm register (*RTC_TODA*) to configure the time-of-day alarm. The alarm triggers when the value stored in *RTC_TODA.tod_alarm* matches the *RTC_SEC*[19:0] seconds count register. This allows programming the time-of-day alarm to any future value between 1 second and 12 days relative to the current time with a resolution of 1 second. Disable the time-of-day alarm (*RTC_CTRL.tod_alarm_ie* = 0) before changing the *RTC_TODA.tod_alarm_field*.

When the alarm occurs, a single event sets the time-of-day alarm interrupt flag (RTC_CTRL.tod_alarm) to 1.

Setting the RTC_CTRL.tod_alarm bit to 1 in the software results in an interrupt request to the processor if the alarm time-of-day interrupt enable (RTC_CTRL.tod_alarm_ie) bit is set to 1, and the RTC's system interrupt enable is set.

15.4.2 Sub-Second Alarm

The RTC_SSECA.ssec_alarm and RTC_CTRL.ssec_alarm_ie fields control the sub-second alarm. Writing RTC_SSECA.ssec_alarm sets the starting value for the sub-second alarm counter. Writing the sub-second alarm enable (RTC_CTRL.ssec_alarm_ie) bit to 1 enables the sub-second alarm. Once enabled, an internal alarm counter begins incrementing from the RTC_SSECA.ssec_alarm field's value. When the counter rolls over from 0xFFFF FFFF to 0x0000 0000, the hardware sets the RTC_CTRL.ssec_alarm bit, triggering the alarm. At the same time, the hardware also reloads the counter with the value previously written to RTC_SSECA.ssec_alarm.

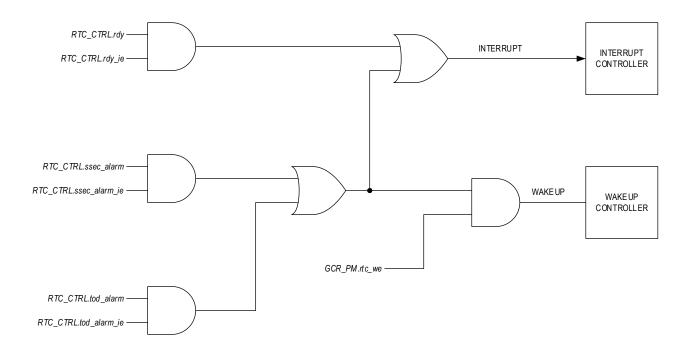
Disable the sub-second alarm, RTC CTRL.ssec alarm ie, before changing the interval alarm value, RTC SSECA.ssec alarm.

The delay (uncertainty) associated with enabling the sub-second alarm is up to one sub-second clock period. This uncertainty is propagated to the first interval alarm. After that, if the interval alarm remains enabled, the alarm triggers after each sub-second interval as defined without the first alarm uncertainty because the sub-second alarm is an auto-

Analog Devices Page 266 of 327

reload timer. Enabling the sub-second alarm with the sub-second alarm register set to 0 (RTC_SSECA = 0) results in the maximum sub-second alarm interval.

15.4.3 RTC Interrupt and Wakeup Configuration


The following is a list of conditions that, when enabled, generate an RTC interrupt:

- 1. Time-of-day alarm
- 2. Sub-second alarm
- 3. RTC_CTRL.rdy field asserted high, signaling read access permitted

The RTC can be configured, so the time-of-day and sub-second alarms are a wake-up source for exiting the following low-power modes:

- 1. BACKUP
- 2. DEEPSLEEP
- 3. SLEEP

Figure 15-2: RTC Interrupt/Wake-Up Diagram Wake-Up Function

Use this procedure to enable the RTC as a wake-up source:

- 1. Configure the RTC interrupt enable bits, enabling one or more interrupt conditions to generate an RTC interrupt.
- 2. Create an RTC interrupt handler function and register the address of the RTC_IRQn using the NVIC.
- 3. Set the GCR_PM.rtc_we field to 1 to enable system wake-up by the RTC.
- 4. Enter the desired low-power mode. See *Operating Modes* for details.

Analog Devices Page 267 of 327

15.5 Square Wave Output

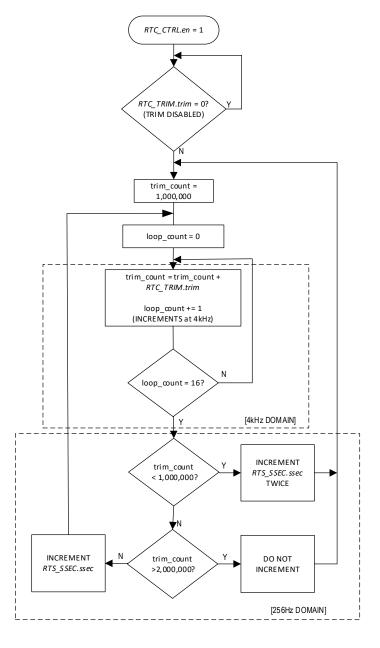
The RTC can output a 50% duty cycle square wave signal derived from the 32kHz oscillator on a selected device pin. See *Table 15-3* for the device pins, frequency options, and control fields specific to this device. Frequencies noted as compensated in *Table 15-3* are used during the RTC frequency calibration procedure because they incorporate the frequency adjustments provided by the digital trim function.

Table 15-3: MAX32670/MAX32671 RTC Square Wave Output Configuration

Function	Option	Control Field
Output Pin	P0.13: 32KCAL	0
	1Hz (Compensated)	RTC_CTRL.sqw_sel = 0
		RTC_CTRL.sqw_en = 1
		$RTC_OSCCTRL.sqw_32k = 0$
		RTC_CTRL.en = 1
	512Hz (Compensated)	RTC_CTRL.sqw_sel = 1
		RTC_CTRL.sqw_en = 1
Enable Frequency		$RTC_OSCCTRL.sqw_32k = 0$
Output		RTC_CTRL.en = 1
	4kHz	RTC_CTRL.sqw_sel = 2
		RTC_CTRL.sqw_en = 1
		$RTC_OSCCTRL.sqw_32k = 0$
		RTC_CTRL.en = N/A
	32kHz	$RTC_OSCCTRL.sqw_32k = 1$
		RTC_CTRL.en = N/A

Use the following software procedure to generate and output the square wave:

- 1. Select the desired output frequency:
 - a. Set the field RTC_CTRL.sqw_sel to 0 for a 1Hz compensated output frequency, or
 - b. set the field RTC_CTRL.sqw_sel to 1 for a 512Hz compensated output frequency, or
 - c. set the field RTC CTRL.sqw sel to 2 for a 4kHz output frequency, or
 - d. set the field RTC_OSCCTRL.sqw_32k to 1 for the 32kHz frequency output.
- 2. Enable the system level output pin by setting the output pin's alternate function, shown in *Table 15-3*.
- 3. If the selected frequency is 1Hz, 512Hz, or 4kHz, set the RTC_CTRL.sqw_en field to 1 to output the selected output frequency.
- 4. If the selected frequency is 1Hz or 512Hz, the RTC must be enabled to generate the output frequency (RTC_CTRL.en = 1).


Analog Devices Page 268 of 327

15.6 RTC Calibration

A digital trim facility provides the ability to compensate for RTC inaccuracies of up to \pm 127ppm when compared against an external reference clock. The trimming function utilizes an independent dedicated timer that increments the sub-second register based on a user-supplied, twos-complement value in the RTC_TRIM register as shown in Figure 15-3.

Figure 15-3: Internal Implementation of 4kHz Digital Trim

Analog Devices Page 269 of 327

Complete the following steps to perform an RTC calibration:

- 1. The software must configure and enable one of the compensated calibration frequencies as described in section Square Wave Output.
- 2. Measure the frequency on the square wave output pin and compute the deviation from an accurate reference clock.
- 3. Clear the RTC CTRL.rdy field to 0.
- 4. Wait for the RTC_CTRL.rdy to be set to 1 by the hardware:
 - a. Set the RTC_CTRL.rdy_ie to 1 to generate an interrupt when the RTC_CTRL.rdy field is set to 1, or
 - b. Poll the RTC CTRL.rdy field until it reads 1.
- 5. Poll the RTC CTRL.busy field until it reads 0 to allow any active operations to complete.
- 6. Set the RTC_CTRL.wr_en field to 1 to allow access to the RTC_TRIM.trim field.
- 7. Write a trim value to the RTC_TRIM.trim field to correct for any measured inaccuracy.
- 8. Poll the RTC_CTRL.busy field until it reads 0
- 9. Clear the RTC_CTRL.wr_en field to 0.
- 10. Repeat the process as needed until the desired accuracy is achieved.

Analog Devices Page 270 of 327

15.7 Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, soft reset, POR, and the peripheral-specific reset.

Table 15-4: RTC Register Summary

Offset	Register	Description
[0x0000]	RTC_SEC	RTC Seconds Counter Register
[0x0004]	RTC_SSEC	RTC Sub-Second Counter Register
[0x0008]	RTC_TODA	RTC Time-of-Day Alarm Register
[0x000C]	RTC_SSECA	RTC Sub-Second Alarm Register
[0x0010]	RTC_CTRL	RTC Control Register
[0x0014]	RTC_TRIM	RTC 32KHz Oscillator Digital Trim Register
[0x0018]	RTC_OSCCTRL	RTC 32KHz Oscillator Control Register

15.7.1 Register Details

Table 15-5: RTC Seconds Counter Register

RTC Seconds Counter				RTC_SEC [0x0000]		[0x0000]	
Bits	Field	Access	Reset		Description		
31:0	sec	R/W	0		Seconds Counter		
					This register is a binary count of seconds.		

Table 15-6: RTC Sub-Second Counter Register

RTC Sub-Seconds Counter				RTC_SSEC [0x0004]		[0x0004]	
Bits	Field	Access	Re	eset	Description		
31:12	-	RO		0	Reserved		
11:0	ssec	R/W		_	Sub-Seconds Counter RTC_SEC increments when this field rolls from 0xFFF to 0x000.		

Table 15-7: RTC Time-of-Day Alarm Register

RTC Time-of-Day Alarm				RTC_TODA	[8000x0]	
Bits	Field	Access	Reset	Description		
31:20	=	RO	0	0 Reserved		
19:0	tod_alarm	R/W	0	Time-of-Day Alarm This field sets the time-of-day alarm from 1 second up to 12-days. When this field matches RTC SEC[19:0], an RTC system interrupt is generated.		
				This field is writable when RTC_CTRL.busy = 0 or RTC_CTRL.en = 0.	O and either RTC_CTRL.tod_alarm_ie = 0	

Analog Devices Page 271 of 327

Table 15-8: RTC Sub-Second Alarm Register

RTC Sub-	RTC Sub-Second Alarm			RTC_SSECA	[0x000C]
Bits	Field	Access	Reset	Description	
31:0	ssec_alarm	R/W	0	Sub-second Alarm (4kHz)	
				Sets the starting and reload value of the internal sub-second alarm counter. The internal counter increments and generates an alarm when the internal counter rolls from 0xFFFF FFFF to 0x0000 0000.	
				This field is writable when RTC_CTRL.busy = C or RTC_CTRL.en = 0.	and either RTC_CTRL.ssec_alarm_ie = 0

Table 15-9: RTC Control Register

RTC Con	trol Register			RTC_CTRL	[0x0010]
Bits	Field	Access	Reset	Description	
31:16	-	RO	0	Reserved	
15	wr_en	R/W	0*	Write Enable	
				This field controls access to the <i>RTC_TRIM</i> refield.	gister and the RTC enable (RTC_CTRL.en)
				1: Writes to the RTC_TRIM register and the	e RTC_CTRL.en field are allowed.
				0: Writes to the RTC_TRIM register and the	_
				*Note: Reset on System Reset, Soft Reset, and	d GCR_RST0.rtc assertion.
14	rd_en	R/W	0	Asynchronous Counter Read Enable	
				Set this field to 1 to allow direct read access	
				without waiting for RTC_CTRL.rdy. Multiple c RTC_SSEC must be executed until two consec	
				accuracy.	cutive reads are identical to ensure data
				0: RTC_SEC and RTC_SSEC registers are syn while RTC_CTRL.rdy= 1.	chronized and should only be accessed
				1: RTC_SEC and RTC_SSEC registers are asy	nchronous and require software
				interaction to ensure data accuracy.	
13:11	-	RO	0	Reserved	
10:9	sqw_sel	R/W	0*	Frequency Output Select	
				This field selects the RTC-derived frequency t See <i>Table 15-3</i> for configuration details.	to output on the square wave output pin.
				0: 1Hz (Compensated)	
				1: 512Hz (Compensated)	
				2: 4kHz	
				3: Reserved	
				*Note: Reset on POR only.	
8	sqw_en	R/W	0*	Square Wave Output Enable	
				This field enables the square wave output. Se	ee <i>Table 15-3</i> for configuration details.
				0: Disabled.	
				1: Enabled.	
				*Note: Reset on POR only.	

Analog Devices Page 272 of 327

RTC Con	trol Register			RTC_CTRL	[0x0010]
Bits	Field	Access	Reset	Description	
7	ssec_alarm	R/W	0*	Sub-second Alarm Interrupt Flag This interrupt flag is set when a sub-second a up source for the device. 0: No sub-second alarm pending. 1: Sub-second interrupt pending. *Note: Reset on POR only.	alarm condition occurs. This flag is a wake-
6	tod_alarm	R/W	0*	Time-of-Day Alarm Interrupt Flag This interrupt flag is set by the hardware when a time-of-day alarm occurs. 0: No time-of-day alarm interrupt pending. 1: Time-of-day interrupt pending. *Note: Reset on POR only.	
5	rdy_ie	R/W	0*	RTC Ready Interrupt Enable 0: Disabled. 1: Enabled. *Note: Reset on system reset, soft reset, and	GCR_RST0.rtc assertion.
4	rdy	RO	0*	RTC Ready This bit is set to 1 for 120µs by the hardware and RTC_SSEC registers has occurred. The so RTC_SSEC while this hardware bit is set to 1. time. An RTC interrupt is generated if RTC_CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ftware should read RTC_SEC and The software can clear this bit at any TRL.rdy_ie = 1. Care invalid. Care valid.

Analog Devices Page 273 of 327

RTC Con	trol Register			RTC_CTRL	[0x0010]
Bits	Field	Access	Reset	Description	
3	busy	RO	0*	RTC Busy Flag This field is set to 1 by the hardware while a rewrites to the following registers result in this • RTC_SEC • RTC_TRIM	
				The following fields cannot be written w RTC_CTRL.en RTC_CTRL.tod_alarm_ie RTC_CTRL.ssec_alarm_ie RTC_CTRL.rdy_ie RTC_CTRL.tod_alarm RTC_CTRL.ssec_alarm RTC_CTRL.ssec_alarm RTC_CTRL.sqw_en RTC_CTRL.rd_en This field is automatically cleared by the hard software should poll this field until it reads 0 or RTC_TRIM register before making any other 0: RTC not busy 1: RTC busy	lware when the update is complete. The after changing the <i>RTC_SEC</i> , <i>RTC_SSEC</i> ,
2	ssec_alarm_ie	R/W	0*	*Note: Reset on POR only. Sub-Second Alarm Interrupt Enable Check the RTC_CTRL.busy flag after writing to synchronization is complete. 0: Disable. 1: Enable. *Note: Reset on POR only.	o this field to determine when the RTC
1	tod_alarm_ie	R/W	0*	Time-of-Day Alarm Interrupt Enable Check the RTC_CTRL.busy flag after writing to synchronization is complete. 0: Disable. 1: Enable. *Note: Reset on POR only.	o this field to determine when the RTC
0	en	R/W	0*	Real-Time Clock Enable The RTC write enable (RTC_CTRL.wr_en) bit in (RTC_CTRL.busy) must read 0 before writing the RTC_CTRL.busy flag for 0 to determine with 0: Disabled. 1: Enabled. *Note: Reset on POR only.	to this field. After writing to this bit, check

Analog Devices Page 274 of 327

Table 15-10: RTC 32KHz Oscillator Digital Trim Register

RTC 32KF	RTC 32KHz Oscillator Digital Trim			RTC_TRIM [0x0014]		[0x0014]
Bits	Field	Access	Res	set	Description	
31:8	vrtc_tmr	R/W	0*	*	VRTC Time Counter The hardware increments this field every 32 seconds while the RTC is enabled. *Note: Reset on POR only.	
7:0	trim	R/W	0*		RTC Trim This field specifies the 2s complement value o decrement of the field adds or subtracts 1ppn maximum correction of ± 127ppm. *Note: Reset on POR only.	

Table 15-11: RTC 32KHz Oscillator Control Register

TC Osci	llator Control			RTC_OSCCTRL	[0x0018]
Bits	Field	Access	Reset	Description	
31:6	-	R/W	0	Reserved	
5	sqw_32k	R/W	0	RTC Square Wave Output 0: Disabled. 1: Enables the 32kHz oscillator output or the square wave output pin. See <i>Table 15-3</i> f *Note: Reset on POR only.	·
4	bypass	R/W	0	RTC Crystal Bypass This field disables the RTC oscillator and allows an external clock source to drive th 32KIN pin. 0: Disable bypass. RTC time base is an external 32kHz crystal. 1: Enable bypass. RTC time base is an external square wave driven on 32KIN. *Note: Reset on POR only.	
3	ibias_en	R/W	1	Current Bias Enable Set this field to 1 to enable a higher current m RTC_OSCCTRL.ibias_sel for additional details.	node for the RTC oscillator. See
2	hyst_en	R/W	0	High Current Hysteresis Buffer Enable This field enables a high current hysteresis bu 0: Disabled. 1: Enabled.	ffer.
1	ibias_sel	R/W	0	Current Bias Select This field selects between 2× and 4× bias mod 0: 2× mode. 1: 4× mode.	le if RTC_OSCCTRL.ibias_en is set to 1.
0	filter_en	R/W	1	Deglitch Filter Enable Set this field to 1 to enable the analog deglitch 0: Disabled. 1: Enabled.	h filter for the RTC oscillator.

Analog Devices Page 275 of 327

16. Cyclic Redundancy Check (CRC)

The CRC engine performs CRC calculations on data written to the CRC data input register.

The features include:

- User-definable polynomials up to x³² (33 terms).
- DMA support.
- Supports automatic byte swap of data input and calculated output.
- Supports big-endian or little-endian data input and calculated output.
- Supports input reflection.

An *n*-bit CRC can detect the following types of errors:

- · Single-bit errors.
- Two-bit errors for block lengths less than 2^k where k is the order of the longest irreducible factor of the polynomial.
- Odd numbers of errors for polynomials with the parity polynomial (x+1) as one of its factors (polynomials with an even number of terms).
- Burst errors less than *n*-bits.

In general, all but 1 out of 2^n errors are detected:

- 99.998% for a 16-bit CRC.
- 99.99999998% for a 32-bit CRC.

16.1 Instances

Instances of the peripheral are listed in *Table 16-1*.

Table 16-1: MAX32670/MAX32671 CRC Instances

Instance	Maximum Terms	DMA Support	Big- and Little-Endian
CRC	33 (2 ³²)	Yes	Yes

16.2 Usage

A CRC value is often appended to the end of a data exchange between a transmitter and receiver. The transmitter appends the calculated CRC to the end of the transmission. The receiver independently calculates a CRC on the data it received. The result should be a known constant if the data and CRC were received error-free.

The software must configure the CRC polynomial, the starting CRC value, and the endianness of the data. Once configured, the software or the standard DMA engine transfers the data in either 8-bit, 16-bit, or 32-bit words to the CRC engine by writing to the corresponding data input register. Use the CRC_DATAIN8 register for 8-bit data, the CRC_DATAIN16 register for 16-bit data, and the CRC_DATAIN32 register for 32-bit data. The hardware automatically sets the CRC_CTRL.busy field to 1 while the CRC engine is calculating a CRC over the input data. When the CRC_CTRL.busy field reads 0, the CRC result is available in the CRC_VAL register. The software or the standard DMA engine must track the data transferred to the CRC engine to determine when the CRC is finalized.

Because the receiving end calculates a new CRC on both the data and received CRC, send the received CRC in the correct order, so the highest-order term of the CRC is shifted through the generator first. Because data is typically shifted through the generator LSB first, the CRC is reversed bitwise, with the highest-order term of the remainder in the LSB position. Software CRC algorithms typically manage this by calculating everything backward. The software reverses the polynomial and does right shifts on the data. The resulting CRC is bit swapped and in the correct format.

Analog Devices Page 276 of 327

By default, the CRC is calculated using the LSB first ($CRC_CTRL.msb = 0$.) When calculating the CRC using MSB first data (reflected), the software must set $CRC_CTRL.msb$ to 1.

When calculating the CRC on data LSB first, the polynomial should be reversed so that the coefficient of the highest power term is in the LSB position. The largest term, x^n , is implied (always one) and should be omitted when writing to the CRC_POLY register. This is necessary because the polynomial is always one bit larger than the resulting CRC, so a 32-bit CRC has a polynomial with 33 terms ($x^0 ext{ ... } x^{32}$).

Table 16-2: Organization of Calculated Result in the CRC_VAL.value Field

CRC_CTRL.msb	CRC_CTRL.byte_swap_out	Order
0	0	The CRC value returned is the raw value
1	0	The CRC value returned is reflected but not byte swapped
0	1	The CRC value returned is byte swapped but not reflected
1	1	The CRC value returned is reflected and then byte swapped

The CRC can be calculated on the MSB of the data first by setting the *CRC_CTRL.msb* field to 1, this is referred to as reflection. The CRC polynomial register, *CRC_POLY*, must be left-justified. The hardware implies the MSB of the polynomial just as it does when calculating the CRC LSB first. The LSB position of the polynomial must be set; this defines the length of the CRC. The initial value of the CRC, *CRC_VAL.value*, must also be left justified. When the CRC calculation is complete using MSB first, the software must right shift the calculated CRC value, *CRC_VAL.value*, by right shifting the output value if the CRC polynomial is less than 32 bits.

16.3 Polynomial Generation

The CRC can be configured for any polynomial up to x^{32} (33 terms) by writing to the CRC_POLY.poly field. Table 16-3 shows common CRC polynomials.

The reset value of the *CRC_POLY.poly* field is the *CRC-32 Ethernet* polynomial. This polynomial is used by Ethernet and file compression utilities such as zip or gzip.

Note: Only write to the CRC polynomial register, CRC_POLY.poly, when the CRC_CTRL.busy field is 0.

Table 16-3: Common CRC Polynomials

Algorithm	Polynomial Expression	Order	Polynomial
CRC-32 Ethernet	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0$	LSB	0xEDB8 8320
CRC-CCITT	x ¹⁶ +x ¹² +x ⁵ +x ⁰	LSB	0x0000 8408
CRC-16	x ¹⁶ +x ¹⁵ +x ² +x ⁰	LSB	0x0000 A001
USB Data	x ¹⁶ +x ¹⁵ +x ² +x ⁰	MSB	0x8005 0000
Parity	x ¹ +x ⁰	LSB	0x0000 0001

Analog Devices Page 277 of 327

16.4 Software CRC Calculations

The software can perform CRC calculations by writing directly to the CRC data input register. Each write to the CRC data input register triggers the hardware to compute the CRC value. The software is responsible for loading all data for the CRC into the CRC data input register. When complete, the result is read from the CRC_VAL register.

Use the following procedure to calculate a CRC:

- 1. Disable the CRC peripheral by setting the field CRC CTRL.en to 0.
- 2. Configure input and output data format fields:
 - a. CRC CTRL.msb
 - b. CRC_CTRL.byte_swap_in
 - c. CRC_CTRL.byte_swap_out
- 3. Set the polynomial by writing to the CRC POLY.poly field.
- 4. Set the initial value by writing to the CRC_VAL.value field.
 - a. For a 32-bit CRC, write the initial value to the CRC VAL register.
 - b. For a 16-bit or 8-bit CRC, the unused bits in the CRC_VAL register must be set to 0.
- 5. Set the CRC CTRL.en field to 1 to enable the peripheral.
- 6. Write a value to be processed to data input register.
 - a. Calculate an 8-bit CRC by writing an 8-bit value to the CRC DATAIN8 register.
 - b. Calculate a 16-bit CRC by writing a 16-bit value to the CRC_DATAIN16 register.
 - c. Calculate a 32-bit CRC by writing a 32-bit value to the CRC_DATAIN32 register.
- 7. Poll the CRC_CTRL.busy field until it reads 0.
- 8. Repeat steps 6 and 7 until all input data is complete.
- 9. Disable the CRC peripheral by clearing the CRC_CTRL.en field to 0.
- 10. Read the CRC value from the CRC_VAL.value field.

Analog Devices Page 278 of 327

16.5 DMA CRC Calculations

The CRC engine requests new data from the DMA controller when the fields CRC_CTRL.en and CRC_CTRL.dma_en are both set to 1. Enable the corresponding DMA channel's interrupt to receive an interrupt event when the CRC is complete. It is also possible for software to poll the DMA channel's interrupt flag directly by reading the DMA_INTFL.ch<n> flag until it reads 1.

Use the following procedure to calculate a CRC value using DMA:

- 1. Set CRC_CTRL.en = 0 to disable the peripheral.
- 2. Configure the DMA:
 - a. Set CRC_CTRL.dma_en = 1 to enable DMA mode.
 - b. See the DMA *Usage* section for details on configuring the DMA for a memory to peripheral transfer.
 - Set the DMA_CHn_CTRL.dstwd field to match the size of the CRC calculation (0 for 8-bits, 1 for half-word, or 2 for word)
- 3. Configure the input and output data formats:
 - a. CRC CTRL.msb
 - b. CRC_CTRL.byte_swap_in
 - c. CRC_CTRL.byte_swap_out
- 4. Set the polynomial by writing to the CRC_POLY.poly field.
- 5. Set the initial value by writing to the CRC_VAL register.
 - a. For a 32-bit CRC, write the initial value to the CRC_VAL register.
 - b. For a 16-bit or an 8-bit CRC, the unused bits in the CRC_VAL register must be set to 0.
- 6. Set the CRC_CTRL.en field to 1 to enable the peripheral.
- 7. When the DMA operation completes, the hardware:
 - a. Clears the CRC_CTRL.busy field to 0.
 - b. Loads the new CRC value into the CRC_VAL.value field.
 - c. Sets the *DMA_INTFL.ch<n>* field to 1 and generates a DMA interrupt if the *DMA_INTEN.ch<n>* field was set to 1.
- 8. Disable the CRC peripheral by clearing the CRC CTRL.en field to 0.
- 9. Read the CRC value from the CRC_VAL.value field.

16.6 Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 16-4: CRC Register Summary

Offset	Name	Description
[0x0000]	CRC_CTRL	CRC Control Register
[0x0004]	CRC_DATAIN8	CRC 8-Bit Data Input Register
[0x0004]	CRC_DATAIN16	CRC 16-Bit Data Input Register
[0x0004]	CRC_DATAIN32	CRC 32-Bit Data Input Register
[0x0008]	CRC_POLY	CRC Polynomial Register
[0x000C]	CRC_VAL	CRC Value Register

Analog Devices Page 279 of 327

16.6.1 Register Details

Table 16-5: CRC Control Register

CRC Con	trol			CRC_CTRL	[0x0000]						
Bits	Field	Access	Reset	Description							
31:17	-	RO	0	Reserved							
16	busy	R	0	CRC Busy							
				0: Not busy.							
				1: Busy.							
15:5	-	RO	0	Reserved							
4	byte_swap_out	R/W	0	Byte Swap CRC Value Output							
				0: CRC_VAL.value is not byte swap	pped.						
				1: CRC_VAL.value is byte swapped	d.						
3	byte_swap_in	R/W	0	Byte Swap CRC Data Input							
				0: The data input is processed lea							
				1: The data input is processed mo	ost significant byte first.						
2	msb	R/W	0	Most Significant Bit Order							
				0: LSB data first.							
				1: MSB data first (reflected).							
1	dma_en	R/W	0	DMA Enable							
					request when the CRC calculation is complete						
				$(CRC_CTRL.busy = 0.)$							
				0: Disabled.							
				1: Enabled.							
0	en	R/W	0	CRC Enable							
				0: Disabled.							
				1: Enabled.							

Table 16-6: CRC 8-Bit Data Input Register

CRC 8-Bit	Data Input				CRC_DATAIN8	[0x0004]
Bits	Field	Access	Res	et	Description	
7:0	data	W	0		the byte and bit ordering of the dat	calculate 8-bit CRCs. See <i>Table 16-2</i> for details on a in this register. CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.

Table 16-7: CRC 16-Bit Data Input Register

CRC Data	a 16-Bit Input				CRC_DATAIN16	[0x0004]		
Bits	Field	Access	Res	et	Description			
15:0	data	W	0		CRC Data Input			
					Write 16-bit values to this register to calculate 16-bit CRCs. See <i>Table 16-2</i> for detail on the byte and bit ordering of the data in this register.			
					Note: Do not write to this register if CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.			

Analog Devices Page 280 of 327

Table 16-8: CRC 32-Bit Data Input Register

CRC 32-B	Bit Data Input				CRC_DATAIN32	[0x0004]			
Bits	Field	Access	Rese	et	Description				
31:0	data	W	0		CRC Data Input				
					Write 32-bit values to this register to calculate 32-bit CRCs. See <i>Table 16-2</i> for details on the byte and bit ordering of the data in this register.				
					Note: Do not write to this register if CRC_CTRL.busy = 1 or CRC_CTRL.en = 0.				

Table 16-9: CRC Polynomial Register

CRC Poly	nomial				CRC_POLY	[0x0008]
Bits	Field	Access	Reset	t	Description	
31:0	poly	R/W	0xEDB8 8	320	CRC Polynomial	
					See Table 16-2 for details on the by	te and bit ordering of the data in this register.

Table 16-10: CRC Value Register

CRC Valu	е			CRC_VAL	[0x000C]
Bits	Field	Access	Reset	Description	
31:0	value	R/W	0	register should only be read or writ	ter to set the initial state of the accelerator. This ten when <i>CRC_CTRL.busy</i> = 0. te and bit ordering of the data in this register.

Analog Devices Page 281 of 327

17. AES

The provided hardware AES accelerator performs calculations on blocks up to 128 bits.

The features include:

- Supports multiple key sizes:
 - 128 bits.
 - 192 bits.
 - 256 bits.
- DMA support for both receive and transmit channels.
- Supports multiple key sources:
 - Encryption using the external AES key.
 - Decryption using the external AES key.
 - Decryption using the locally generated decryption key.

17.1 Instances

Instances of the peripheral are listed in *Table 17-1*. Disable the peripheral by clearing *AES_CTRL.en* = 0 before writing to any register's field.

Table 17-1: MAX32670/MAX32671 AES Instances

Instance	128-Bit Key	192-Bit Key	256-Bit Key	DMA Support
AES	Yes	Yes	Yes	Yes

17.2 AES Key Generation

The TRNG supports generation of AES keys. The following steps describe how to generate an AES key and store it in the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.

- 1. Clear the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers by setting TRNG_CTRL.keywipe to 1.
- 2. Set TRNG_CTRL.aeskg_usr to 1 to start the key generation process.
- 3. Read TRNG_CTRL.aeskg_usr until it reads 0.
- 4. The keys are generated and placed in the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers. The keys cannot be read by software.

Analog Devices Page 282 of 327

17.3 AES Key Storage

The MAX32670/MAX32671 includes a dedicated memory location to store AES keys which are loaded on a POR to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers. The following steps describe the process of saving software generated keys to the internal non-volatile memory for loading after a POR to the AES_KEY registers.

- 1. Generate an AES key of the desired length.
- 2. Write the AES key starting at address 0x1080 2008.
 - a. For example, to write a 128-bit AES key, write the key to KEY[15] KEY[0], as shown in Figure 17-1.
- 3. Software must write the AES key magic values. Once written, the AES keys are automatically loaded to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers after each POR. Write the following values to FMV1[3]:FMV1[0] and FMV0[3]: FMV0[0].
 - a. FMV0[0] = 0x79
 - b. FMV0[1] = 0xD4
 - c. FMV0[2] = 0x86
 - d. FMV1[3] = 0x2B
 - e. FMV1[0] = 0x79
 - f. FMV1[1] = 0xD4
 - g. FMV1[2] = 0x86
 - h. FMV0[3] = 0x2B

Figure 17-1: AES KEY Storage

			Bit Position																															
		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8														8	7	6	5		4	3	2	1	0									
	0x1080 2000				FM\	/0[3]							FMV	0[2]							FΜ\	0[1]							F	FMV(0[0]			
	0x10802004				FM\	/1[3]							FMV	′1[2]							FΜ\	′1[1]							F	FMV′	1[0]			
	0x10802008				KE'	Y[3]							KE	/[2]							KE'	/[1]								KEY	[0]			
	0x1080200C	KEY[7]						KEY[6]							KEY[5]							KEY[4]												
ress	0x10802010		KEY[11]					KEY[10]							KEY[9]								KEY[8]											
Add	0x10802014				KEY	/[15]				KEY[14]							KEY[13]							KEY[12]										
	0x10802018	KEY[19]						KEY[18]							KEY[17]									ł	KEY[16]								
	0x1080201C	KEY[23]									KEY	[22]							KEY	[21]				KEY[20]										
	0x10802020		KEY[27]							KEY[26]								KEY[25]							KEY[24]									
	0x10802024		KEY[31]							KEY[30]								KEY[29]							KEY[28]									

Analog Devices Page 283 of 327

17.4 Encryption of 128-Bit Blocks of Data Using FIFO

AES operations are typically performed on 128 bits of data at a time. Therefore, the simplest use case is to have software encrypt 128-bit blocks of data. The AES CTRL.start field is unused in this case.

- 1. Enable the AES peripheral clock by setting GCR PCLKDIS1.aes to 0.
- 2. If using the POR key, ensure the key is correctly stored as described in the AES Key Storage section.
- 3. If using a software generated key, write the key to the key registers, otherwise follow the steps in AES Key Generation to generate a key or use a key loaded on POR by following the steps in AES Key Storage.
 - a. For a 128-bit key, write the key to the AES KEY AES KEY3:AES KEY AES KEYO registers.
 - b. For a 192-bit key, write the key to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.
 - c. For a 256-bit key, write the key to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.
- 4. Read the AES_STATUS.busy field until it reads 0.
- 5. Set AES_CTRL.input_flush to 1 to flush the input FIFO.
- 6. Set AES_CTRL.output_flush to 1 to flush the output FIFO.
- 7. Set AES_CTRL.key_size to the size of the loaded key.
- 8. Set AES_CTRL.type to 0 (encryption using the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers).
- 9. If interrupts are desired, set AES_INTEN.done to 1 so that an interrupt triggers at the end of the AES calculation.
- 10. Set AES_CTRL.en to 1 to enable the peripheral.
- 11. Write four 32-bit words of data to AES_FIFO.data.
 - a. The hardware starts the AES calculation.
- 12. If AES INTEN.done equals 1, an interrupt triggers after the AES calculation is complete.
- 13. If AES_INTEN.done equals 0, the software should poll until AES_INTFL.done reads 1.
- 14. Clear the interrupt done flag by writing 1 to AES INTFL.done.
- 15. Read four 32-bit words from the AES FIFO.data register (least significant word first).
- 16. Repeat steps 11-15 until all 128-bit blocks have been processed.

17.5 Encryption of 128-Bit Blocks Using DMA

For this example, it is assumed that the DMA both reads and writes data to and from the AES engine. This is not a requirement. The AES could use DMA on one side and software on the other. It is required that for each DMA transmit request the DMA writes four 32-bit words of data into the AES. Likewise, it is required that for each DMA receive request the DMA reads four 32-bit words of data out of the AES engine.

The AES_CTRL.start field is used in this case. The state of the AES_STATUS.busy and AES_INTFL.done flags are indeterminate during DMA operations. The software must clear AES_INTEN.done to 0 when using the DMA mode. Use the appropriate DMA interrupt instead to determine when the DMA operation is complete, and the results can be read from AES_FIFO.data.

Assuming the DMA is continuously filling the data input FIFO, the calculations complete in the following number of SYS_CLK cycles:

128-bit key: 181

192-bit key: 213

256-bit key: 245

Analog Devices Page 284 of 327

The procedure to use DMA encryption/decryption is:

- 1. Enable the AES peripheral clock by setting GCR PCLKDIS1.aes to 0.
- 2. Set the AES CTRL.en field to 1 to enable the peripheral.
- 3. If using the POR key, ensure the key is correctly stored as described in the AES Key Storage section.
- 4. If using a software generated key, write the key to the key registers, otherwise follow the steps in *AES Key Generation* to generate a key or use a key loaded on POR by following the steps in *AES Key Storage*.
 - a. For a 128-bit key, write the key to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.
 - b. For a 192-bit key, write the key to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.
 - c. For a 256-bit key, write the key to the AES_KEY_AES_KEY7:AES_KEY_AES_KEY0 registers.
- 5. Initialize the AES receive and transmit channels for the DMA controller.
- 6. Read the AES_STATUS.busy field until it reads 0.
- 7. Set AES_CTRL.input_flush to 1 to flush the input FIFO.
- 8. Set AES CTRL.output flush to 1 to flush the output FIFO.
- 9. Set AES_CTRL.key_size to the size of the loaded key.
- 10. Select encryption or decryption:
 - a. Set AES_CTRL.type to 0 (encryption using the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers).
 - b. Set AES_CTRL.type to 1 (decryption using the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers).
 - c. Set AES_CTRL.type to 2 (decryption using the locally generated decryption key from a previous encryption).
- 11. Set AES INTEN.done to 0 for DMA operation.
- 12. Set AES CTRL.start to 1 to start the AES DMA operation.
- 13. The DMA engine fills the FIFO, and hardware begins the AES calculation.
- 14. When an AES calculation is completed, the AES hardware signals to the DMA that the data output FIFO is full and that it should be emptied. If the DMA does not empty the FIFO before the next calculation is complete, the hardware sets AES_STATUS.output_full to 1.

Step 13 and step 14 are repeated if the DMA has new data to write to the data input FIFO.

Note: The DMA interface to the AES only works when the amount of data is a multiple of 128 bits. For non-multiples of 128 bits, the remainder after calculating all 128-bit blocks must be encrypted manually using the steps in Encryption of Blocks Less Than 128 Bits.

Analog Devices Page 285 of 327

17.6 Encryption of Blocks Less Than 128 Bits

The AES engine automatically starts a calculation when 128 bits (four writes of 32 bits) occurs. Operations of less than 128 bits use the start field to initiate the AES calculation.

- 1. Enable the AES peripheral clock by setting GCR PCLKDIS1.aes to 0.
- 2. If using the POR key ensure the key is correctly stored as described in the AES Key Storage section.
- 3. If using a software generated key, write the key to the key registers, otherwise follow the steps in *AES Key Generation* to generate a key or use a key loaded on POR by following the steps in *AES Key Storage*.
 - a. For a 128-bit key, write the key to the AES KEY AES KEY3:AES KEY AES KEY0 registers.
 - b. For a 192-bit key, write the key to the AES KEY AES KEY5:AES KEY AES KEY0 registers.
 - c. For a 256-bit key, write the key to the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers.
- 4. Read the AES_STATUS.busy field until it reads 0.
- 5. Clear AES_CTRL.en to 0 to disable the peripheral.
- 6. Set AES_CTRL.input_flush to 1 to flush the input FIFO.
- 7. Set AES_CTRL.output_flush to 1 to flush the output FIFO.
- 8. Set AES CTRL.key size to the size of the loaded key.
- 9. Set AES_CTRL.type to 0 (encryption using the AES_KEY_AES_KEY_AES_KEY_AES_KEYO registers).
- 10. If interrupts are desired, set AES_INTEN.done to 1 so that an interrupt triggers at the end of the AES calculation.
- 11. Set AES_CTRL.en to 1 to enable the peripheral.
- 12. Write from one to three 32-bit words of data to the AES FIFO.data field, least significant word first.
- 13. Start the calculation manually by setting AES CTRL.start to 1.
- 14. If AES_INTEN.done = 1, an interrupt triggers after the AES calculation is complete.
- 15. If AES INTEN.done = 0, the software should poll until AES INTEL.done reads 1.
- 16. Read four 32-bit words from AES FIFO.data (least significant word first).

17.7 Decryption

The decryption of data is very similar to encryption. The only difference is in the setting of *AES_CTRL.type*. There are two settings of this field for decryption:

- Decryption using the AES_KEY_AES_KEY7:AES_KEY_AES_KEY0 registers.
- Decryption with an internal decryption key.

The internal decryption key is generated during an encryption operation. Therefore, it is necessary to complete an encryption operation before doing the first decryption to ensure that a key is generated.

17.8 Interrupt Events

The peripheral generates interrupts for the events shown in *Table 17-2*. Unless noted otherwise, each instance has its own independent set of interrupts and higher-level flag and enable fields.

Multiple events may set an interrupt flag and generate an interrupt if the corresponding interrupt enable is set. The software must clear the flags in the interrupt handler if AES interrupts are enabled.

Table 17-2: Interrupt Events

Event	Local Interrupt Flag	Local Interrupt Enable
Data Output FIFO Overrun	AES_INTFL.ov	AES_INTEN.ov
Key Zero	AES_INTFL.key_zero	AES_INTEN.key_zero
Key Change	AES_INTFL.key_change	AES_INTEN.key_change

Analog Devices Page 286 of 327

Event	Local Interrupt Flag	Local Interrupt Enable
Calculation Done	AES_INTFL.done	AES_INTEN.done

17.8.1 Data Output FIFO Overrun

When an AES calculation is completed, the AES engine signals to the DMA that the data output FIFO is full and that it should be emptied. If the DMA does not empty the FIFO before the next calculation is complete, a data output FIFO overrun event occurs, and the corresponding local interrupt flag is set.

17.8.2 Key Zero

Attempting a calculation with a key of all zeros generates a key zero event.

17.8.3 Key Change

Writing to any key register while AES_STATUS.busy is 1 generates a key change event.

17.8.4 Calculation Done

The transition of AES_STATUS.busy = 1 to AES_STATUS.busy = 0 generates a calculation done event. The calculation done event interrupt must be disabled when using DMA.

17.9 AES Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 17-3: AES Register Summary

Offset	Name	Description
[0x0000]	AES_CTRL	AES Control Register
[0x0004]	AES_STATUS	AES Status Register
[0x0008]	AES_INTFL	AES Interrupt Flag Register
[0x000C]	AES_INTEN	AES Interrupt Enable Register
[0x0010]	AES_FIFO	AES Data FIFO

17.9.1 Register Details

Table 17-4: AES Control Register

AES Control					AES_CTRL	[0x0000]	
Bits	Field	Access	Re	set	Description		
31:10	-	RO	(0	Reserved		
9:8	type	R/W	(0	Encryption Type		
					0: Encryption using the AES_KEY_AES_KEY7:AES_KEY_AES_KEY0 registers.		
					1: Decryption using the AES_KEY_AES_KEY7:AES_KEY_AES_KEY0 registers.		
					2: Decryption using the locally generated decryption key.		
					3: Reserved.		
7:6	key_size	R/W	(0	Encryption Key Size		
					0: 128 bits.		
					1: 192 bits.		
					2: 256 bits.		
				3: Reserved.			

Analog Devices Page 287 of 327

AES Conf	AES Control			AES_CTRL	[0x0000]
Bits	Field	Access	Reset	Description	
5	output_flush	R/W10	0	Flush Data Output FIFO	
				This field always reads 0.	
				0: Normal operation.	
				1: Flush.	
4	input_flush	R/W10	0	Flush Data Input FIFO	
				This field always reads 0.	
				0: Normal operation.	
				1: Flush.	
3	start	R/W10	0	Start AES Calculation	
					calculation regardless of the state of the data input
				rifico, allowing an AES calculation or calculation starts when the data ing	n less than 128-bits of data. By default, an AES
				This field always reads 0.	out this is tuil.
				·	
				0: Normal operation. 1: Start calculation.	
2	dua - t., a.,	D //A/	0		FIFO
2	dma_tx_en	R/W	U	DMA Request To Write Data Input FIFO 0: Disabled.	
					rated if the data input FIFO is empty
1	dma ry on	R/W	0	1: Enabled. DMA request is generated if the data input FIFO is empty. DMA Request To Read Data Output FIFO	
1	dma_rx_en	N/ VV	U	0: Disabled.	t riro
				0.0000000000000000000000000000000000000	rated if the data output FIFO is full.
0	en	R/W	0	AES Enable	
	Cii	11,700	O	0: Disabled.	
				1: Enabled.	

Table 17-5: AES Status Register

AES Status				AES_STATUS	[0x0004]
Bits	Field	Access	Reset	Description	
31:5	-	RO	0	Reserved	
4	output_full	R	0	Output FIFO Full	
				0: Not full.	
				1: Full.	
3	output_em	R	0	Output FIFO Empty	
				0: Not empty.	
				1: Empty.	
2	input_full	R	0	Input FIFO Full	
				0: Not full.	
				1: Full.	
1	input_em	R	0	Input FIFO Empty	
				0: Not empty	
				1: Empty	
0	busy	R	0	AES Busy	
				0: Not busy.	
				1: Busy.	

Analog Devices Page 288 of 327

Table 17-6: AES Interrupt Flag Register

AES Inte	AES Interrupt Flag			AES_INTFL	[0x0008]
Bits	Field	Access	Reset	Description	
31:4	=	RO	0	Reserved	
3	ov	W1C	0	Data Output FIFO Overrun Event Ir	nterrupt
				0: No event.	
				1: Event occurred.	
2	key_zero	W1C	0	Key Zero Event Interrupt	
				0: No event.	
				1: Event occurred.	
1	key_change	W1C	0	Key Change Event Interrupt	
				0: No event.	
				1: Event occurred.	
0	done	W1C	0	Calculation Done Event Interrupt	
				0: No event.	
				1: Event occurred.	

Table 17-7: AES Interrupt Enable Register

AES Inte	AES Interrupt Enable				AES_INTEN	[0x000C]
Bits	Field	Access	Res	et	Description	
31:4	-	RO	0)	Reserved	
3	ov	W1C	0)	Data Output FIFO Overrun Event Ir 0: Enabled. 1: Disabled.	nterrupt Enable
2	key_zero	W1C	0	0 Key Zero Event Interrupt Enable 0: Enabled. 1: Disabled		
1	key_change	W1C	0)	Key Change Event Interrupt Enable 0: Enabled. 1: Disabled.	
0	done	W1C	0)	Calculation Done Event Interrupt E This event interrupt must be disable 0: Enabled. 1: Disabled.	

Table 17-8: AES FIFO Register

AES Data				AES_FIFO	[0x0010]
Bits	Field	Access	Reset	Description	
31:0	data	R/W	0	AES FIFO	
					e data input FIFO. The hardware automatically sare written to this FIFO. The data should be
				Reading this register pulls data from read first.	n the data output FIFO. The least significant word is

Analog Devices Page 289 of 327

17.10 AES_KEY Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 17-9: AES Register Summary

Offset	Name	Description
[0x0000]	AES_KEY_AES_KEYO	AES Key 0 Register
[0x0004]	AES_KEY_AES_KEY1	AES Key 0 Register
[0x0008]	AES_KEY_AES_KEY2	AES Key 0 Register
[0x000C]	AES_KEY_AES_KEY3	AES Key 0 Register
[0x0010]	AES_KEY_AES_KEY4	AES Key 0 Register
[0x0014]	AES_KEY_AES_KEY5	AES Key 0 Register
[0x0018]	AES_KEY_AES_KEY6	AES Key 0 Register
[0x001C]	AES_KEY_AES_KEY7	AES Key 0 Register

17.10.1 AES_KEY Register Details

Table 17-10: AES Key 0 Register

AES Key 0					AES_KEY_AES_KEYO	[0x0000]
Bits	Field	Access	Res	et	Description	
31:0	-	*	*		AES KEY 0	
					, ,	th a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
					This register always reads 0.	

Table 17-11: AES Key 1 Register

AES Key 1				AES_KEY_AES_KEY1	[0x0004]	
Bits	Field	Access	Res	et	Description	
31:0	-	*	*		AES KEY 1	
						th a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
					This register always reads 0.	

Table 17-12: AES Key 2 Register

AES Key 2					AES_KEY_AES_KEY2	[0x0008]
Bits	Field	Access	Res	et	Description	
31:0	-	*	*		AES KEY 2	
					, ,	th a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
					This register always reads 0.	

Analog Devices Page 290 of 327

Table 17-13: AES Key 3 Register

AES Key 3				AES_KEY_AES_KEY3	[0x000C]
Bits	Field	Access	Reset	Description	
31:0	-	*	*	AES KEY 3	
				, ,	th a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
				This register always reads 0.	

Table 17-14: AES Key 4 Register

AES Key 4				AES_KEY_AES_KEY4	[0x0010]
Bits	Field	Access	Rese	t Description	
31:0	-	*	*	AES KEY 4	
				. ,	ith a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
				This register always reads 0.	

Table 17-15: AES Key 5 Register

AES Key 5				AES_KEY_AES_KEY5	[0x0014]	
Bits	Field	Access	Res	et	Description	
31:0	-	*	*		AES KEY 5	
					, ,	th a portion of an AES key at POR if the user FMV is NES Key Storage for additional details.
					This register always reads 0.	

Table 17-16: AES Key 6 Register

AES Key 6				AES_KEY_AES_KEY6 [0x0018]	
Bits	Field	Access	Rese	et Description	
31:0	-	*	*	AES KEY 6	
				, ,	ith a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
				This register always reads 0.	

Table 17-17: AES Key 7 Register

AES Key 7				AES_KEY_AES_KEY7	[0x001C]	
Bits	Field	Access	Res	et	Description	
31:0	-	*	*		AES KEY 1	
				This register is optionally loa		th a portion of an AES key at POR if the user FMV is AES Key Storage for additional details.
					This register always reads 0.	

Analog Devices Page 291 of 327

18. TRNG Engine

The Analog Devices supplied universal cryptographic library (UCL) provides a function to generate random numbers intended to meet the requirements of common security validations. The entropy from one or more internal noise sources continually feeds a TRNG, the output of which is then processed by software and hardware to generate the number returned by the UCL function. Analog Devices will work directly with the customer's accredited testing laboratory to provide any information regarding the TRNG that is needed to support the customer's validation requirements.

The general information in this section is provided only for completeness; customers are expected to use the Analog Devices UCL for the generation of random numbers. The TRNG engine can also be used to generate AES keys.

18.1 TRNG Registers

See *Table 3-2* for the base address of this peripheral/module. See *Table 1-1* for an explanation of the read and write access of each field. Unless specified otherwise, all fields are reset on a system reset, a soft reset, a POR, and the peripheral-specific resets.

Table 18-1: TRNG Register Summary

Offset	Register	Name
0x0000	TRNG_CTRL	TRNG Control Register
0x0004	TRNG_STATUS	TRNG Status Register
0x0008	TRNG_DATA	TRNG Data Register

18.1.1 Register Details

Table 18-2: TRNG Control Register

Cryptographic Control Register		TRNG_CTRL		[0x0000]	
Name	Access	Reset	Description		
-	RO	0	Reserved		
keywipe	R	0	AES Key Wipe		
			Set this field to 1 to erase the AES_KEY_AES_	KEY7:AES_KEY_AES_KEY0 registers.	
			0: Normal operation.		
			1: Initiate key wipe.		
-	RO	0	Reserved		
aeskg_sys	RO	0	Reserved		
aeskg_usr	R/W	0	AES Key Generate		
			Set this field to 1 to generate an AES key and		
				sters. This bit is cleared by hardware	
			· ·		
health en	R/W	0			
nearin_en	1,,,,,	Ü	· ·	nen	
rnd io	D /\A/		-	-	
mu_ie	IN/ VV	U	· ·	when TRNG_STATUS rdv = 1	
	Name - keywipe - aeskg_sys	Name Access - RO keywipe R - RO aeskg_sys RO aeskg_usr R/W health_en R/W	Name Access Reset - RO 0 keywipe R 0 - RO 0 aeskg_sys RO 0 aeskg_usr R/W 0 health_en R/W 0	Name Access Reset Description RO 0 Reserved keywipe R 0 AES Key Wipe Set this field to 1 to erase the AES_KEY_AES_ 0: Normal operation. 1: Initiate key wipe. RO 0 Reserved aeskg_sys RO 0 Reserved aeskg_usr R/W 0 AES Key Generate Set this field to 1 to generate an AES key and AES_KEY_AES_KEY_AES_KEY_AES_KEY_AES_KEY Oreginal automatically after the key is generated. 0: Normal operation. 1: Initiate AES key generation. health_en R/W 0 Health Test Interrupt Enable Set this field to 1 to generate an interrupt when	

Analog Devices Page 292 of 327

Cryptographic Control Register		TRNG_CTRL		[0x0000]	
Bits	Name	Access	Reset Description		
0	odht	R/W	-	On-Demand Health Test Set this field to 1 to start an on-demand heal	th test.

Table 18-3: TRNG Status Register

TRNG Sta	TRNG Status Register			TRNG_STATUS	[0x0004]
Bits	Name	Access	Reset	Description	
31:5	-	RO	0	Reserved	
4	aeskgd	R	0	AES Key Generation Complete This field is set to 0 after an AES key generation is complete and written to the AES_KEY_AES_KEYT.AES_KEY_AES_KEYO registers. This field reads 1 when the key generation is in progress.	
3	srcfail	R/W1C	0	Source Fail This field is set to 1 if the TRNG entropy sour TRNG_CTRL.health_en = 1.	ce fails. An interrupt is generated if
2	ht	R/W1C	0	Health Test Status This field is set to 1 if the on demand health test failed. This field is only valid once the TRNG_STATUS.odht reads 0.	
1	odht	R	0	On-Demand Health Test Complete This field is set to 1 when the on-demand he 0: ODHT complete. 1: ODHT in progress.	alth test is complete.
0	rdy	R	0	Random Number Ready Reading from TRNG_DATA.data clears this fi generated. When new data is available, this if TRNG_CTRL.rnd_ie = 1.	

Table 18-4: TRNG Data Register

TRNG Data Register				TRNG_DATA	[0x0008]
Bits	Name	Access	Reset	Description	
31:0	data	RO	0	TRNG Data	
				The 32-bit random number generated is avai	lable here when TRNG_STATUS.rdy = 1.

Analog Devices Page 293 of 327

19. ROM Bootloader

The ROM-based bootloader provides for program loading and verification. The physical interface between the external host and the bootloader is UARTO.

All versions of the bootloader provide the ability to block access to program memory by disabling SWD.

Devices which provide the secure boot feature automatically verify the integrity of program memory after every reset.

Bootloader features:

- Command line interface.
- Programmable through UART at 115,200bps.
- LOCKED mode disables SWD and disallows any change to flash through bootloader.
- Transition from LOCK to UNLOCKED state erases all flash and the secret key before unlocking SWD.
- User-enabled PERMLOCKED state disables SWD and disables all commands except for program validation.

Devices which feature the trusted secure boot feature provide additional features:

- Automatic program memory integrity check using HMAC SHA-256 secret key after every reset. The device will halt and not execute the application software if the integrity check fails.
- Optional challenge/response protection of bootloader interface.

19.1 Instances

The dedicated pins and features of the bootloader are shown Table 19-1.

Table 19-1: MAX32670/MAX32671 Bootloader Instances

Part Number	Activat	on Pins	Bootloader	Coorne Book	Flash Memory Page
Part Number	UARTO RX	SWDCLK	bootioader	Secure Boot	Size
MAX32670GTL	P0.8	P0.1	Yes	No	8КВ
MAX32671GTL	P0.8	P0.1	No	Yes	8KB

Versions incorporating secure boot functionality will not execute code unless there is a key loaded and the code has been properly signed with that key.

19.2 Bootloader Operating States

Each bootloader supports the modes shown in Table 19-2. Each bootloader state has a unique prompt.

Table 19-2: Bootloader Operating States and Prompts

State	Device Versions	Prompt
UNLOCKED	All device versions	"ULDR> "
		<0x55> <0x4C> <0x44> <0x52> <0x3E> <0x20>
LOCKED	All device versions	"LLDR> "
		<0x4C> <0x4C> <0x44> <0x52> <0x3E> <0x20>
PERMLOCK	All device versions	"PLLDR> "
		<0x50> <0x4C> <0x4C> <0x44> <0x52> <0x3E> <0x20>
CHALLENGE	Only devices with secure	" <cr> "</cr>
	boot feature	<0x43> <0x52> <0x3E> <0x20>

Analog Devices Page 294 of 327

State	Device Versions	Prompt
APPVERIFY	Only devices with secure boot feature	N/A

The LOCK – Lock Device and PLOCK – Permanent Lock commands do not change the bootloader prompt or take effect until the bootloader is reset.

19.2.1 UNLOCKED

The UNLOCKED state provides access to load secure keys and configuration information. Program loading, verification, and status is available in the UNLOCKED state. The SWD interface is available for use.

Transitioning from the LOCKED to UNLOCKED states erases all program memory. It also clears the challenge/response and application keys on devices with the secure boot feature.

The challenge and application keys can be erased by executing the Unlock command while in the UNLOCKED state and then resetting the device.

19.2.2 LOCKED

The LOCKED state disables access to program memory other than to verify it. It also disables the SWD interface. The application and challenge response keys cannot be changed without first changing to the UNLOCKED state.

If the optional challenge key is activated, the bootloader will start in the CHALLENGE state. Successfully completing the challenge/response will allow access to the PERMLOCKED or LOCKED prompt.

If the device provides the secure boot feature, the application and challenge key must be configured before executing the LOCK – Lock Device command.

19.2.3 PERMLOCKED

The PERMLOCKED state disables read/write access to program memory and keys. It also disables the SWD interface. The only functions available through the bootloader in this state are to verify program and read the USN.

If the optional challenge feature is activated, the bootloader will start in the CHALLENGE state. Successfully completing the challenge/response will access to the previous PERMLOCKED prompt.

If the device provides the secure boot feature, the application and challenge key must be configured before executing the PLOCK – Permanent Lock command.

19.2.4 CHALLENGE (Secure Boot Versions Only)

The CHALLENGE state provides an extra layer of security by requiring the host to authenticate itself using the HMAC SHA-256 key before executing any bootloader commands. If enabled, the device enters CHALLENGE mode following a reset if the external bootloader pins are active. CHALLENGE mode can be identified by the "CR>" prompt.

In CHALLENGE mode, the host first requests a 128-bit random number (the challenge) from the bootloader using *GC – Get Challenge*. The host calculates the hash of the challenge using the mutually known HMAC SHA-256 key and sends it (the response) back to bootloader. The correct response transitions from CHALLENGE to the previous state of the bootloader. An incorrect response keeps the bootloader in the CHALLENGE state. The host must request a new challenge and send a response based on the new challenge. There is no limit to the number of challenge attempts.

19.2.5 APPVERIFY (Secure Boot Versions Only)

APPVERIFY is an internal state that invoked when the device is verifying the integrity of program memory.

Analog Devices Page 295 of 327

The device performs an APPVERIFY:

- When executing a secure boot
- Immediately before executing the LOCK Lock Device command
- Immediately before executing the PLOCK Permanent Lock command

The device will not perform a secure boot until the HMAC SHA-256 secret-key is loaded.

Failure of the APPVERIFY process during a secure boot indicates corrupted or tampered program memory and disables code execution. If the bootloader is in the LOCKED state it can transition to the UNLOCKED state, erasing the program memory and keys so the device can be reprogrammed. There is no recovery from a secure boot failure in the PERMLOCKED state and the device must be discarded.

19.3 Creating and Loading the Motorola SREC File

The Analog Devices microSDK can directly generate SREC files that support devices with and without the secure boot feature. The information here is presented for completeness and is not necessary when using the microSDK.

19.3.1 Procedure for Devices Without the Secure Boot Feature

Devices without the secure boot feature use a standard SREC format generated directly from the binary.

- 1. Compile the source code and create the Motorola SREC file.
- 2. Activate the bootloader as described in the Bootloader Activation section.
- 3. Ensure the device is in the UNLOCKED state.
- 4. Execute the *L Load* command and load the Motorola SREC file.
- 5. Execute the V Verify command to verify the file was correctly loaded.

19.3.2 Procedure for Devices with the Secure Boot Feature

SREC files for devices with the secure boot feature must be modified to append the HMAC-256 hash to the binary before generating the SREC file as described below. Address records must be 32-bit aligned and the length of each line must be a multiple of 4 bytes. Unused memory locations within the program must be defined with 0xFF.

To generate the SREC file for devices with the secure boot feature:

- 1. Define the 128-bit HMAC secret key.
- 2. Generate the binary image.
- 3. Pad the binary image with 0xFF to the next 32-byte boundary.
- 4. Calculate the 32-byte HMAC SHA-256 hash using the secret key over the length of the padded binary image.
- 5. Append 32-byte hash to the binary image, after the last pad byte.
- 6. Generate SREC file of the modified binary image.

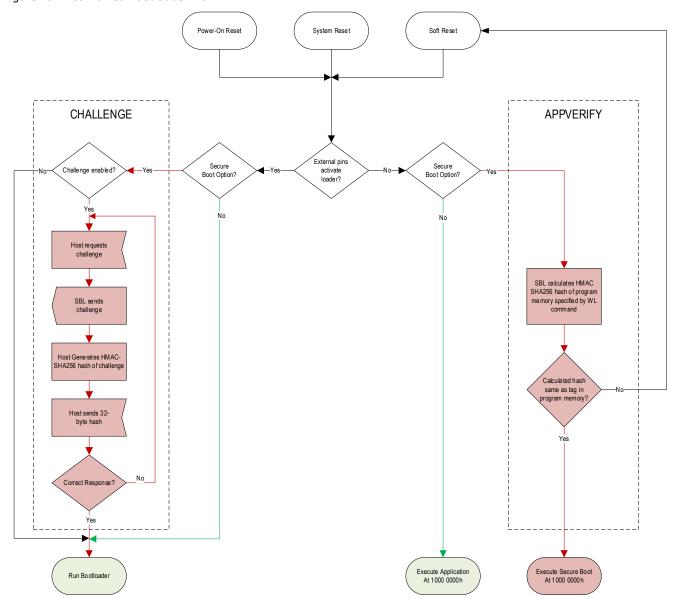
Analog Devices Page 296 of 327

Follow this procedure to initialize and load a device with the secure boot feature:

- 1. Activate the bootloader as described in the *Bootloader Activation* section.
- 2. Ensure the device is in the UNLOCKED state.
- 3. Execute the WL Write Code Length command.
- 4. Execute the *L Load* command and load the SREC file.
- 5. Execute the V Verify command to verify the file was correctly loaded.
- 7. Execute the LK Load Application Key command to load the HMAC SHA-256 secret key.
- 8. Execute the VK Verify Application Key command to verify the HMAC SHA-256 secret key was correctly loaded.
- 9. Execute the AK Activate Application Key command. The device automatically verifies the program memory on all subsequent resets and attempts to execute the Lock and Plock commands.

19.4 Bootloader Activation

The bootloader is invoked following a reset when the bootloader activation pin is asserted. The flow chart of the operation following a reset of the device is shown in *Figure 19-1*. Features exclusive to devices with the secure boot feature are highlighted in red.


Perform the following sequence to activate the bootloader:

- 1. The host asserts the UARTO Rx pin and SWDCLK pins low as shown in *Table 19-1*.
- 2. The host asserts RSTN pin low.
- 3. The host deasserts the RSTN pin.
- 4. Bootloader samples the UARTO Rx and SWDCLK pins immediately after reset. If they are both low, the hardware will activate the bootloader.
- 5. Bootloader performs its system initialization and configures the bootloader for 115,200bps.
- 6. The bootloader outputs the status prompt on the UARTO Tx pin. The prompt is unique for each bootloader state as shown in *Table 19-2*.
- 7. The host releases the UARTO Rx and SWDCLK pins once the host confirms the correct bootloader prompt.
- 8. The host begins bootloader session by sending commands on the UARTO Rx pin.

Analog Devices Page 297 of 327

Figure 19-1: Combined Bootloader Flow

19.5 Secure Boot

The optional secure boot secure version of the bootloader provides additional features for secure and authenticated loading. These features are highlighted in *Figure 19-1*.

19.5.1 Secure Boot

Devices with the secure boot feature will perform a secure boot by entering the APPVERIFY state following reset in which the bootloader activation pins are not active. Failure of the secure boot will place the device in a reset loop to prevent execution of corrupted or tampered code. The device also enters APPVERIFY before completing the *LOCK – Lock Device* or *PLOCK – Permanent Lock* commands to ensure that the correct program memory and application key are loaded.

Failure of the secure boot will force the device into a continual reset state and no user code will be executed.

Analog Devices Page 298 of 327

19.5.2 Secure Challenge/Response Authentication

The secure challenge/response authentication feature in secure boot devices provides an extra layer of security by requiring the host to authenticate itself using the mutual HMAC SHA-256 key before executing any bootloader commands. If the challenge key is activated, the device enters CHALLENGE mode following a reset if the external bootloader pins are active. The bootloader will display the CHALLENGE mode prompt shown in *Table 19-2*.

Only two commands are available in the CHALLENGE state.

Table 19-3: CHALLENGE Command Summary

Command
GC – Get Challenge
SR – Send Response

The host first requests a 128-bit random number (the challenge) from the bootloader. The host calculates the hash of the challenge using the HMAC SHA-256 key (the response) and sends it back to bootloader. The correct response transitions the bootloader from CHALLENGE mode to the LOCKED or PERMLOCKED states, depending on the last state of the bootloader.

Follow this procedure to enable the Challenge/Response feature in the UNLOCKED state:

- 1. The host generates the challenge/response HMAC SHA-256 secret key.
- 2. The host executes the LK command to load the challenge/response secret key. The key is sent in plaintext and should be done in a secure environment.
- 3. The host executes the VK command to verify the challenge/response secret key was correctly loaded.

The challenge/response will be required after the next device reset. It does not affect current operation until the next reset.

Follow this procedure to successfully perform the challenge/response:

- 1. The host executes the GC command.
- 2. The bootloader generates a 128-bit challenge and sends it to the host.
- 3. The host calculates the HMAC SHA-256 of the challenge to create the response.
- 4. The host executes the SR command with the calculated response. The SR command must be the first command sent to the bootloader after a GC command.

A correct response will return the prompt of the last bootloader state. An incorrect response will return an error message and the challenge/response prompt again. The host can perform steps 1-3 again to request another challenge from the bootloader. There is no limit on the number of challenge/response attempts.

Following a successful response, the bootloader will return the prompt corresponding to the last state of the bootloader.

19.6 Command Protocol

The bootloader presents a mode-specific prompt based on the current state of the loader as shown as in *Table 19-2*. The general format of commands is the ASCII character(s) of the command, followed by a <CR><LF> which is hexadecimal <0x0D><0x0A>. Commands with arguments always have a space (0x20) between the command mnemonic and the argument.

Commands arguments that are files always have the length specified in the file, so it is not necessary to follow the file with a <0x0D><0x0A>.

In general, arguments not related to security commands are prefixed with "0x" to denote hexadecimal input. Arguments for security commands in general are not prefixed with "0x".

Always refer to the command description for the required format of the command.

Analog Devices Page 299 of 327

19.7 General Commands

Table 19-4: General Command Summary

Command
L - Load
P – Page Erase
V – Verify
LOCK – Lock Device
PLOCK – Permanent Lock
UNLOCK – Unlock Device
H – Check Device
I – Get ID
S – Status
Q – Quit

19.7.1 General Command Details

L - Load	Load SREC File into Program Memory
Description	Load a Motorola SREC formatted file into flash program memory. After typing the L command, the bootloader will respond with "Ready to load SREC", then transmit the file. The end of the file is detected automatically, so there is no need to send <0x0D><0x0A> at the end.
	If the secure boot feature is used, the files must be modified as described in <i>Procedure for Devices with the Secure Boot Feature</i> . The length reported by the success response for the modified files is the padded image plus the 32-bytes of the HMAC; this is different than the length used for the WL command.
Modes	UNLOCKED
Command	L<0x0D><0x0A>
	Ready to load SREC<0x0D><0x0A>
	[SREC File]
Response:	Load success, image loaded with the following parameters:<0x0D><0x0A>
Success	Base address: 0xnnnnnnn<0x0D><0x0A>
	Length: 0xnnnnnnn<0x0D><0x0A>
Response: Failure	Load failed.<0x0D><0x0A>

Analog Devices Page 300 of 327

Table 19-5: P – Page Erase

P – Page Erase	Erase Page of Flash Program Memory			
Description	crases the page of memory associated with the 32-bit input address. Addresses must be aligned on the device-pecific page boundaries.			
Modes	UNLOCKED			
Command	P 0xnnnnnnn<0x0D><0x0A>			
Response: Success	Erase Page Address: 0xnnnnnnnn<0x0D><0x0A>OK<0x0D><0x0A>			
	Bad page address input<0x0D><0x0A> or Erase failed<0x0D><0x0A> or Invalid Page Address: 0xnnnnnnnn<0x0D><0x0A>			

Analog Devices Page 301 of 327

Table 19-6: V – Verify

V – Verify	Verify Flash Program Memory Against SREC File
Description	Verifies contents of flash program memory against a SREC file.
Modes	UNLOCKED
Command	V<0x0D><0x0A>
	Ready to verify SREC<0x0D><0x0A>
	[SREC File]
Response: Success	Verify success, image verified with the following parameters: <0x0D><0x0A>
	Base address: 0xnnnnnnn<0x0D><0x0A>
	Length: 0xnnnnnnn<0x0D><0x0A>
Response: Failure	Verify failed.<0x0D><0x0A>

Analog Devices Page 302 of 327

Table 19-7: LOCK – Lock Device

LOCK – Lock Device	Lock Device
Description	Locks the device and disables SWD on the next device reset. See <i>LOCKED</i> section for a detailed description of this command.
	The effects of the Lock command do not take effect until the next time the device is reset. The bootloader will continue to display the locked prompt, but the <i>S – Status</i> command will show the Locked mode is active. The Lock command should be followed by the Q command (which generates a device reset) for the Lock command to take effect.
	Devices with the secure boot feature perform an APPVERIFY check before executing the Lock command. Failure of the Lock command means that the APPVERIFY check failed.
Modes	UNLOCKED
Command	LOCK<0x0D><0x0A>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Failed<0x0D><0x0A>

Analog Devices Page 303 of 327

Table 19-8: PLOCK – Permanent Lock

PLOCK – Permanent Lock	Permanently Lock Device
Description	Permanently locks the device if the argument matches the device's 13-bute USN.
	The effects of the Plock command do not take effect until the next time the device is reset. The bootloader will continue to display the LOCKED or UNLOCKED state prompt but the <i>S – Status</i> command will show the LOCKED or UNLOCKED state is active. The Lock command should be followed by the Q command (which generates a device reset) for the Lock command to take effect.
	Devices with the secure boot feature perform an APPVERIFY check before executing the PLock command. Failure of the PLock command means that the APPVERIFY check failed.
Modes	UNLOCKED LOCKED
Command	PLOCK <usn><0x0D><0x0A></usn>
Response: Success	OK<0x0D><0x0A>
Response: Failure	Failed<0x0D><0x0A>

Analog Devices Page 304 of 327

Table 19-9: UNLOCK - Unlock Device

UNLOCK – Unlock Device	Unlock Device
	Changes bootloader state to UNLOCKED if in LOCKED state. Erases all program memory and all bootloader keys. The SWD interface is re-enabled.
	UNLOCKED LOCKED
Command	UNLOCK<0x0D><0x0A>
· •	None. The device automatically resets itself and the bootloader will display the UNLOCKED mode prompt the next time the bootloader is activated.
Response: Failure	None.

Analog Devices Page 305 of 327

Table 19-10: H – Check Device

H – Check Device	Perform SHA-256 Hash Over Memory Range
·	Performs a simple SHA-256 (not HMAC SHA-256) hash of bytes starting at 32-bit address 0xnnnnnnnn to 0xmmmmmmmm. The hash must be a multiple of 64 bytes and the minimum hash input size is 512 bytes. The function returns the 32-byte hash value.
Modes	UNLOCKED LOCKED PERMLOCKED
Command	H 0xnnnnnnn 0xmmmmmmm<0x0D><0x0A>
Response: Success	yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Response: Failure	<0x0D><0x0A>

Analog Devices Page 306 of 327

Table 19-11: I – Get ID

I – Get ID	Read Universal Serial Number
Description	Returns the 13-byte unique USN of the device.
	UNLOCKED LOCKED PERMLOCKED
Command	I<0x0D><0x0A> USN: nnnnnnnnnnnnnnnnnnnnnnnnnnn<0x0D><0x0A>
Response: Success	None
Response: Failure	None

Analog Devices Page 307 of 327

Table 19-12: S – Status

S – Status	Read Device Status
Description	Returns the state of the loader and the application key and challenge key features. Executing the LOCK and PLOCK commands will immediately transition the device to that state and this command will reflect that state even before a reset occurs. The command prompt however will reflect the UNLOCKED state until the device is reset:
	The Lock <response> is:</response>
	"Inactive" if the device is in the unlocked state.
	"Active" if the device is in the locked or permanent lock state.
	The PLock <response> is:</response>
	"Inactive" if the device is in the unlocked or locked state.
	"Active" if the device is in the permanent lock state.
	In addition, devices with the secure boot feature will display:
	The Application Length <response> is:</response>
	"Not Set" if the Write Code Length command has not previously loaded a non-zero value.
	"0xnnnnnnn" which is the previously entered value using the Write Code Length command.
	The Application Key <response> is:</response>
	"None Inactive" if no application key has been loaded using the LK command.
	"Loaded Inactive" if the application key has been loaded but the application key feature has not been activated by the AK command.
	"Loaded Active" If the application key has been loaded and the application key feature has been activated.
	The Challenge Key <response> is:</response>
	"None Inactive" if no challenge key has been loaded using the LK command.
	"Loaded Inactive" if the challenge key has been loaded but the challenge key feature has not been activated by the AK command.
	"Loaded Active" if the challenge key has been loaded and the challenge key feature has been activated.
Modes	UNLOCKED
Command	S<0x0D><0x0A>
	Status<0x0D><0x0A>
	Lock: <response><0x0D><0x0A></response>
	PLock: <response><0x0D><0x0A></response>
	Application Length: <response><0x0D><0x0A></response>
	Application Key: <response><0x0D><0x0A></response>
	Challenge Key: <response><0x0D><0x0A></response>
Response: Success	None.
Response: Failure	None.

Analog Devices Page 308 of 327

Table 19-13: Q - Quit

Q – Quit	Quit Bootloader Session
Description	Terminates the bootloader session and forces a reset of the device.
Modes	UNLOCKED LOCKED PERMLOCKED
Command	Q<0x0D><0x0A>
Response: Success	None
Response: Failure	None

Analog Devices Page 309 of 327

19.8 Secure Commands

These commands are only supported on devices which provide the secure boot feature.

Table 19-14: Secure Command Summary

Command
LK – Load Application Key
LC – Load Challenge Key
VK – Verify Application Key
VC – Verify Challenge Key
AK – Activate Application Key
AC – Activate Challenge
WL – Write Code Length

19.8.1 Secure Command Details

Table 19-15: LK – Load Application Key

LK – Load Application Key	Load Application HMAC SHA-256 Key
•	Write 128-bit HMAC secret key to nonvolatile memory. The key can only be written once until a LOCK – Lock Device or PLOCK – Permanent Lock command is executed.
Modes	UNLOCKED
Command	LK yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad key input<0x0D><0x0A>
	or
	Key already loaded<0x0D><0x0A>

Analog Devices Page 310 of 327

Table 19-16: LK – Load Challenge Key

LC – Load Challenge Key	Load Challenge Key
	Write 128-bit challenge key to nonvolatile memory. The key can only be written once until a <i>LOCK – Lock Device</i> or PLOCK – Permanent Lock command is executed.
Modes	UNLOCKED
Command	LC yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad key input<0x0D><0x0A>
	or
	Key already loaded<0x0D><0x0A>

Analog Devices Page 311 of 327

Table 19-17: VK – Verify Application Key

VK – Verify Application Key	VK – Verify Application Key
Description	Verify the application key against a value provided by the host.
Modes	UNLOCKED
Command	VK yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Response: Success	OK<0x0D><0x0A>
Response: Failure	Bad key input<0x0D><0x0A>
	or
	Error, no key loaded<0x0D><0x0A>
	or Key Mismatch<0x0D><0x0A>

Analog Devices Page 312 of 327

Table 19-18: VC – Verify Challenge Key

VC – Verify Challenge Key	VC – Verify Challenge Key		
Description	Verify the challenge key against a value provided by the host.		
Modes	UNLOCKED		
Command	VC yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy		
Response: Success	OK<0x0D><0x0A>		
Response: Failure	Bad key input<0x0D><0x0A>		
	or .		
	Error, no key loaded<0x0D><0x0A>		
	Key Mismatch<0x0D><0x0A>		

Analog Devices Page 313 of 327

Table 19-19: AK – Activate Application Key

AK – Activate Application Key	Activate Application Key	
Description	Activate application key. The device will perform an APPVERIFY following all resets and execution of the LOCK – Lock Device and PLOCK – Permanent Lock commands. The UNLOCK command deactivates the application key.	
Modes	UNLOCKED	
Command	AK<0x0D><0x0A>	
Response: Success	OK<0x0D><0x0A>	
Response: Failure	Key activate failed<0x0D><0x0A>	
	or	
	Error, no key loaded<0x0D><0x0A>	

Analog Devices Page 314 of 327

Table 19-20: AC – Activate Challenge Key

AC – Activate Challenge Mode	Activate Challenge Mode	
Description	Activate CHALLENGE mode. All subsequent bootloader sessions in LOCKED or PERMLOCKED states will start in CHALLENGE mode. The "Key activate failed" response indicates the device has already activated the challenge/response feature.	
Modes	UNLOCKED	
Command	AC<0x0D><0x0A>	
Response: Success	0K<0x0D><0x0A>	
Response: Failure	Key activate failed<0x0D><0x0A>	
	or	
	Error, no key loaded<0x0D><0x0A>	

Analog Devices Page 315 of 327

Table 19-21: WL – Write Code Length

WL – Write Code Length	Write Code Length	
' '	Write the length of the application code in bytes. The code length argument is address of the last pad byte as described in <i>Procedure for Devices with the Secure Boot Feature</i> .	
	The "Write length failed" response indicates the WL command has already been performed. The host should reenter the UNLOCKED state to clear the WL value and repeat the command.	
Modes	UNLOCKED	
Command	WL 0xnnnnnnn<0x0D><0x0A>	
Response: Success	Length set to: 0xnnnnnnn<0x0D><0x0A>	
Response: Failure	Bad length input<0x0D><0x0A>	
	0r	
	Write length failed<0x0D><0x0A>	

Analog Devices Page 316 of 327

19.9 Challenge/Response Commands

Table 19-22: Challenge/Response Command Summary

Command
GC – Get Challenge
SR – Send Response

19.9.1 Challenge/Response Command Details

Table 19-23: GC – Get Challenge

GC – Get Challenge	Get Challenge
Description	Bootloader generates a 16-byte hexadecimal ASCII challenge and transmits it to host. The challenge is sent MSB first.
Modes	LOCKED PERMLOCKED
Command	GC<0x0D><0x0A>
Response: Success	0123456789ABCDEF0123456789ABCDEF<0x0D><0x0A>
Response: Failure	None

Analog Devices Page 317 of 327

Table 19-24: SR – Send Response

SR – Send Response	Send Response	
Description	Host calculates HMAC SHA-256 on the 16-byte challenge and sends the 32-byte hexadecimal ASCII response. The response is sent MSB first.	
Modes	LOCKED PERMLOCKED	
Command	SR 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF<0x0D><0x0A>	
Response: Success	OK<0x0D><0x0A>	
Response: Failure	Bad response input<0x0D><0x0A>	
	or	
	Verification failed<0x0D><0x0A>	
	or	
	Error, request challenge<0x0D><0x0A>	

Analog Devices Page 318 of 327

20. Debug Access Port (DAP)

The device provides an Arm DAP that supports debugging during application development. The DAP enables an external debugger to access the device. The DAP is a standard Arm CoreSight™ serial wire debug port and uses a two-pin serial interface (SWDCLK and SWDIO) to communicate.

20.1 Instances

The DAP interface communicates through the serial wire debug (SWD), shown in Table 20-1.

Table 20-1: MAX32670/MAX32671 DAP Instances

Instance	Pin	Alternate Function	SWD Signal	POR Default
Primary	P0.0	AF1	SWDIO	✓
	P0.1	AF1	SWDCLK	✓
Secondary	P0.20	AF4	SWDCLKB	-
	P0.22	AF4	SWDIOB	-

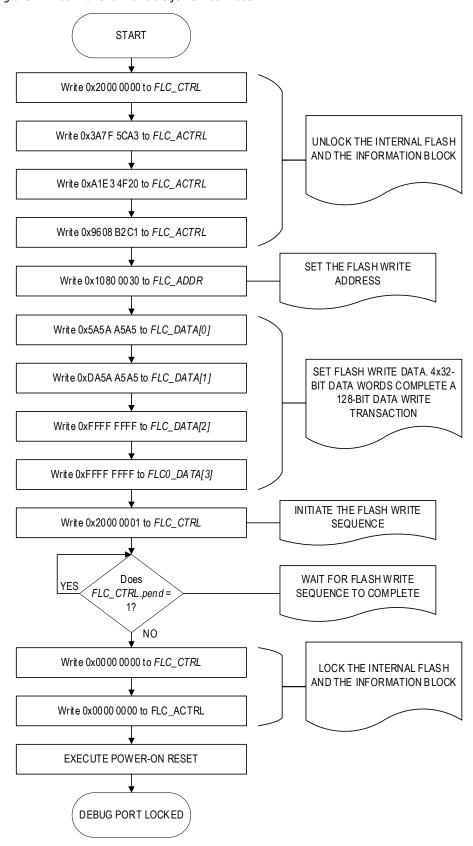
20.2 Access Control

The DAP is enabled after every POR to allow debugging during development. The interface can be disabled in software by setting the *GCR_SYSCTRL.swd_dis* field to 1. The *GCR_SYSCTRL.swd_dis* field clears to 0 again, re-enabling the DAP after a POR. Parts with a customer-accessible DAP should disable the DAP in a final customer product.

20.2.1 Locking the DAP

There are two options for locking out the debug access port. Option 1 locks the DAP and makes it available to be unlocked later. This is a one-time-only process. The DAP port cannot be relocked. Option 2 locks the DAP permanently.

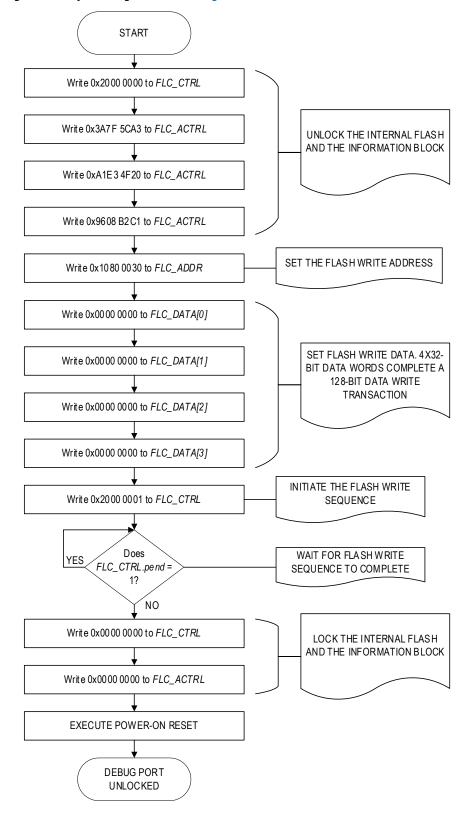
20.2.1.1 Option 1


To lock the DAP and make it available to be unlocked later (one time only), follow the flow chart in Figure 20-1.

CoreSight is a registered trademark of Arm Limited.

Analog Devices Page 319 of 327

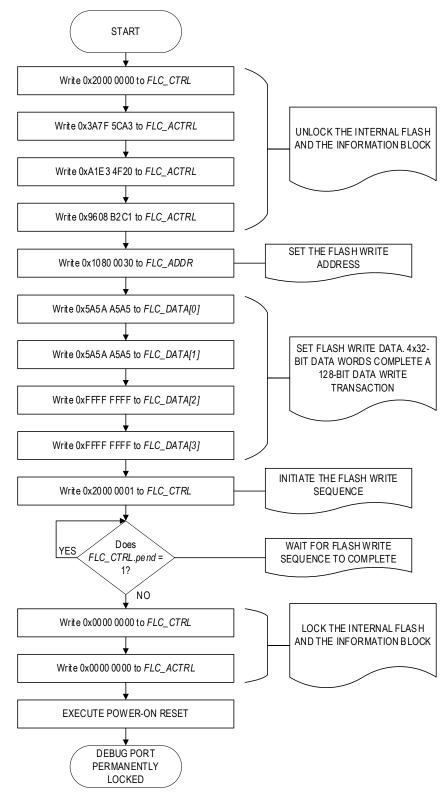
Figure 20-1: Locking the DAP to Make it Available for Unlock Later



Analog Devices Page 320 of 327

To unlock the DAP after it has been locked using the flow chart of Figure 20-1, follow the flow chart in Figure 20-2.

Figure 20-2: Unlocking the DAP After Being Locked as in Figure 20-1


Analog Devices Page 321 of 327

20.2.1.2 Option 2

To lock the DAP permanently, follow the flow chart in Figure 20-3.

Figure 20-3: Locking the Debug Access Port Permanently

Analog Devices Page 322 of 327

20.3 Pin Configuration

Instances of SWD signals in GPIO and alternate function matrices are for determining which GPIO pins are associated with a signal. It is not necessary to configure the default SWD pins for an alternate function to use the DAP following a POR.

20.3.1 Switching Between SWD Alternate Functions

Only one set of SWD can be enabled at a time. If software needs to switch between the primary SWD pins (P0.0 and P0.1) and the secondary SWD pins (P0.20 and P0.22), software must first disable the primary pins by setting them to I/O mode or a different alternate function, before enabling the secondary SWD pins for alternate function 4.

Analog Devices Page 323 of 327

21. Silicon Revision Differences

The current silicon revision of the MAX32670/MAX32671 is B2 and B1. Read the *GCR_REVISION.revision* field to determine a device's silicon revision. For a list of known issues for each silicon revision refer to the device's errata sheet at http://www.analog.com/MAX32670.

21.1 Differences Between the B2 and B1 Revision

- The GCR REVISION.revision field reads 0x01B2.
- The IBRO is the default system oscillator after a POR, system reset, and watchdog reset.
- The IPO is powered off by default after a POR, system reset, and watchdog reset.
- The *PWRSEQ_LPCN.vcoremon_dis* field is read-only.

21.2 Differences Between the B1 and A3 Revision

- The GCR REVISION.revision field reads 0x00B1.
- The IPO is the default system oscillator after a POR, system reset, and watchdog reset.
- The IBRO is powered off by default after a POR, system reset, and watchdog reset.
- The PWRSEQ_LPCN.ovr setting of 0 changed from a divide by 4 to a divide by 8 of the system clock.
- Switching the system clock to the IPO from another clock source does not require waiting for the clock switch manually.
- Software must ensure that the flash is not being programmed or erased before entering a low-power mode.
- The USN is readable without having to unlock the Information Block Flash Memory.
- Added the MCR_LPPIOCTRL register, which is used to enable the low-power peripheral's to control their associated GPIO pins.
- The watchdog timer's have updated protection sequences for feed, enable, and disable. See WDT Protection
 Sequence for details. Software written for earlier revisions must be updated to work correctly with the new
 protection requirements.

21.3 Differences Between the A3 and A2 Revision

- The GCR_REVISION.revision field reads 0x00A3.
- The IPO is the default system oscillator after a POR, system reset, and watchdog reset.
- The IBRO is powered off by default after a POR, system reset, and watchdog reset.

21.4 Differences Between the A2 and A1 Revision

- The GCR_REVISION.revision field reads 0x01A2.
- The IBRO is the default system oscillator after a POR, system reset, and watchdog reset.
- The IPO is powered off by default after a POR, system reset, and watchdog reset.
- The Flash Registers are reset on a system reset as well as a POR.
- The low-power UART does not generate an extra stop bit after each packet.
- The ERTCO power-down bit moved from GCR_CLKCTRL[17] to PWRSEQ_LPCN[31].

Analog Devices Page 324 of 327

21.5 Initial Silicon Revision A1

- The GCR_REVISION.revision field reads 0x00A1.
- The default system oscillator after a POR, system reset, and watchdog reset is the IPO.
- The IBRO is powered off by default.

Analog Devices Page 325 of 327

22. Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION		
0	06/17/2020	Initial release		
1	11/02/2020	Updated all field names and register names for all chapters. Updated the General-Purpose I/O (GPIO) and Alternate Function Pins chapter. Updated the System, Power, Clocks, Reset chapter.		
2	12/11/2020	Updated <i>General-Purpose I/O (GPIO) and Alternate Function Pins</i> . Description of differences between devices in the family. Updated <i>System, Power, Clocks, Reset</i> . Full chapter update. Updated <i>Real-Time Clock (RTC)</i> . Corrected RTC_CTRL register to add sqw_sel field. Update <i>Flash Controller (FLC)</i> . Added FLC_WELRO, FLC_WELR1, FLC_RLRO, and FLC_RLR1 register definitions. Updated <i>Inter-Integrated Sound Interface (I2S)</i> . Full chapter update. Updated <i>Timers (TMR/LPTMR)</i> . Full chapter update. Updated <i>Revision History</i> . Added the Device Options chapter.		
3	10/22	Updated Timers (TMR/LPTMR) chapter. Full chapter update. Updated Real-Time Clock (RTC) chapter to reflect correct output frequencies. Updated Inter-Integrated Sound Interface (125) chapter to detail requirements for Controller and Target Mode Configuration. Updated WDT Protection Sequence with updated feed, enable, and disable sequences. Updated WDT Protection Sequence to show 8-bit writes for feed, enable, and disable. Updated WDT Protection Sequence with updated feed, enable, and disable sequences. Updated WDT Protection Sequence to show 8-bit writes for feed, enable, and disable. Updated WDT Protection Sequence to show 8-bit writes for feed, enable, and disable. Updated Introduction chapter. Added Introduction chapter. Added details on AES Key Storage in information block. Added details on AES Key Storage in information block. Added on demand health test fields to TRNG registers (TRNG_CTRL and TRNG_STATUS). Added MCR_LPPIOCTRL register fields for LPTMR and LPUART I/O control. Updated Device Options with latest die revisions. Updated Device Options with latest die revisions. Updated GPIOn_WKEN register to indicated reserved. Updated GPIOn_WKEN register to indicated reserved. Updated Standard DMA (DMA) to clarify access is limited to SRAM and not flash. Added details on Using GPIOWAKE for Wake-Up from DEEPSLEEP, BACKUP, and STORAGE. Corrected SPIO Alternate Function selection instructions. Updated instructions for reading USN in Information Block Flash Memory. Added note that flash cannot be erasing or writing when entering low-power modes in Flash Controller (FLC). Updated PWRSEQ_LPCN_fastwk_en field description. Updated PWRSEQ_LPCN_fastwk_en field description. Updated Flash Write and Page Erase usage to indicate cache should be flushed after a write to flash. Marked GCR_RSTO bit 17 as reserved. Marked MCR_RST.tc as the RTC reset field. U		

Analog Devices Page 326 of 327

REVISION NUMBER	REVISION DATE	DESCRIPTION	
		Marked reserved fields in GCR_PCLKDISO and GCR_PCLKDIS1 registers as do not modify. Updated Figure 3-1, Figure 3-2, Figure 4-2, Figure 4-3, Figure 4-4, and Figure 4-5 to improve readability. Updated the terms "master/slave" to "controller/target" throughout except for the I2Cn_SLAVE register to maintain backward compatibility with existing software releases. Updated Power-On Reset (POR) section, to indicate GPIO are only reset on POR. Added note to GPIO Registers and Power Sequencer and Always-On Domain Registers (PWRSEQ) indicating only a POR affects the register settings. Marked Flash Registers as only reset on POR.	
4	9/23	Added PWRSEQ_LPCN.ertco_pd bit that is required to power on the ERTCO before enabling the ERTCO. Added Enabling the ERTCO instructions. Added note to instance section of Real-Time Clock (RTC) chapter to point to instructions for enabling the ERTCO for use with the RTC. Added of CR_CLKCTRL.ertco_en bit required to enable ERTCO. Updated TRNG_STATUS register to correctly document each register field. Corrected AES usage instructions to indicate clearing GCR_PCLKDIS1.acs enables the AES peripheral. Simplified GPIO Alternate Function selection instructions. Corrected Power-On Reset (POR) section to indicate GPIO are reset on peripheral reset, soft reset, system reset and POR. Removed note on GPIO Registers indicating only a POR affects the register settings. Added details on entering low-power modes. See Entering SLEEP, Entering DEEPSLEEP, Entering BACKUP, and Entering STORAGE for details. Removed ECC throughout. Removed ECC throughout. Removed ECC throughout. Updated AOD_PCLK to AOD_CLK throughout. Updated flash controller Clock Configuration section to clarify that the 1MHz clock requirement is for write and erase operations. Removed RTC load capacitor section. No stability capacitors should be used on the ERTCO with this device. Updated flash controller Clock Configuration section to clarify that the 1MHz clock requirement is for write and erase operations. Removed flash write width field from the FLC_CTRL register, this field is not supported. Added caution that the FLC_CLKDIV.clkdiv must be set on all forms of reset before performing a write or erase operations. Removed flash write width field from the FLC_ctrl register, this field is not supported. Added RTC_OSCCTRL.ibias_en, RTC_OSCCTRL.hyst_en, RTC_OSCCTRL.ibias_sel, and RTC_OSCCTRL.filter_en fields. Updated Table 12-4 to show correct boot observable in the reset on the reset before performing a write or erase operation. Clarified of this of one-shot output pulse in Timer chapter. See for One-Shot Mode (0) details. Updated Table 12-4 to show correct b	

©2023 by Analog Devices, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.