
Functional Diagrams

Pin Configurations appear at end of data sheet.
Functional Diagrams continued at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.

AIN0
AIN2
AIN4
AIN6
AIN8
AIN10
AIN12
AIN14

AIN1
AIN3
AIN5
AIN7
AIN8
AIN11
AIN13
AIN15

MAXQ7665/
MAXQ7666

12-BIT
DAC DACOUT

I I

II

M

M M
ROTATION

SHAFT

MAGNET MAGNETIC FIELD
DIRECTION

ANISOTROPIC
MAGNETORESISTIVE

SENSOR

MAXQ7665

R+ΔR

V-

CAN
2.0B
BUS

ELECTRONIC
STABILITY
CONTROL

V+

R-ΔR

R-ΔR

R+ΔR

12-BIT
ADC

512B
DATA RAM

UP TO 128kB
PROGRAM FLASH,

UP TO 256B
DATA FLASH

CLOCK
GEN/XTAL

INPUT

16-BIT MAXQ20 RISC

(WITH 16 x 16
HARDWARE

MULTIPLIER)

CAN
2.0B

DIGITAL
I/O

UART
(LIN 2.0)JTAGTEMP

SENSOR
VOLTAGE

REGULATOR
POWER
MGMT

16-BIT
TIMERS (3)

MUX

MUX

PGA

 48-TQFN7mm x 7mm-40°°C to +125°°C

S

N

MAXQ7665/MAXQ7666 USER’S GUIDE

Rev 0; 12/07

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented. However, if these
bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator pointer. So, the operations can
be defined as follows:

• Increment modulo 2: AP = AP[3:1] + ((AP[0] + 1) mod 2)

• Decrement modulo 2: AP = AP[3:1] + ((AP[0] - 1) mod 2)

• Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)

• Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

• Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)

• Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)

• Increment modulo 16: AP = (AP + 1) mod 16

• Decrement modulo 16: AP = (AP - 1) mod 16

For this example, assume that all 16 accumulator registers are initially set to zero.

move AP, #02h ; select A[2] as active accumulator
move APC, #02h ; auto-increment AP[1:0] modulo 4

; AP A[0] A[1] A[2] A[3]
; 02 0000 0000 0000 0000

add #01h ; 03 0000 0000 0001 0000
add #02h ; 00 0000 0000 0001 0002
add #03h ; 01 0003 0000 0001 0002
add #04h ; 02 0003 0004 0001 0002
add #05h ; 03 0003 0004 0006 0002

1.3.5.3 ALU Operations Using the Active Accumulator and a Source
The following arithmetic and logical operations can use any register or immediate value as a source. The active accumulator Acc is
always used as the second operand and the implicit destination. Also, Acc may not be used as the source for any of these operations.

add A[4] ; Acc = Acc + A[4]
addc #32h ; Acc = Acc + 0032h + Carry

sub A[15] ; Acc = Acc – A[15]
subb A[1] ; Acc = Acc – A[1] - Carry
cmp #00h ; If (Acc == 0000h), set Equals flag

and A[0] ; Acc = Acc AND A[0]
or #55h ; Acc = Acc OR #0055h

xor A[1] ; Acc = Acc XOR A[1]

MAXQ7665/MAXQ7666 User’s Guide

1-34Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-1

SECTION 1: MAXQ7665/MAXQ7666 CORE ARCHITECTURE

This section contains the following information:

1.1 Overview .1-5

1.1.1 References .1-5

1.1.2 Instruction Set .1-6

1.1.3 Harvard Memory Architecture .1-6

1.1.4 Register Space .1-6

1.2 Architecture .1-7

1.2.1 Instruction Decoding .1-8

1.2.2 Register Space .1-9

1.2.3 Memory Organization .1-11

1.2.3.1 Program Memory .1-11

1.2.3.2 Utility ROM .1-14

1.2.3.3 Data Memory .1-14

1.2.3.4 Stack Memory .1-15

1.2.3.5 Pseudo-Von Neumann Memory Mapping .1-15

1.2.3.6 Pseudo-Von Neumann Memory Access .1-16

1.2.3.7 Data Alignment .1-17

1.2.3.8 Memory Management Unit .1-17

1.2.3.9 Program and Data Memory Mapping Example 1: MAXQ7665B 1-20

1.2.3.10 Program and Data Memory Mapping Example 2: MAXQ7666 1-22

1.2.4 Interrupts .1-23

1.2.4.1 Servicing Interrupts .1-23

1.2.4.2 Interrupt System Operation .1-24

1.2.4.3 Synchronous vs. Asynchronous Interrupt Sources .1-24

1.2.4.4 Interrupt Prioritization by Software .1-26

1.2.4.5 Interrupt Exception Window .1-26

1.2.4.6 MAXQ7665/MAXQ7666 Interrupt Sources .1-26

1.3 Programming .1-29

1.3.1 Addressing Modes .1-29

1.3.2 Prefixing Operations .1-29

1.3.3 Reading and Writing Registers .1-30

Maxim Integrated

1.3.3.1 Loading an 8-Bit Register with an Immediate Value .1-30

1.3.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value 1-30

1.3.3.3 Moving Values Between Registers of the Same Size .1-30

1.3.3.4 Moving Values Between Registers of Different Sizes .1-30

1.3.3.4.1 8-Bit Destination ← Low Byte (16-Bit Source) .1-31

1.3.3.4.2 8-Bit Destination ← High Byte (16-Bit Source) .1-31

1.3.3.4.3 16-Bit Destination ← Concatenation (8-Bit Source, 8-Bit Source) 1-31

1.3.3.4.4 Low (16-Bit Destination) ← 8-Bit Source .1-31

1.3.3.4.5 High (16-Bit Destination) ← 8-Bit Source .1-31

1.3.4 Reading and Writing Register Bits .1-32

1.3.5 Using the Arithmetic and Logic Unit .1-32

1.3.5.1 Selecting the Active Accumulator .1-32

1.3.5.2 Enabling Auto-Increment and Auto-Decrement .1-32

1.3.5.3 ALU Operations Using the Active Accumulator and a Source 1-34

1.3.5.4 ALU Operations Using Only the Active Accumulator .1-35

1.3.5.5 ALU Bit Operations Using Only the Active Accumulator1-35

1.3.5.6 Example: Adding Two 4-Byte Numbers Using Auto-Increment1-35

1.3.6 Processor Status Flag Operations .1-35

1.3.6.1 Sign Flag .1-35

1.3.6.2 Zero Flag .1-36

1.3.6.3 Equals Flag .1-36

1.3.6.4 Carry Flag .1-36

1.3.6.5 Overflow Flag .1-37

1.3.7 Controlling Program Flow .1-37

1.3.7.1 Obtaining the Next Execution Address .1-37

1.3.7.2 Unconditional Jumps .1-37

1.3.7.3 Conditional Jumps .1-38

1.3.7.4 Calling Subroutines .1-38

1.3.7.5 Looping Operations .1-38

1.3.7.6 Conditional Returns .1-39

1.3.8 Handling Interrupts .1-39

1.3.8.1 Conditional Return from Interrupt .1-40

1.3.9 Accessing the Stack .1-40

MAXQ7665/MAXQ7666 User’s Guide

1-2Maxim Integrated

1.3.10 Accessing Data Memory .1-41

1.4 System Register Descriptions .1-43

1.4.1 Accumulator Pointer Register (AP) .1-46

1.4.2 Accumulator Pointer Control Register (APC) .1-46

1.4.3 Processor Status Flags Register (PSF) .1-47

1.4.4 Interrupt and Control Register (IC) .1-48

1.4.5 Interrupt Mask Register (IMR) .1-48

1.4.6 System Control Register (SC) .1-49

1.4.7 Interrupt Identification Register (IIR) .1-50

1.4.8 System Clock Control Register (CKCN) .1-50

1.4.9 Watchdog Timer Control Register (WDCN) .1-51

1.4.10 Accumulator n Register (A[n]) .1-51

1.4.11 Prefix Register (PFX[n]) .1-52

1.4.12 Instruction Pointer Register (IP) .1-53

1.4.13 Stack Pointer Register (SP) .1-53

1.4.14 Interrupt Vector Register (IV) .1-54

1.4.15 Loop Counter 0 Register (LC[0]) .1-54

1.4.16 Loop Counter 1 Register (LC[1]) .1-55

1.4.17 Frame Pointer Offset Register (OFFS) .1-55

1.4.18 Data Pointer Control Register (DPC) .1-56

1.4.19 General Register (GR) .1-57

1.4.20 General Register Low Byte (GRL) .1-57

1.4.21 Frame Pointer Base Register (BP) .1-58

1.4.22 General Register Byte-Swapped (GRS) .1-58

1.4.23 General Register High Byte (GRH) .1-59

1.4.24 General Register Sign Extended Low Byte (GRXL) .1-59

1.4.25 Frame Pointer Register (FP) .1-60

1.4.26 Data Pointer 0 Register (DP[0]) .1-60

1.4.27 Data Pointer 1 Register (DP[1]) .1-61

1.5 Peripheral Register Modules .1-61

MAXQ7665/MAXQ7666 User’s Guide

1-3 Maxim Integrated

Figure 1-1. MAXQ7665/MAXQ7666 Block Diagram .1-5

Figure 1-2. MAXQ7665/MAXQ7666 Transport-Triggered Architecture .1-7

Figure 1-3. Instruction Word Format .1-8

Figure 1-4. Pseudo-Von Neumann Memory Map (MAXQ7665/MAXQ7666 Default) 1-16

Figure 1-5. CDA Functions (Word Access Mode) .1-18

Figure 1-6. CDA Functions (Byte Access Mode) .1-19

Figure 1-7. MAXQ7665B Memory Map When Executing from Application Flash 1-20

Figure 1-8. MAXQ7665B Memory Map When Executing from Utility ROM 1-21

Figure 1-9. MAXQ7665B Memory Map When Executing from Data SRAM1-21

Figure 1-10. MAXQ7666 Memory Map When Executing from Application Flash 1-22

Figure 1-11. MAXQ7666 Memory Map When Executing from Utility ROM 1-22

Figure 1-12. MAXQ7666 Memory Map When Executing from Data RAM 1-23

Figure 1-13. MAXQ7665/MAXQ7666 Interrupt Source Hierarchy Example1-25

Table 1-1. Register-to-Register Transfer Operations .1-9

Table 1-2. MAXQ7665/MAXQ7666 Register Modules .1-10

Table 1-3. MAXQ7665A–MAXQ7665D Flash Memory Features .1-12

Table 1-4. MAXQ7666 Program Flash Features .1-12

Table 1-5. MAXQ7666 Data Flash Features .1-13

Table 1-6. MAXQ7665/MAXQ7666 Interrupt Sources and Control Bits .1-27

Table 1-7. Accumulator Pointer Control Register Settings .1-33

Table 1-8. MAXQ7665/MAXQ7666 System Register Map .1-43

Table 1-9. MAXQ7665/MAXQ7666 System Register Bit Functions and Reset Values 1-44

Table 1-10. MAXQ7665/MAXQ7666 Peripheral Register Map .1-62

Table 1-11. MAXQ7665/MAXQ7666 Module 0 Register Bit Functions and Reset Values 1-63

Table 1-12. MAXQ7665/MAXQ7666 Module 1 Register Bit Functions and Reset Values 1-64

Table 1-13. MAXQ7665/MAXQ7666 Module 2 Register Bit Functions and Reset Values 1-65

Table 1-14. MAXQ7665/MAXQ7666 Module 3 Register Bit Functions and Reset Values 1-67

Table 1-15. MAXQ7665/MAXQ7666 Module 4 Register Bit Functions and Reset Values 1-68

Table 1-16. MAXQ7665/MAXQ7666 Module 5 Register Bit Functions and Reset Values 1-70

LIST OF TABLES

LIST OF FIGURES

MAXQ7665/MAXQ7666 User’s Guide

1-4Maxim Integrated

SECTION 1: MAXQ7665/MAXQ7666 CORE ARCHITECTURE
1.1 Overview
The MAXQ7665/MAXQ7666 are low-power, high-performance, 16-bit RISC microcontrollers based on the MAXQ® architecture. They
include support for integrated, in-system-programmable flash memory and a wide range of peripherals including a 12-bit 500ksps SAR
ADC with a programmable gain amplifier (PGA) and a full CAN 2.0B controller supporting transfer rates up to 1Mbps. The
MAXQ7665/MAXQ7666 are ideally suited for low-cost, low-power embedded applications such as automotive, industrial controls, and
building automation. Except where explicitly noted, the MAXQ7665 and MAXQ7666 features are identical.

The MAXQ7665/MAXQ7666 key features include:

• 8MHz, 16-bit, single-cycle RISC CPU with Harvard Memory Architecture

• Up to 64k x 16 (128kB) on-chip program flash (16kB program flash and dedicated 256B data flash in MAXQ7666) and 512 bytes
internal RAM

• High-precision, low-power analog input/output module including a 12-bit, 500ksps SAR ADC, 1x–32x PGA, 12-bit DAC and
local/remote temperature sensor

• Full CAN 2.0B controller supporting transfer rates up to 1Mbps

• High-performance timer/digital I/O peripherals

• Flexible crystal/clock module

• Advanced power monitoring/management module

1.1.1 References
The online MAXQ7665 and MAXQ7666 QuickView pages contain additional information and links to the data sheet. Errata sheets for the
MAXQ products are available at www.maxim-ic.com/errata. For more information on other MAXQ microcontrollers, development hard-
ware and software, frequently asked questions and software examples, visit the MAXQ home page at www.maxim-ic.com/MAXQ. For
general questions and discussion of the MAXQ platform, visit our discussion board at http://discuss.dalsemi.com.

MAXQ7665/MAXQ7666 User’s Guide

1-5

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Figure 1-1. MAXQ7665/MAXQ7666 Block Diagram

16-BIT HARVARD
MAXQ20 RISC CPU

• 8MHz OPERATION
• SINGLE-CYCLE EXECUTION
• HARVARD ARCHITECTURE
• INTERRUPT CONTROL
• 16-WORD HW STACK
• MMU

MEMORY MODULE

CLOCK/CRYSTAL
MODULE

• INTERNAL OSCILLATOR
• HF EXTERNAL XTAL OSC
• WATCHDOG TIMER

POWER MANAGEMENT
MODULE

• POWER-ON RESET
• I/0 SUPPLY BROWNOUT DETECTOR
• DIGITAL SUPPLY BROWNOUT DETECTOR
• +3.3V LINEAR REGULATOR

PERIPHERAL MODULES

TIMER/DIGITAL I/O
PERIPHERALS

• 3 16-BIT TIMER/PWMs
• 1 8-BIT I/O PORT
• UART AND OPTIONAL SPI
• CAN INTERFACE
• JTAG INTERFACE
• HARDWARE MULTIPLIER

MAXQ7665/MAXQ7666

ANALOG I/0 MODULE

• 8-CHANNEL TRUE-DIFFERENTIAL
 MUX
• PGA 1X, 2X, 4X, 8X, 16X, 32X
• 12-BIT, 500ksps SAR ADC
• 12-BIT VDAC
• EXT VOLTAGE REF
• LOCAL TEMP SENSOR
• REMOTE TEMP SENSOR

DATA RAM
256 X 16

(512 BYTES)

PROGRAM FLASH
UP TO 64k X 16

(128kBYTES)

DATA FLASH
256 BYTES

(MAXQ7666 ONLY)

UTILITY ROM
4k X 16

(8kBYTES)

Maxim Integrated

1.1.2 Instruction Set
As part of the MAXQ family, the MAXQ7665/MAXQ7666 use the standard 16-bit MAXQ20 instruction set, with all instructions a fixed 16
bits in length. A register-based, transport-triggered architecture allows all instructions to be coded as simple transfer operations. All
instructions reduce to either writing an immediate value to a destination register or memory location or moving data between registers
and/or memory locations.

This simple top-level instruction decoding allows all instructions to be executed in a single cycle. Since all CPU operations are per-
formed on registers only, any new functionality can be added by simply adding new register modules. The simple instruction set also
provides maximum flexibility for code optimization by a compiler.

1.1.3 Harvard Memory Architecture
As part of the MAXQ family, the MAXQ7665/MAXQ7666 core architecture is based on the MAXQ20 design, which implements a 16-bit
internal databus and ALU. Program memory, data memory, and register space on the MAXQ7665/MAXQ7666 follow the Harvard archi-
tecture model. Each type of memory is kept separate and is accessed by a separate bus, allowing different word lengths for different
types of memory. Registers may be either 8 or 16 bits in width. Program memory is 16 bits in width to accommodate the standard MAXQ
16-bit instruction set. Data memory is also 16 bits in width but can be accessed in 8-bit or 16-bit modes for maximum flexibility.

The MAXQ7665/MAXQ7666 include a flexible memory management unit (MMU), which allows code to be executed from either the pro-
gram flash, the utility ROM, or the internal data SRAM. Any of these three memory spaces may also be accessed in data space at any
time, with the single restriction that whichever physical memory area is currently being used as program space cannot be read from
in data space.

1.1.4 Register Space
Since all functions in the MAXQ family are accessed through registers, common functionality is provided through a common register
set. Many of these registers provide the equivalent of higher level op codes by directly accessing the arithmetic logic unit (ALU), the
loop counter registers, and the data pointer registers. Others, such as the interrupt registers, provide common control and configura-
tion functions that are equivalent across all MAXQ microcontrollers.

The common register set, also known as the System Registers, includes the following:

• ALU access and control registers, including working accumulator registers and the processor status flags

• Two Data Pointers and a Frame Pointer for data memory access

• Auto-decrementing Loop Counters for fast, compact looping

• Instruction Pointer and other branching control access points

• Stack Pointer and an access point to the 16-bit-wide dedicated hardware stack

• Interrupt vector, identification, and masking registers

The MAXQ7665/MAXQ7666 peripheral register space (modules 0 to 5) contains registers that access the following peripherals:

• General-purpose, 8-bit, I/O port (P0)

• Serial UART interface

• Serial peripheral interface (SPI)

• Hardware multiplier

• JTAG debug engine

• Three programmable Type 2 timer/counters

• Controller area network (CAN) interface

• Analog input/output module

Maxim Integrated 1-6

1.2 Architecture
The MAXQ7665/MAXQ7666 architecture is designed to be modular and expandable. Top-level instruction decoding is extremely sim-
ple and based on transfers to and from registers. The registers are organized into functional modules, which are in turn divided into
the system register and peripheral register groups. Figure 1-2 illustrates the modular architecture and the basic transport possibilities.

MAXQ7665/MAXQ7666 User’s Guide

1-7

SYSTEM MODULES/
REGISTERS

PERIPHERAL MODULES/REGISTERS

DATA
MEMORY

dst

STACK
MEMORY

CKCN

WDCN

IC

ADDRESS
GENERATION

IP

SP

IC

LOOP COUNTERS

LC[η]
IIR

IMR

INTERRUPT
LOGIC

CLOCK CONTROL,
WATCHDOG TIMER

AND POWER MONITOR

BOOLEAN
VARIABLE

MANIPULATION

ACCUMULATORS
(16)

AP

APC

PSF

INSTRUCTION
DECODE

(SRC, DST TRANSPORT
DETERMINATION)

MUX

DATA POINTERS

DP[0], DP[1]
FP =

(BP + OFFS)

DPC

SC

MEMORY MANAGEMENT
UNIT (MMU)

PROGRAM
MEMORY

src

dst src

GENERAL-
PURPOSE

I/O

TIMERS/
COUNTERS

UART
AND SPI CAN ANALOG

I/0
HARDWARE
MULTIPLIER

JTAG
DEBUG
ENGINE

Figure 1-2. MAXQ7665/MAXQ7666 Transport-Triggered Architecture

Maxim Integrated

Memory access from the MAXQ7665/MAXQ7666 is based on a Harvard architecture with separate address spaces for program and
data memory. The simple instruction set and transport-triggered architecture allow the MAXQ7665/MAXQ7666 to run in a nonpipelined
execution mode where each instruction can be fetched from memory, decoded, and executed in a single clock cycle. Data memory
is accessed through one of three data pointer registers. Two of these data pointers, DP[0] and DP[1], are stand-alone 16-bit pointers.
The third data pointer, FP, is composed of a 16-bit base pointer (BP) and an 8-bit offset register (OFFS). All three pointers support post-
increment/decrement functionality for read operations and pre-increment/decrement for write operations. For the Frame Pointer
(FP=BP[OFFS]), the increment/decrement operation is executed on the OFFS register and does not affect the base pointer (BP). Stack
functionality is provided by dedicated memory with a 16-bit width and depth of 16. An on-chip memory management unit (MMU) is
accessible through system registers to allow logical remapping of physical program and data spaces, and thus facilitates in-system
programming and fast access to data tables, arrays, and constants physically located in program memory.

1.2.1 Instruction Decoding
Every MAXQ7665/MAXQ7666 instruction is encoded as a single 16-bit word according to the format in Figure 1-3.

Bit 15 (f) indicates the format for the source field of the instruction as follows:

• If f equals 0, the instruction is an immediate source instruction, and the source field represents an immediate 8-bit value.

• If f equals 1, the instruction is a register source instruction, and the source field represents the register that the source value will be
read from.

Bits 0 to 7 (ssssssss) represent the source for the transfer. Depending on the value of the format field, this can either be an immediate
value or a source register. If this field represents a register, the lower four bits contain the module specifier and the upper four bits con-
tain the register index in that module.

Bits 8 to 14 (ddddddd) represent the destination for the transfer. This value always represents a destination register, with the lower four
bits containing the module specifier and the upper three bits containing the register subindex within that module.

Since the source field is 8 bits wide and 4 bits are required to specify the module, any one of 16 registers in that module may be spec-
ified as a source. However, the destination field has one less bit, which means that only eight registers in a module can be specified
as a destination in a single-cycle instruction.

While the asymmetry between source and destination fields of the op code may initially be considered a limitation, this space can be
used effectively. Firstly, since read-only registers will never be specified as destinations, they can be placed in the second eight loca-
tions in a module to give single-cycle read access. Secondly, there are often critical control or configuration bits associated with sys-
tem and certain peripheral modules where limited write access is beneficial (e.g., watchdog-timer enable and reset bits). By placing
such bits in one of the upper 24 registers of a module, this write protection is added in a way that is virtually transparent to the assem-
bly source code. Anytime that it is necessary to directly select one of the upper 24 registers as a destination, the prefix register PFX is
used to supply the extra destination bits. This prefix register write is inserted automatically by the assembler and requires one addi-
tional execution cycle.

The MAXQ7665/MAXQ7666 architecture is transport-triggered. This means that writing to or reading from certain register locations will
also cause side effects to occur. These side effects form the basis for the higher level op codes defined by the assembler, such as
ADDC, OR, JUMP, and so on. While these op codes are actually implemented as MOVE instructions between certain register locations,
the encoding is handled by the assembler and need not be a concern to the programmer. The registers defined in the System Register
and Peripheral Register maps operate as described in the documentation; the unused "empty" locations are the ones used for these
special cases.

The MAXQ7665/MAXQ7666 instruction set is designed to be highly orthogonal. All arithmetic and logical operations that use two reg-
isters can use any register along with the accumulator. Data can be transferred between any two registers in a single instruction.

1-8

Figure 1-3. Instruction Word Format

FORMAT DESTINATION SOURCE
f d d d d d d d s s s s s s s s

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1.2.2 Register Space
The MAXQ7665/MAXQ7666 architecture provides a total of 16 register modules. Each of these modules contains 32 registers. Of these
possible 16 register modules, only 13 are used on the MAXQ7665/MAXQ7666—seven for system registers and six for peripheral reg-
isters. The first eight registers in each module may be read from or written to in a single cycle; the second eight registers may be read
from in a single cycle and written to in two cycles (by using the prefix register PFX); the last 16 registers may be read or written in two
cycles (always requiring use of the prefix register PFX).

Registers may be either 8 or 16 bits in length. Within a register, any number of bits can be implemented; bits not implemented are fixed
at zero. Data transfers between registers of different sizes are handled as shown in Table 1-1.

• If the source and destination registers are both 8 bits wide, data is transferred bit to bit accordingly.

• If the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is transferred
into the lower 8 bits of the destination register. The upper 8 bits of the destination register are set to the current value of the pre-
fix register; this value is normally zero, but it can be set to a different value by the previous instruction if needed. The prefix reg-
ister reverts back to zero after one cycle, so this must be done by the instruction immediately before the one that will be using
the value.

• If the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are transferred to
the destination register.

• If both registers are 16 bits wide, data is copied bit to bit.

Table 1-1. Register-to-Register Transfer Operations

The above rules apply to all data movements between defined registers. Data transfer to/from undefined register locations has the fol-
lowing behavior:

• If the destination is an undefined register, the MOVE is a dummy operation but may trigger an underlying operation according
to the source register (e.g., @DP[n]--).

• If the destination is a defined register and the source is undefined, the source data for the transfer will depend upon the source mod-
ule width. If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, the source data will be equal to the pre-
fix data concatenated with 00h. If the source is from a module containing only 16-bit source registers, 0000h source data is used for
the transfer.

The 16 available register modules are broken up into two different groups. The low six modules (specifiers 0h through 5h) are known
as the Peripheral Register modules, while the high 10 modules (specifiers 6h to Fh) are known as the System Register modules. These
groupings are descriptive only, as there is no difference between accessing the two register groups from a programming perspective.

The System Registers define basic functionality that remains the same across all products based on the MAXQ20 architecture. This
includes all register locations that are used to implement higher level op codes as well as the following common system features.

• ALU (MAXQ20: 16 bits) and associated status flags (zero, equals, carry, sign, overflow)

• 16 working accumulator registers (MAXQ20: 16-bit width), along with associated control registers

• Instruction pointer

• Registers for interrupt control, handling, and identification

• Auto-decrementing loop counters for fast, compact looping

• Two data pointer registers and a frame pointer for data memory access

MAXQ7665/MAXQ7666 User’s Guide

1-9

DESTINATION SET TO VALUESOURCE REGISTER SIZE
(BITS)

DESTINATION REGISTER
SIZE (BITS) PREFIX SET?

HIGH 8 BITS LOW 8 BITS
8 8 — Source [7:0]
8 16 No 00h Source [7:0]
8 16 Yes Prefix [7:0] Source [7:0]

16 8 — Source [7:0]
16 16 No Source [15:8] Source [7:0]

Maxim Integrated

The MAXQ7665/MAXQ7666 peripheral register space (modules 0 to 5) contains registers that access the following peripherals:

• General-purpose, 8-bit, I/O port (P0)

• External interrupts (up to 8)

• Three programmable Type 2 timer/counters

• Serial UART interface

• SPI

• CAN interface

• Analog input/output module

• Hardware multiplier

• JTAG debug engine

The lower 8 bits of all registers in modules 0 to 5 (as well as the AP module M8) are bit addressable.

Table 1-2. MAXQ7665/MAXQ7666 Register Modules

MAXQ7665/MAXQ7666 User’s Guide

1-10

MODULE NAME (BASE SPECIFIER)REGISTER
INDEX M0 M1 M2 M3 M4 M5 M8 M9 M11 M12 M13 M14 M15

00h PO0 MCNT T2CNA0 T2CNA2 C0C VMC AP A[0] PFX[0] IP

01h MA T2H0 T2H2 C0S APE APC A[1] PFX[1] SP

02h MB T2RH0 T2RH2 C0IR ACNT A[2] PFX[2] IV

03h EIF0 MC2 T2CH0 T2CH2 C0TE DCNT A[3] PFX[3] OFFS DP0

04h MC1 T2CNA1 C0RE DACI PSF A[4] PFX[4] DPC

05h MC0 T2H1 COR IC A[5] PFX[5] GR

06h SPIB T2RH1 C0DP DACO IMR A[6] PFX[6] LC0 GRL

07h SBUF0 SPICN T2CH1 C0DB A[7] PFX[7] LC1 BP DP1

08h PI0 SPICF T2CNB0 T2CNB2 C0RMS ADCD SC A[8] GRS

09h SPICK T2V0 T2V2 C0TMA TSO A[9] GRH

0Ah FCNTL T2R0 T2R2 AIE A[10] GRXL

0Bh EIE0 FDATA T2C0 T2C2 ASR IIR A[11] FP

0Ch MC1R T2CNB1 OSCC A[12]

0Dh MC0R T2V1 A[13]

0Eh T2R1 CKCN A[14]

0Fh T2C1 WDCN A[15]

10h PD0 T2CFG0 T2CFG2

11h T2CFG1 C0M1C

12h C0M2C

13h EIES0 C0M3C

14h C0M4C

15h C0M5C

16h C0M6C

Maxim Integrated

1.2.3 Memory Organization
Beyond the internal register space, memory on the MAXQ7665/MAXQ7666 microcontrollers is organized according to a Harvard archi-
tecture, with a separate address space and bus for program memory and data memory. Stack memory is also separate and is
accessed through a dedicated register set.

To provide additional memory map flexibility, an MMU allows data memory space to be mapped into a predefined program memory
segment, thus affording the possibility of code execution from data memory. Additionally, program memory space can be made acces-
sible as data space, allowing access to constant data stored in program memory. All memory is internal, and physical memory seg-
ments (other than the stack and register memories) can be accessed as either program memory or as data memory, but not both at
once.

1.2.3.1 Program Memory
The MAXQ7665/MAXQ7666 contain up to 64k x 16 (128kB) of flash memory, which normally serves as program memory. When exe-
cuting from the data SRAM or utility ROM, this memory is mapped to data space and can be used for lookup tables and similar func-
tions. Flash memory mapped into data space can be read from directly, like any other type of data memory. However, writing to flash
memory must be done by calling the in-application functions provided by the utility ROM. The utility ROM provides routines to carry
out the necessary operations (erase, write) on flash memory.

Table 1-3 summarizes the features of the flash memory supported in the MAXQ7665A–MAXQ7665D devices. The MAXQ7666 device
features a 256B data flash in addition to 16kB program flash. The MAXQ7666 flash is different from the MAXQ7665A–MAXQ7665D and
its features are summarized in Tables 1-4 and 1-5. Refer to the respective data sheets for additional information.

Program memory begins at address 0000h and is contiguous through the internal program memory. The actual size of the on-chip pro-
gram memory available for user application is product dependent. Given a 16-bit program address bus, the maximum program space
is 64kWords. Since the codewords are 16 bits, the program memory is, therefore, a 64k x 16 linear space.

MAXQ7665/MAXQ7666 User’s Guide

1-11

MODULE NAME (BASE SPECIFIER)REGISTER
INDEX M0 M1 M2 M3 M4 M5 M8 M9 M11 M12 M13 M14 M15

17h C0M7C

18h ICDT0 C0M8C

19h ICDT1 C0M9C

1Ah ICDC C0M10C

1Bh ICDF C0M11C

1Ch FADDR ICDB C0M12C

1Dh SCON0 ICDA C0M13C

1Eh SMD0 ICDD C0M14C

1Fh PR0 C0M15C

RESERVED
OR

OPCODE

PORT
PINS

(GPIO)

SERIAL
AND
SPI

INTERRUPT
CONTROL

HARDWARE
MULTIPLIER

TIMERS CAN ANALOG
I/O

ACC ARRAY,
CONTROL

OTHER
FUNCTIONS

Table 1-2. MAXQ7665/MAXQ7666 Register Modules (continued)

Maxim Integrated

Table 1-3. MAXQ7665A–MAXQ7665D Flash Memory Features

MAXQ7665/MAXQ7666 User’s Guide

1-12

FEATURE MAXQ7665A MAXQ7665B MAXQ7665C MAXQ7665D

Flash Type Type A Type A Type A Type A

Flash Size 128kB (64k x 16) 64kB (32k x 16) 48kB (24k x 16) 32kB (16k x 16)

Flash Organization 5 Sectors 4 Sectors 3 Sectors 3 Sectors

0000h–7FFFh
(32k x 16)

0000h–3FFFh
(16k x 16)

0000h–3FFFh
(16k x 16)

0000h–1FFFh
(8k x 16)

8000h–BFFFh
(16k x 16)

4000h–5FFFh
(8k x 16)

4000h–4FFFh
(4k x 16)

2000h–2FFFh
(4k x 16)

C000h–DFFFh
(8k x 16)

6000h–6FFFh
(4k x 16)

5000h–5FFFh
(4k x 16)

3000h–3FFFh
(4k x 16)

E000h–EFFFh
(4k x 16)

7000h–7FFFh
(4k x 16)

— —

Sector Address/Size

F000h–FFFFh
(4k x 16)

— — —

Erase All Erase All Erase All Erase All
Flash Erase

Sector Erase Sector Erase Sector Erase Sector Erase

Flash Program Word Write Word Write Word Write Word Write

In Application Programming Yes, using utility ROM routines. See Section 15 for more information.

In System Programming Yes, using utility ROM JTAG bootstrap loader. See Section 12 for more information.

Table 1-4. MAXQ7666 Program Flash Features

FEATURE MAXQ7666

Flash Type Type F

Program Flash Size 16kB (8k x 16)

256 Pages
Program Flash Organization

1 Page = 64B (32 x 16)

0000h–001Fh (Page 0)

0020h–003Fh (Page 1)

0040h–005Fh (Page 2)

. . .

1FC0h–1FDFh (Page 254)

Program Flash Page Address

1FE0h–1FFFh (Page 255)

Erase All
Program Flash Erase

2 Page Erase

Program Flash Write 1 Page Write

In Application Programming Yes, using utility ROM routines. See Section 16 for more information.

In System Programming Yes, using utility ROM JTAG bootstrap loader. See Section 12 for more information.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-13

Table 1-5. MAXQ7666 Data Flash Features

FEATURE MAXQ7666

Flash Type Type F

Data Flash Size 256B (128 x 16)

128 Pages
Data Flash Organization (Regular Mode)

1 Page = 2B (1 x 16)

4000h (Page 0)

4001h (Page 1)

4002h (Page 2)

….

Data Flash Page Address (Regular Mode)

407Fh (Page 127)

Erase All Data Flash Erase
(Regular Mode) 2 Page Erase

Data Flash Write
(Regular Mode)

1 Page Write

64 Even Pages Data Flash Organization
(Even Mode) 1 Page = 2B (1 x 16)

4000h (Page 0)

4002h (Page 1)

4004h (Page 2)

. . .

Data Flash Page Address (Even Mode)

407Eh (Page 63)

Erase All Data Flash Erase
(Even Mode) 1 Page Erase

Data Flash Write
(Even Mode)

1 Page Write

In Application Programming Yes, using utility ROM routines. See Section 16 for more information.

In System Programming Not supported, only in application programming.

Program memory is accessed directly by the program fetching unit and is addressed by the Instruction Pointer register. From an imple-
mentation perspective, system interrupts and branching instructions simply change the contents of the Instruction Pointer and force
the op code fetch from a new program location. The Instruction Pointer is direct read/write accessible by the user software; write access
to the Instruction Pointer will force program flow to the new address on the next cycle following the write. The contents of the Instruction
Pointer will be incremented by 1 automatically after each fetch operation. The Instruction Pointer defaults to 8000h, which is the start-
ing address of the utility ROM. The default IP setting of 8000h is assigned to allow initial in-system programming to be accomplished
with utility ROM code assistance. The utility ROM code interrogates a specific register bit in order to decide whether to execute in-sys-
tem programming or jump immediately to user code starting at 0000h. The user code reset vector should always be stored in the low-
est bytes of the program memory.

Maxim Integrated

1.2.3.2 Utility ROM
A utility ROM (4k x 16) is placed in the upper 32kWord program memory space starting at address 8000h. This utility ROM provides
the following system utility functions:

• Reset vector

• Bootstrap function for system initialization

• In-application programming

• In-circuit debug

Following each reset, the processor automatically starts execution at address 8000h in the utility ROM, allowing ROM code to perform
any necessary system support functions. Next, the System Programming Enable (SPE) bit is examined to determine whether system
programming should commence or whether that code should be bypassed, instead forcing execution to vector to the start of user pro-
gram code. When the SPE bit is set to logic 1, the processor will execute the prescribed Bootstrap Loader mode program that resides
in utility ROM. The SPE bit defaults to 0. To enter the Bootstrap Loader mode, the SPE bit can be set to 1 during reset via the JTAG
interface. When in-system programming is complete, the Bootstrap Loader can clear the SPE bit and reset the device such that the in-
system programming routine is subsequently bypassed.

The MAXQ7665/MAXQ7666 application programming routines available as part of the utility ROM are covered in Sections 15 and 16.
The MAXQ7665/MAXQ7666 JTAG test access port, in-circuit debug, and bootstrap loader mode for in-system programming are cov-
ered in Sections 10, 11, and 12.

1.2.3.3 Data Memory
The MAXQ7665/MAXQ7666 contain 256 x 16 (512 bytes) of on-chip data SRAM that can be mapped into either program or data space.
The contents of this SRAM are indeterminate after power-on reset, but are maintained during stop mode and across non-POR resets,
as long as the DVDD supply stays within the acceptable range.

On-chip data memory begins at address 0000h and is contiguous through the internal data memory. Data memory is accessed via
indirect register addressing through a Data Pointer (@DP[n]) or Frame Pointer (@BP[OFFS]). The Data Pointer is used as one of the
operands in a MOVE instruction. If the Data Pointer is used as source, the core performs a Load operation that reads data from the
data memory location addressed by the Data Pointer. If the Data Pointer is used as destination, the core executes a Store operation
that writes data to the data memory location addressed by the Data Pointer. The Data Pointer can be directly accessed by the user
software.

The core incorporates two 16-bit Data Pointers (DP[0] and DP[1]) to support data memory accessing. All Data Pointers support indi-
rect addressing mode and indirect addressing with auto-increment or auto-decrement. Data Pointers DP[0] and DP[1] can be used as
post increment/decrement source pointers by a MOVE instruction or pre increment/decrement destination pointers by a MOVE instruc-
tion. Using Data Pointer indirectly with "++" will automatically increase the content of the active Data Pointer by 1 immediately follow-
ing the execution of read data transfer (@DP[n]++) or immediately preceding the execution of a write operation (@++DP[n]). Using
Data Pointer indirectly with "--" will decrease the content of the active Data Pointer by 1 immediately following the execution of read
data transfer (@DP[n]--) or immediately preceding the execution of a write operation (@--DP[n]).

The Frame Pointer (BP[OFFS]) is formed by 16-bit unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset
Register (OFFS). Frame Pointer can be used as a post increment/decrement source pointer by a MOVE instruction or as a pre incre-
ment/decrement destination pointer. Using Frame Pointer indirectly with "++" (@BP[++OFFS] for a write or @BP[OFFS++] for a read) will
automatically increase the content of the Frame Pointer Offset by 1 immediately before or after the execution of data transfer depending
upon whether it is used as a destination or source pointer respectively. Using Frame Pointer indirectly with "--" (@BP[--OFFS] for a write or
@BP[OFFS--] for a read) will decrease the content of the Frame Pointer Offset by 1 immediately before/after execution of data transfer
depending upon whether it is used as a destination or source pointer respectively. Note that the increment/decrement function affects the
content of the OFFS register only, while the contents of the BP register remain unaffected by the borrow/carry out from the OFFS register.

A data memory cycle contains only one system clock period to support fast internal execution. This allows read or write operations on
SRAM to be completed in one clock cycle. Data memory mapping and access control are handled by the MMU. Read/write access to
the data memory can be in word or in byte.

When using the in-circuit debugging features of the MAXQ7665/MAXQ7666, the top 19 bytes (bytes 0x1ED to 0x1FF) of the SRAM must
be reserved for saved state storage and working space for the debugging routines in the utility ROM. If in-circuit debug will not be
used, the entire SRAM is available for application use.

MAXQ7665/MAXQ7666 User’s Guide

1-14Maxim Integrated

1.2.3.4 Stack Memory
The MAXQ7665/MAXQ7666 provide a 16 x 16 hardware stack to support subroutine calls and system interrupts. A 16-bit wide on-chip
stack is provided by the MAXQ7665/MAXQ7666 for storage of program return addresses and general-purpose use. The stack is used
automatically by the processor when the CALL, RET, and RETI instructions are executed and when an interrupt is serviced; it can also
be used explicitly to store and retrieve data by using the @SP- - source, @++SP destination, or the PUSH, POP, and POPI instructions.
The POPI instruction acts identically to the POP instruction except that it additionally clears the INS bit.

The width of the stack is 16 bits to accommodate the instruction pointer size. The stack depth is 16 for the MAXQ7665/MAXQ7666. As
the stack pointer register SP is used to hold the index of the top of the stack, the maximum size of the stack allowed is defined by the
number of bits defined in the SP register (e.g., 4 bits for stack depth of 16).

On reset, the stack pointer SP initializes to the top of the stack (e.g. 0Fh for a 16-word stack). The CALL, PUSH, and interrupt vector-
ing operations increment SP and then store a value at @SP. The RET, RETI, POP, and POPI operations retrieve the value at @SP and
then decrement SP.

As with the other RAM-based modules, the stack memory is initialized to indeterminate values upon reset or power-up. Stack memory
is dedicated for stack operations only and cannot be accessed through program or data address spaces.

When using the in-circuit debugging features of the MAXQ7665/MAXQ7666, one word of the stack must be reserved to store the return
location when execution branches into the debugging routines in the utility ROM. If in-circuit debug will not be used, the entire stack
is available for application use.

1.2.3.5 Pseudo-Von Neumann Memory Mapping
The MAXQ7665/MAXQ7666 support a pseudo-Von Neumann memory structure that can merge program and data into a linear mem-
ory map. This is accomplished by mapping the data memory into the program space or mapping program memory segment into the
data space. Program memory from 0000h to 7FFFh is the normal user code segment, followed by the utility ROM segment. The upper-
most part of the 64kWord memory is the logical area for data memory when accessed as a code segment.

The program memory is logically divided into four program pages:

• P0 contains the lower 16kWords,

• P1 contains the second 16kWords,

• P2 contains the third 16kWords, and

• P3 contains the fourth 16kWords.

By default, P2 and P3 are not accessible for program execution until they are explicitly activated by the user software. The Upper
Program Access (UPA) bit must be set to logic 1 to activate P2 and P3. Once UPA is set, P2 and P3 will occupy the upper half of the
64kWord program space. In this configuration (UPA = 1), the utility ROM cannot be accessed as program memory and the physical
data memory cannot be accessed logically in program space.

The logical mapping of physical program memory page(s) into data space depends upon two factors: physical memory currently in
use for program execution; and word/byte data memory access selection. If execution is from the utility ROM, physical program mem-
ory page(s) can logically be mapped to the upper half of data memory space. If logical data memory is used for execution, physical
program memory page(s) can logically be mapped to the lower half of data memory space. If byte access mode is selected, only one
page (16kWords) may be logically mapped, as just defined, to either the upper or lower half of data memory. If word access mode is
selected, two pages (32kWords total) may be logically mapped to data memory. To avoid memory overlapping in the byte access
mode, the physical data memory should be confined to the address range 0000h to 3FFFh in word mode. The selection of physical
memory page or pages to be logically mapped to data space is determined by the Code Access Bits (CDA1:0):

Figure 1-4 summarizes the default memory maps for this memory structure. The primary difference lies in the reset default settings for
the data pointer Word/Byte Mode Select (WBSn) bits. The WBSn bits of the MAXQ7665/MAXQ7666 default to word access mode
(WBSn = 1).

MAXQ7665/MAXQ7666 User’s Guide

1-15

CDA1:0 SELECTED PAGE IN BYTE MODE SELECTED PAGE IN
WORD MODE

00 P0 P0 and P1
01 P1 P0 and P1
10 P2 P2 and P3
11 P3 P2 and P3

Maxim Integrated

1.2.3.6 Pseudo-Von Neumann Memory Access
The pseudo-Von Neumann memory mapping is straightforward if there is no memory overlapping among the program, utility ROM, and
data memory segments. However, for applications requiring large-size program memory, the paging scheme can be used to selectively
activate those overlapped memory segments. The UPA bit can be used to activate the upper half of the physical program code (P2 and
P3) for program execution. When accessing the program memory as data, the CDA bits can be used to select one of the four program
pages as needed. Full data memory access to any of the four physical program memory pages is based on the assumption that the max-
imum physical data memory is in the range of 16k x 16. The other restriction for accessing the pseudo-Von Neumann map is that when
program execution is in a particular memory segment, the same memory segment cannot be simultaneously be accessed as data.

When executing from the lower 32k program space (P0 and P1):

• The upper half of the code segment (P2 and P3) is accessible as program if the UPA bit is set to 1.

• The physical data memory is available for accessing as a code segment with offset at A000h if the UPA bit is 0.

• Load and Store operations addressed to physical data memory are executed as normal.

• The utility ROM can be read as data, starting at 8000h of the data space.

When executing from the utility ROM (only allowable when UPA = 0):

• The lower 32k program space (P0 and P1) functions as normal program memory.

• The upper half of the code segment (P2 and P3) is not accessible as program (since UPA = 0).

• The physical data memory is available for accessing as a code segment with offset at A000h.

• Load and Store operations addressed to physical data memory are executed as normal.

• One page (byte access mode) or two pages (word access mode) can be accessed as data with offset at 8000h as determined
by the CDA1:0 bits.

When executing from the data memory (only allowable when UPA = 0):

• Program flows freely between the lower 32k user code (P0 and P1) and the utility ROM segment.

• The upper half of the code segment (P2 and P3) is not accessible as program (since UPA = 0).

MAXQ7665/MAXQ7666 User’s Guide

1-16

Physical Program
(P0)

PHYSICAL DATA

0000h

8000h

9000h

0100h

DATA MEMORY

015

LOGICAL SPACE

MAXQ7665/MAXQ7666 MEMORY MAP (DEFAULT CONDITION, UPA = 0)

PHYSICAL DATA

0000h

8000h

FFFFh

0000h

0100h

8000h

9000h

DATA MEMORYPROGRAM MEMORY

15 0 015

LOGICAL SPACE

LOGICAL SPACE

MAXQ7665/MAXQ7666 MEMORY MAP (UPA = 1, CDA IS DON’T CARE)

LOGICAL UTILITY ROM

P2

P3

PHYSICAL PROGRAM
(P3)

PHYSICAL PROGRAM
(P2)

PHYSICAL PROGRAM
(P1)

PHYSICAL PROGRAM
(P0)

FFFFhFFFFh

PHYSICAL PROGRAM
(P0)

UTILITY ROM

LOGICAL SPACE

0000h

8000h

A000h

FFFFh

A100h

9000h

PROGRAM MEMORY

15 0

LOGICAL SPACE

PHYSICAL PROGRAM
(P1)

Figure 1-4. Pseudo-Von Neumann Memory Map (MAXQ7665/MAXQ7666 Default)

Maxim Integrated

• The utility ROM can be accessed as data with offset at 8000h.

• One page (byte access mode) or two pages (word access mode) can be accessed as data with offset at 0000h as determined
by the CDA1:0 bits.

1.2.3.7 Data Alignment
To support merged program and data memory operation while maintaining efficiency on memory space usage, the data memory must
be able to support both byte-wide and word-wide accessing. Data is aligned in data memory as word, but the effective data address is
resolved to bytes. This data alignment allows direct program fetching in its native word size while maintaining accessibility at the byte
level. It is important to realize that this accessibility requires strict word alignment. All executable words must align to an even address
in byte mode. Care must be taken when updating the code segment in the unified data memory space as misalignment of words will
likely result in loss of program execution control. Worst yet, this situation may not be detected if the watchdog timer is also disabled.

Data memory is organized as two byte-wide memory banks with common word address decode but two 8-bit data buses. The data
memory will always be read as a complete word, independent of operation, whether program fetch or data access. The program
decoder always uses the full 16-bit word, whereas the data access can utilize a word or an individual byte.

In byte mode, data pointer hardware reads out the word containing the selected byte using the effective data word address pointer
(the least significant bit of the byte data pointer is not initially used). Then, the least significant data pointer bit functions as the byte
select that is used to place the target byte to the data path. For write access, data pointer hardware addresses a particular word using
the effective data word address while the least significant bit selects the corresponding data bank for write, leaving the contents of the
other memory bank unaffected.

1.2.3.8 Memory Management Unit
Memory allocation and accessing control for program and data memory can be managed by the memory management unit (MMU). A
single memory management unit option is discussed in this user’s guide, however the memory management unit implementation for
any given product depends upon the type and amount of memory addressable by the device. Users should consult the individual prod-
uct data sheet(s) and/or user’s guide supplement(s) for detailed information.

Although supporting less than the maximum addressable program and data memory segments, the MMU implementation presented
provides a high degree of programming and access control flexibility. It supports the following:

• User program memory up to 32k x 16 (up to 64k x 16 with inclusion of UPA bit).

• Utility ROM up to 8k x 16.

• Data memory SRAM up to 16k x 16.

• In-system and in-application programming of embedded EEPROM, flash, or SRAM memories.

• Access to any of the three memory areas (SRAM, code memory, utility ROM) using the data memory pointers.

• Execution from any of the three memory areas (SRAM, code memory, factory written and tested utility-ROM routines).

Given these capabilities, the following rules apply to the memory map:

• A particular memory segment cannot be simultaneously accessed as both program and data.

• The offset address is A000h when logically mapping data memory into the program space.

• The offset for logically mapping the utility ROM into the data memory space is 8000h.

• Program memory:

- The lower half of the program memory (P0 and P1) is always accessible, starting at 0000h.

- The upper half of the program memory (P2 and P3) must be activated by setting the UPA bit to 1 when accessing for code
execution, starting at 8000h.

- Setting the UPA bit to 1 disallows access to the utility ROM and logical data memory as program.

- Physical program memory pages (P0, P1, P2, P3) are logically mapped into data space based upon the memory segment
currently being used for execution, selection of byte/word access mode, and CDA1:0 bit settings (described in the Pseudo-
Von Neumann Memory Map and Pseudo-Von Neumann Memory Access sections).

• Data memory

- Access can be either word or byte.

- All 16 data pointer address bits are significant in either access mode (word or byte).

MAXQ7665/MAXQ7666 User’s Guide

1-17 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-18

Figure 1-5. CDA Functions (Word Access Mode)

PHYSICAL DATA

0000h

8000h

0100h

DATA MEMORY
015

CDA1 = 0

CDA1 = 1

MAXQ7665/MAXQ7666 MEMORY MAP (UPA = 0, EXECUTING FROM UTILITY ROM)

0000h

8000h

DATA MEMORYPROGRAM MEMORY

015

LOGICAL SPACE

MAXQ7665/MAXQ7666 MEMORY MAP (UPA = 0, EXECUTING FROM LOGICAL DATA MEMORY)

LOGICAL UTILITY ROM

P2

P3

FFFFh

PHYSICAL PROGRAM
(P0)

UTILITY ROM

0000h

8000h

A000h

9000h

FFFFh

A100h

PROGRAM MEMORY

15 0

LOGICAL SPACE

PHYSICAL PROGRAM
(P1)

LOGICAL DATA

CDA1 = 1

P2

P3

PHYSICAL PROGRAM
(P0)

UTILITY ROM

CDA1 = 00000h

8000h

A000h

FFFFh

A100h

15 0

LOGICAL SPACE

LOGICAL DATA MEMORY

PHYSICAL PROGRAM
(P1)

LOGICAL SPACE

9000h
LOGICAL SPACE

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-19

Figure 1-6. CDA Functions (Byte Access Mode)

UTILITY ROM

PHYSICAL DATA

0000h

8000h

A000h

9000h

FFFFh

A100h

0000h

8000h

0200h

FFFFh

DATA MEMORYPROGRAM MEMORY

15 0 07

CDA0 = 1

CDA0 = 0

EXECUTING FROM UTILITY ROM (UPA = 0, ONLY P1, P2 PRESENT)

PHYSICAL PROGRAM
(P0)

UTILITY ROM

0000h

8000h

A000h

FFFFh

A100h

0000h

8000h

FFFFh

DATA MEMORYPROGRAM MEMORY

15 0 07

CDA0 = 0

CDA0 = 1

EXECUTING FROM LOGICAL DATA MEMORY (UPA = 0, ONLY P1, P2 PRESENT)

PHYSICAL PROGRAM
(P1)

LOGICAL SPACE

LOGICAL SPACE

LOGICAL SPACE

LOGICAL SPACE

LOGICAL DATA
MEMORY

LOGICAL DATA
MEMORY

LOGICAL SPACE

PHYSICAL PROGRAM
(P1)

PHYSICAL PROGRAM
(P0)

9000h
LOGICAL SPACE

Maxim Integrated

1.2.3.9 Program and Data Memory Mapping Example 1: MAXQ7665B
Figures 1-7, 1-8, and 1-9 show the mapping of physical memory segments into the program and data memory space for the
MAXQ7665B with 32k x 16 (64kB) program flash memory. In this case and all cases when program flash memory size is ≤ 32k x 16,
the memory mapping is straightforward as there is no overlapping among the program, utility ROM, and data memory segments. The
mapping of memory segments into program space is always the same. The mapping of memory segments into data space varies
depending on which memory segment is currently being executed from.

In all cases, whichever memory segment is currently being executed from in program space cannot be accessed in data space.

MAXQ7665/MAXQ7666 User’s Guide

1-20

32k x 16
PROGRAM FLASH

PROGRAM
SPACE

EX
EC

UT
IN

G
FR

OM

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

7FFFh

4k x 16
UTILITY ROM

8FFFh

256 x 16
DATA SRAM

A000h

8000h

A0FFh

8k x 8
UTILITY ROM

9FFFh

8000h

512 x 8
DATA SRAM

0000h

01FFh

4k x 16
UTILITY ROM

8FFFh

8000h

256 x 16
DATA SRAM

0000h

00FFh

Figure 1-7. MAXQ7665B Memory Map When Executing from Application Flash

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-21

32k x 16
PROGRAM FLASH

PROGRAM
SPACE

EX
EC

UT
IN

G
FR

OM
DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

7FFFh

4k x 16
UTILITY ROM

8FFFh

256 x 16
DATA SRAM

A000h

8000h

A0FFh 32k x 8
PROGRAM FLASH

PAGE 0
(IF CDA0 = 0)

PAGE 1
(IF CDA0 = 1)

FFFFh

8000h

512 x 8
DATA SRAM

0000h

01FFh

32k x 16
PROGRAM FLASH

PAGES 0 AND 1

FFFFh

8000h

256 x 16
DATA SRAM

0000h

00FFh

32k x 16
PROGRAM FLASH

PROGRAM
SPACE

EX
EC

UT
IN

G
FR

OM

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

7FFFh

4k x 16
UTILITY ROM

87FFh

256 x 16
DATA SRAM

A000h

8000h

A0FFh

8k x 8
UTILITY ROM

9FFFh

8000h

32k x 8
PROGRAM FLASH

PAGE 0
(IF CDA0 = 0)

PAGE 1
(IF CDA0 = 1)

0000h

7FFFh

4k x 16
UTILITY ROM

8FFFh

8000h

32k x 16
PROGRAM FLASH

PAGES 0 AND 1

0000h

7FFFh

Figure 1-9. MAXQ7665B Memory Map When Executing from Data SRAM

Figure 1-8. MAXQ7665B Memory Map When Executing from Utility ROM

Maxim Integrated

1.2.3.10 Program and Data Memory Mapping Example 2: MAXQ7666
Figures 1-10, 1-11, and 1-12 show the mapping of physical memory segments into the program and data memory space for the
MAXQ7666 with 8k x 16 (16kB) program flash memory, 256B data flash memory, and 512B data RAM.

MAXQ7665/MAXQ7666 User’s Guide

1-22

8k x 16
PROGRAM FLASH

PROGRAM
SPACE

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

1FFFh

4k x 16
UTILITY ROM

8FFFh

256 x 16
DATA RAM

4k x 16
UTILITY ROM

A000h

8000h

407Fh
128 x 16

DATA FLASH
4000h

A0FFh

8k x 8
UTILITY ROM

9FFFh

8000h

4k x 16
UTILITY ROM

8FFFh

8000h

512 x 8
DATA RAM

01FFh

0000h

256 x 16
DATA RAM

00FFh

0000hEX
EC

UT
IN

G
FR

OM

Figure 1-10. MAXQ7666 Memory Map When Executing from Application Flash

8k x 16
PROGRAM FLASH

PROGRAM
SPACE

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

0000h

1FFFh

4k x 16
UTILITY ROM

8FFFh
4k x 16

UTILITY ROM
8000h

407Fh
128 x 16

DATA FLASH
4000h

256 x 16
DATA SRAM

A000h

A0FFh 256 x 8
DATA FLASH
(CDA0 =1) 8000h

80FFh
128 x 16

DATA FLASH
C000h

C07Fh

16k x 8
PROGRAM FLASH

(CDA0 = 0)

BFFFh

8000h

8k x 16
PROGRAM FLASH

9FFFh

8000h

512 x 8
DATA RAM

01FFh

0000h

256 x 16
DATA RAM

00FFh

0000h

EX
EC

UT
IN

G
FR

OM

Figure 1-11. MAXQ7666 Memory Map When Executing from Utility ROM

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-23

PROGRAM
SPACE

DATA SPACE
(BYTE MODE)

DATA SPACE
(WORD MODE)

8k x 16
PROGRAM FLASH

0000h

1FFFh

16k x 8
PROGRAM FLASH

(CDA0 = 0)

0000h

3FFFh

8k x 16
PROGRAM FLASH

0000h

1FFFh

4k x 16
UTILITY ROM

8FFFh
4k x 16

UTILITY ROM
8000h

407Fh
128 x 16

DATA FLASH
4000h

4k x 16
UTILITY ROM

9FFFh
8k x 8

UTILITY ROM
8000h

00FFh256 x 8
DATA FLASH
(CDA0 = 1) 0000h

4k x 16
UTILITY ROM

8FFFh
4k x 16

UTILITY ROM
8000h

407Fh
128 x 16

DATA FLASH
4000h

256 x 16
DATA RAM

A000h

A0FFh

EX
EC

UT
IN

G
FR

OM

Figure 1-12. MAXQ7666 Memory Map When Executing from Data RAM

1.2.4 Interrupts
The MAXQ7665/MAXQ7666 provide a single, programmable interrupt vector (IV) that can be used to handle internal and external inter-
rupts. Interrupts can be generated from system level sources (e.g., watchdog timer) or by sources associated with the peripheral mod-
ules included in the specific MAXQ7665/MAXQ7666 microcontrollers. Only one interrupt can be handled at a time, and all interrupts
naturally have the same priority. A programmable interrupt mask register allows software-controlled prioritization and nesting of high-
priority interrupts.

1.2.4.1 Servicing Interrupts
For the MAXQ7665/MAXQ7666 to service an interrupt, interrupts must be enabled globally, modularly, and locally. The Interrupt Global
Enable (IGE) bit located in the Interrupt Control (IC) register acts as a global interrupt mask. This bit defaults to 0, and it must be set
to 1 before any interrupt takes place.

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that peripheral module, or in a
system register for any system interrupt source. Between the global and local enables are intermediate per-module and system interrupt
mask bits. These mask bits reside in the Interrupt Mask system register. By implementing intermediate per-module masking capability in
a single register, interrupt sources spanning multiple modules can be selectively enabled/disabled in a single instruction. This promotes
a simple, fast, and user-definable interrupt prioritization scheme. The interrupt source-enable hierarchy is illustrated in Figure 1-13.

When an interrupt condition occurs, its individual flag is set, even if the interrupt source is disabled at the local, module, or global level.
Interrupt flags must be cleared within the user interrupt routine to avoid repeated interrupts from the same source.

Since all interrupts vector to the address contained in the Interrupt Vector (IV) register, the Interrupt Identification Register (IIR) may be
used by the interrupt service routine to determine the module source of an interrupt. The IIR contains a bit flag for each peripheral mod-
ule and one flag associated with all system interrupts; if the bit for a module is set, then an interrupt is pending that was initiated by
that module. If a module is capable of generating interrupts for different reasons, then peripheral register bits inside the module pro-
vide a means to differentiate among interrupt sources.

The Interrupt Vector (IV) register provides the location of the interrupt service routine. It may be set to any location within program mem-
ory. The IV register defaults to 0000h on reset or power-up, so if it is not changed to a different address, the user program must deter-
mine whether a jump to 0000h came from a reset or interrupt source.

Maxim Integrated

1.2.4.2 Interrupt System Operation
The interrupt handler hardware responds to any interrupt event when it is enabled. An interrupt event occurs when an interrupt flag is
set. All interrupt requests are sampled at the rising edge of the clock and can be serviced by the processor one clock cycle later,
assuming the request does not hit the interrupt exception window. The one-cycle stall between detection and acknowledgement/ser-
vicing is due to the fact that the current instruction may also be accessing the stack. For this reason, the CPU must allow the current
instruction to complete before pushing the stack and vectoring to IV. If an interrupt exception window is generated by the currently exe-
cuting instruction, the following instruction must be executed, so the interrupt service routine will be delayed an additional cycle.

Interrupt operation in the MAXQ7665/MAXQ7666 CPU is essentially a state machine generated long CALL instruction. When the inter-
rupt handler services an interrupt, it temporarily takes control of the CPU to perform the following sequence of actions:

1) The next instruction fetch from program memory is cancelled.

2) The return address is pushed on to the stack.

3) The INS bit is set to 1 to prevent recursive interrupt calls.

4) The instruction pointer is set to the location of the interrupt service routine (contained in the Interrupt Vector register).

5) The CPU begins executing the interrupt service routine.

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program. Execution of RETI
involves the following sequence of actions:

1) The return address is popped off the stack.

2) The INS bit is cleared to 0 to re-enable interrupt handling.

3) The instruction pointer is set to the return address that was popped off the stack.

4) The CPU continues execution of the main program.

Pending interrupt requests will not interrupt an RETI instruction; a new interrupt will be serviced after first being acknowledged in the
execution cycle which follows the RETI instruction and then after the standard one stall cycle of interrupt latency. This means there will
be at least two cycles between back-to-back interrupts.

1.2.4.3 Synchronous vs. Asynchronous Interrupt Sources
Interrupt sources can be classified as either asynchronous or synchronous. All internal interrupts are synchronous interrupts. An internal
interrupt is directly routed to the interrupt handler that can be recognized in one cycle. All external interrupts are asynchronous interrupts
by nature. When the device is not in stop mode, asynchronous interrupt sources are passed through a 3-clock sampling/glitch filter cir-
cuit before being routed to the interrupt handler. The sampling/glitch filter circuit is running on the undivided source clock (i.e., before
PMME, CD1:0-controlled clock divide) such that the number of system clocks required to recognize an asynchronous interrupt request
depends upon the system clock divide ratio:

• if the system clock divide ratio is 1, the interrupt request is recognized after 3 system clock;

• if the system clock divide ratio is 2, the interrupt request is recognized after 2 system clock;

• if the system clock divide ratio is 4 or greater, the interrupt request is recognized after 1 system clock;

An interrupt request with a pulse width less than three undivided clock cycles is not recognized. Note that the granularity of interrupt
source is at module level. Synchronous interrupts and sampled asynchronous interrupts assigned to the same module produce a sin-
gle interrupt to the interrupt handler.

External interrupts, when enabled, can be used as switchback sources from power management mode. There is no latency associat-
ed with the switchback because the circuit is being clocked by an undivided clock source versus the divide-by-256 system clock. For
the same reason, there is no latency for other switchback sources that do not qualify as interrupt sources.

MAXQ7665/MAXQ7666 User’s Guide

1-24Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-25

SYSTEM MODULES

WDIF
(WATCHDOG)

EWDI
(LOCAL ENABLE)

MODULE 1

IM1
(MODULE 1 ENABLE)

MODULE 0

IE0

ESI
(LOCAL ENABLES)

EX0-EX7

IE1

IE7
IM0

(MODULE 0 ENABLE)

IMS
(SYSTEM ENABLE)

MODULE 2

ET2L, ET2
(LOCAL ENABLES)

IM2
(MODULE 2 ENABLE)

IGE
(GLOBAL ENABLE)

NOTE: ONLY A FEW OF THE MANY POSSIBLE MAXQ PERIPHERAL MODULES ARE SHOWN IN THIS INTERRUPT
 HIERARCHY FIGURE.

INS
(INTERRUPT IN SERVICE)

INTERRUPT
VECTOR

ƒ

ƒ

ƒ

RI

TI

ESPII
(LOCAL ENABLE)

SPIC
ROVR

WCOL
MODF

T2CL

TF2CL

TCC2

TF2

Figure 1-13. MAXQ7665/MAXQ7666 Interrupt Source Hierarchy Example

Maxim Integrated

1.2.4.4 Interrupt Prioritization by Software
All interrupt sources of the MAXQ7665/MAXQ7666 microcontrollers naturally have the same priority. However, when CPU operation vec-
tors to the programmed Interrupt Vector address, the order in which potential interrupt sources are interrogated is left entirely up to the
user, as this often depends upon the system design and application requirements. The Interrupt Mask system register provides the abil-
ity to knowingly block interrupts from modules considered to be of lesser priority and manually re-enable the interrupt servicing by the
CPU (by setting INS = 0). Using this procedure, a given interrupt service routine can continue executing, only to be interrupted by high-
er priority interrupts. An example demonstrating this software prioritization is provided in Section 1.3.8: Handling Interrupts.

1.2.4.5 Interrupt Exception Window
An interrupt exception window is a noninterruptable execution cycle. During this cycle, the interrupt handler does not respond to any inter-
rupt requests. All interrupts that would normally be serviced during an interrupt exception window are delayed until the next execution cycle.

Interrupt exception windows are used when two or more instructions must be executed consecutively without any delays in between.
Currently, there is a single condition in the MAXQ7665/MAXQ7666 microcontrollers that causes an interrupt exception window: activa-
tion of the prefix (PFX) register.

When the prefix register is activated by writing a value to it, it retains that value only for the next clock cycle. For the prefix value to be
used properly by the next instruction, the instruction that sets the prefix value and the instruction that uses it must always be execut-
ed back to back. Therefore, writing to the PFX register causes an interrupt exception window on the next cycle. If an interrupt occurs
during an interrupt exception window, an additional latency of one cycle in the interrupt handling will be caused as the interrupt will
not be serviced until the next cycle.

1.2.4.6 MAXQ7665/MAXQ7666 Interrupt Sources
Table 1-6 lists all possible interrupt sources for the MAXQ7665/MAXQ7666, along with their corresponding module interrupt enable bits,
local interrupt enable bits, and interrupt flags.

• Each module interrupt enable bit, when cleared to 0, will block interrupts originating in that module from being acknowledged.
When the module interrupt enable bit is set to 1, interrupts from that module are acknowledged (unless the interrupts have been
disabled globally).

• Each local interrupt enable bit, when cleared to 0, will disable the corresponding interrupt. When the local interrupt enable bit
is set to 1, the interrupt will be triggered whenever the interrupt flag is set to 1 (either by software or hardware).

• All interrupt flag bits cause the corresponding interrupt to trigger when the bit is set to 1. These bits are typically set by hard-
ware and must be cleared by software (generally in the interrupt handler routine).

Note that for an interrupt to fire, the following five conditions must exist:

1) Interrupts must be enabled globally by setting IGE (IC.0) to 1.

2) The module interrupt enable bit for that interrupt source’s module must be set to 1.

3) The local interrupt enable bit for that specific interrupt source must be set to 1.

4) The interrupt flag for that interrupt source must be set to 1. Typically, this is done by hardware when the condition that requires
interrupt service occurs.

5) The Interrupt In Service (INS) bit must be cleared to 0. This bit is set automatically upon vectoring to the interrupt handler
address and cleared automatically upon exit (RETI/POPI), so the only reason to clear this bit manually (inside the interrupt han-
dler routine) is allow nested interrupt handling.

MAXQ7665/MAXQ7666 User’s Guide

1-26Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-27

INTERRUPT MODULE ENABLE BIT LOCAL ENABLE BIT INTERRUPT FLAG

Watchdog Interrupt IMS (IMR.7) EWDI (WDCN.6) WDIF (WDCN.3)

External Interrupt 0 IM0 (IMR.0) EX0 (EIE0.0) IE0 (EIF0.0)

External Interrupt 1 IM0 (IMR.0) EX1 (EIE0.1) IE1 (EIF0.1)

External Interrupt 2 IM0 (IMR.0) EX2 (EIE0.2) IE2 (EIF0.2)

External Interrupt 3 IM0 (IMR.0) EX3 (EIE0.3) IE3 (EIF0.3)

External Interrupt 4 IM0 (IMR.0) EX4 (EIE0.4) IE4 (EIF0.4)

External Interrupt 5 IM0 (IMR.0) EX5 (EIE0.5) IE5 (EIF0.5)

External Interrupt 6 IM0 (IMR.0) EX6 (EIE0.6) IE6 (EIF0.6)

External Interrupt 7 IM0 (IMR.0) EX7 (EIE0.7) IE7 (EIF0.7)

Serial Port Receive IM0 (IMR.0) ESI (SMD0.2) RI (SCON0.0)

Serial Port Transmit IM0 (IMR.0) ESI (SMD0.2) TI (SCON0.1)

SPI Mode Fault IM1 (IMR.1) ESPII (SPICF.7) MODF (SPICN.3)

SPI Write Collision IM1 (IMR.1) ESPII (SPICF.7) WCOL (SPICN.4)

SPI Receive Overrun IM1 (IMR.1) ESPII (SPICF.7) ROVR (SPICN.5)

SPI Transfer Complete IM1 (IMR.1) ESPII (SPICF.7) SPIC (SPICN.6)

Timer 0—Low Compare IM2 (IMR.2) ET2L (T2CNB0.7) T2CL (T2CNB0.0)

Timer 0—Low Overflow IM2 (IMR.2) ET2L (T2CNB0.7) TF2L (T2CNB0.2)

Timer 0—Capture/Compare IM2 (IMR.2) ET2 (T2CNA0.7) TCC2 (T2CNB0.1)

Timer 0—Overflow IM2 (IMR.2) ET2 (T2CNA0.7) TF2 (T2CNB0.3)

Timer 1—Low Compare IM2 (IMR.2) ET2L (T2CNB1.7) T2CL (T2CNB1.0)

Timer 1—Low Overflow IM2 (IMR.2) ET2L (T2CNB1.7) TF2L (T2CNB1.2)

Timer 1—Capture/Compare IM2 (IMR.2) ET2 (T2CNA1.7) TCC2 (T2CNB1.1)

Timer 1—Overflow IM2 (IMR.2) ET2 (T2CNA1.7) TF2 (T2CNB1.3)

Timer 2—Low Compare IM3 (IMR.3) ET2L (T2CNB2.7) T2CL (T2CNB2.0)

Timer 2—Low Overflow IM3 (IMR.3) ET2L (T2CNB2.7) TF2L (T2CNB2.2)

Timer 2—Capture/Compare IM3 (IMR.3) ET2 (T2CNA2.7) TCC2 (T2CNB2.1)

Timer 2—Overflow IM3 (IMR.3) ET2 (T2CNA2.7) TF2 (T2CNB2.3)

CAN 0 Message Center 1 Receive IM4 (IMR.4) ERI (C0M1C.5) INTRQ (C0M1C.4)

CAN 0 Message Center 1 Transmit IM4 (IMR.4) ETI (C0M1C.6) INTRQ (C0M1C.4)

CAN 0 Message Center 2 Receive IM4 (IMR.4) ERI (C0M2C.5) INTRQ (C0M2C.4)

CAN 0 Message Center 2 Transmit IM4 (IMR.4) ETI (C0M2C.6) INTRQ (C0M2C.4)

Table 1-6. MAXQ7665/MAXQ7666 Interrupt Sources and Control Bits

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-28

INTERRUPT MODULE ENABLE BIT LOCAL ENABLE BIT INTERRUPT FLAG

CAN 0 Message Center 3 Receive IM4 (IMR.4) ERI (C0M3C.5) INTRQ (C0M3C.4)

CAN 0 Message Center 3 Transmit IM4 (IMR.4) ETI (C0M3C.6) INTRQ (C0M3C.4)

CAN 0 Message Center 4 Receive IM4 (IMR.4) ERI (C0M4C.5) INTRQ (C0M4C.4)

CAN 0 Message Center 4 Transmit IM4 (IMR.4) ETI (C0M4C.6) INTRQ (C0M4C.4)

CAN 0 Message Center 5 Receive IM4 (IMR.4) ERI (C0M5C.5) INTRQ (C0M5C.4)

CAN 0 Message Center 5 Transmit IM4 (IMR.4) ETI (C0M5C.6) INTRQ (C0M5C.4)

CAN 0 Message Center 6 Receive IM4 (IMR.4) ERI (C0M6C.5) INTRQ (C0M6C.4)

CAN 0 Message Center 6 Transmit IM4 (IMR.4) ETI (C0M6C.6) INTRQ (C0M6C.4)

CAN 0 Message Center 7 Receive IM4 (IMR.4) ERI (C0M7C.5) INTRQ (C0M7C.4)

CAN 0 Message Center 7 Transmit IM4 (IMR.4) ETI (C0M7C.6) INTRQ (C0M7C.4)

CAN 0 Message Center 8 Receive IM4 (IMR.4) ERI (C0M8C.5) INTRQ (C0M8C.4)

CAN 0 Message Center 8 Transmit IM4 (IMR.4) ETI (C0M8C.6) INTRQ (C0M8C.4)

CAN 0 Message Center 9 Receive IM4 (IMR.4) ERI (C0M9C.5) INTRQ (C0M9C.4)

CAN 0 Message Center 9 Transmit IM4 (IMR.4) ETI (C0M9C.6) INTRQ (C0M9C.4)

CAN 0 Message Center 10 Receive IM4 (IMR.4) ERI (C0M10C.5) INTRQ (C0M10C.4)

CAN 0 Message Center 10 Transmit IM4 (IMR.4) ETI (C0M10C.6) INTRQ (C0M10C.4)

CAN 0 Message Center 11 Receive IM4 (IMR.4) ERI (C0M11C.5) INTRQ (C0M11C.4)

CAN 0 Message Center 11 Transmit IM4 (IMR.4) ETI (C0M11C.6) INTRQ (C0M11C.4)

CAN 0 Message Center 12 Receive IM4 (IMR.4) ERI (C0M12C.5) INTRQ (C0M12C.4)

CAN 0 Message Center 12 Transmit IM4 (IMR.4) ETI (C0M12C.6) INTRQ (C0M12C.4)

CAN 0 Message Center 13 Receive IM4 (IMR.4) ERI (C0M13C.5) INTRQ (C0M13C.4)

CAN 0 Message Center 13 Transmit IM4 (IMR.4) ETI (C0M13C.6) INTRQ (C0M13C.4)

CAN 0 Message Center 14 Receive IM4 (IMR.4) ERI (C0M14C.5) INTRQ (C0M14C.4)

CAN 0 Message Center 14 Transmit IM4 (IMR.4) ETI (C0M14C.6) INTRQ (C0M14C.4)

CAN 0 Message Center 15 Receive IM4 (IMR.4) ERI (C0M15C.5) INTRQ (C0M15C.4)

CAN 0 Message Center 15 Transmit IM4 (IMR.4) ETI (C0M15C.6) INTRQ (C0M15C.4)

CAN 0 Bus Off Status IM4 (IMR.4) ERIE(C0C.7), C0IE (COR.0) BSS (C0S.7)

CAN 0 Error Count > 96/128 Status IM4 (IMR.4) ERIE(C0C.7), C0IE (COR.0) EC96/128 (C0S.6)

CAN 0 Wake-Up Status IM4 (IMR.4) STIE(C0C.6), C0IE (COR.0) WKS (C0S.5)

CAN 0 Receive Status IM4 (IMR.4) STIE(C0C.6), C0IE (COR.0) RXS (C0S.4)

CAN 0 Transmit Status IM4 (IMR.4) STIE(C0C.6), C0IE (COR.0) TXS (C0S.3)

CAN 0 Bus Error Status IM4 (IMR.4) STIE(C0C.6), C0IE (COR.0) ER2:ER0 (C0S.2:C0S.0)

CAN 0 Bus Activity Status IM4 (IMR.4) C0BIE (COR.1) CAN0BA (COR.7)

ADC Data Ready IM5 (IMR.5) ADCIE (AIE.1) ADCRY (ASR.1)

ADC Overrun IM5 (IMR.5) AORIE (AIE.2) ADCOV (ASR.2)

Table 1-6. MAXQ7665/MAXQ7666 Interrupt Sources and Control Bits (continued)

Maxim Integrated

1.3 Programming
The following section provides a programming overview of the MAXQ7665/MAXQ7666. For full details on the instruction set, as well as
System Register and Peripheral Register detailed bit descriptions, see the appropriate sections in this user’s guide.

1.3.1 Addressing Modes
The instruction set for the MAXQ7665/MAXQ7666 provides three different addressing modes: direct, indirect, and immediate.

The direct addressing mode can be used to specify either source or destination registers, such as:

move A[0], A[1] ; copy accumulator 1 to accumulator 0
push A[0] ; push accumulator 0 on the stack
add A[1] ; add accumulator 1 to the active accumulator

Direct addressing is also used to specify addressable bits within registers.

move C, Acc.0 ; copy bit zero of the active accumulator
; to the carry flag

move PO0.3, #1 ; set bit three of port 0 Output register

Indirect addressing, in which a register contains a source or destination address, is used only in a few cases.

move @DP[0], A[0] ; copy accumulator 0 to the data memory
; location pointed to by data pointer 0

move A[0], @SP-- ; where @SP-- is used to pop the data pointed to
; by the stack pointer register

Immediate addressing is used to provide values to be directly loaded into registers or used as operands.

move A[0], #10h ; set accumulator 1 to 10h/16d

1.3.2 Prefixing Operations
All instructions on the MAXQ7665/MAXQ7666 are 16 bits long and execute in a single cycle. However, some operations require more
data than can be specified in a single cycle or require that high-order register-index bits be set to achieve the desired transfer. In these
cases, the prefix register module PFX is loaded with temporary data and/or required register index bits to be used by the following
instruction. The PFX module only holds loaded data for a single cycle before it clears to zero.

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations.

• When providing a 16-bit immediate value for an operation (e.g., loading a 16-bit register, ALU operation, supplying an absolute
program branch destination), the PFX module must be loaded in the previous cycle with the high byte of the 16-bit immediate
value unless that high byte is zero. One exception to this rule is when supplying an absolute branch destination to 00xxh. In
this case, PFX still must be written with 00h. Otherwise, the branch instruction would be considered a relative one instead of
the desired absolute branch.

• When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers with indexes
greater than 0Fh within a module as sources, the PFX[n] register must be loaded in the previous cycle. This can be combined
with the previous item.

MAXQ7665/MAXQ7666 User’s Guide

1-29

INTERRUPT MODULE ENABLE BIT LOCAL ENABLE BIT INTERRUPT FLAG

Digital Brownout IM5 (IMR.5) DVBIE (AIE.4) DVBI (ASR.4)

I/O Voltage Brownout IM5 (IMR.5) VIOBIE (AIE.5) VIOBI (ASR.5)

High-Frequency Oscillator Failure IM5 (IMR.5) HFFIE (AIE.6) HFFINT (ASR.6)

Table 1-6. MAXQ7665/MAXQ7666 Interrupt Sources and Control Bits (continued)

Maxim Integrated

Generally, prefixing operations can be inserted automatically by the assembler as needed, so that (for example)

move DP[0], #1234h
actually assembles as

move PFX[0], #12h
move DP[0], #34h

However, the operation

move DP[0], #0055h
does not require a prefixing operation even though the register DP[0] is 16-bit. This is because the prefix value defaults to zero, so the line

move PFX[0], #00h
is not required.

1.3.3 Reading and Writing Registers
All functions in the MAXQ7665/MAXQ7666 are accessed through registers, either directly or indirectly. This section discusses loading
registers with immediate values and transferring values between registers of the same size and different sizes.

1.3.3.1 Loading an 8-Bit Register with an Immediate Value
Any writeable 8-bit register with a subindex from 0h to 7h within its module can be loaded with an immediate value in a single cycle
using the MOVE instruction.

move AP, #05h ; load accumulator pointer register with 5 hex
Writeable 8-bit registers with subindexes 8h and higher can be loaded with an immediate value using MOVE as well, but an addition-
al cycle is required to set the prefix value for the destination.

move WDCN, #33h ; assembles to: move PFX[2], #00h
; move (WDCN-80h), #33h

1.3.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value
Any writeable 16-bit register with a subindex from 0h to 07h can be loaded with an immediate value in a single cycle if the high byte
of that immediate value is zero.

move LC[0], #0010h ; prefix defaults to zero for high byte
If the high byte of that immediate value is not zero or if the 16-bit destination subindex is greater than 7h, an extra cycle is required to
load the prefix value for the high byte and/or the high-order register index bits.

; high byte <> #00h
move LC[0], #0110h ; assembles to: move PFX[0], #01h

; move LC[0], #10h
; destination sub-index > 7h

move A[8], #0034h ; assembles to: move PFX[2], #00h
; move (A[8]-80h), #34h

1.3.3.3 Moving Values Between Registers of the Same Size
Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is from 0h to 7h and
the source register index is between 0h and Fh.

move A[0], A[8] ; copy accumulator 8 to accumulator 0
move LC[0], LC[1] ; copy loop counter 1 to loop counter 0

If the destination register’s index is greater than 7h or if the source register index is greater than Fh, prefixing is required.

move A[15], A[0] ; assembles to: move PFX[2], #00h
; move (A[15]-80h), A[0]

1.3.3.4 Moving Values Between Registers of Different Sizes
Before covering some transfer scenarios that might arise, a special register must be introduced that will be used in many of these
cases. The 16-bit General Register (GR) is expressly provided for performing byte singulation of 16-bit words. The high and low bytes
of GR are individually accessible in the GRH and GRL registers respectively. A read-only GRS register makes a byte-swapped version
of GR accessible and the GRXL register provides a sign-extended version of GRL.

MAXQ7665/MAXQ7666 User’s Guide

1-30Maxim Integrated

1.3.3.4.1 8-Bit Destination ← Low Byte (16-Bit Source)
The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register. This transfer does not require
use of GR and requires a prefix only if the destination or source register are outside of the single cycle write or read regions, 0–7h and
0–Fh, respectively.

move OFFS, LC[0] ; copy the low byte of LC[0] to the OFFS register
move IMR, @DP[1] ; copy the low byte @DP[1] to the IMR register
move WDCN, LC[0] ; assembles to: move PFX[2], #00h

; move (WDCN-80h), LC[0]

1.3.3.4.2 8-Bit Destination ← High Byte (16-Bit Source)
If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR register. Transferring
the 16-bit source to the GR register adds a single cycle.

move GR, LC[0] ; move LC[0] to the GR register
move IC, GRH ; copy the high byte into the IC register

1.3.3.4.3 16-Bit Destination ← Concatenation (8-Bit Source, 8-Bit Source)
Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to hold the high-order
byte for the concatenated transfer. An additional cycle may be required if either source byte register index is greater than 0Fh or the
16-bit destination is greater than 07h.

move PFX[0], IC ; load high order source byte IC into PFX
move @DP[0], AP ; store @DP[0] the concatenation of IC:AP

; 16-bit destination sub-index: dst=08h
; 8-bit source sub-indexes:
; high=10h, low=11h

move PFX[1], #00h ;
move PFX[3], high ; PFX=00:high
move dst, low ; dst=high:low

1.3.3.4.4 Low (16-Bit Destination) ← 8-Bit Source
To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such that the high
byte can be singulated and the low byte written exclusively. An additional cycle is required if the destination index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], GRH ; get the high byte of DP[0] via GRH
move DP[0], #20h ; store the new DP[0] value

; 16-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11h

move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[5], GRH ; get the high byte of dst via GRH
move dst, src ; store the new dst value

1.3.3.4.5 High (16-Bit Destination) ← 8-Bit Source
To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such that the low
byte can be singulated and the high byte can be written exclusively. Additional cycles are required if the destination index is greater
than 0Fh or if the source index is greater than 0Fh.

move GR, DP[0] ; move DP[0] to the GR register
move PFX[0], #20h ; get the high byte of DP[0] via GRH
move DP[0], GRL ; store the new DP[0] value

; 16-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11h

move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[1], #00h
move PFX[4], src ; get the new src byte
move dst, GRL ; store the new dst value

MAXQ7665/MAXQ7666 User’s Guide

1-31 Maxim Integrated

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the 16-bit destination
(example follows):

move GR, DP[0] ; move DP[0] to the GR register
move DP[0], GRL ; store the new DP[0] value, 00h used for high byte

1.3.4 Reading and Writing Register Bits
The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in module 0h-5h or
a system register in module 8h. The set or clear operation will not affect the upper byte of a 16-bit register that is the target of the set
or clear operation. If a set or clear instruction is used on a destination register that does not support this type of operation, the regis-
ter high byte will be written with the prefix data and the low byte will be written with the bit mask (i.e. all 0’s with a single 1 for the set
bit operation or all ones with a single 0 for the clear bit operation).

Register bits can be set or cleared individually using the MOVE instruction as follows.

move IGE, #1 ; set IGE (Interrupt Global Enable) bit
move APC.6, #0 ; clear IDS bit (APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h.

The MOVE instruction may also be used to transfer any one of the lowest 8 bits from a register source or any bit of the active accu-
mulator (Acc) to the Carry flag. There is no restriction on the source register module for the ‘MOVE C, src.bit’ instruction.

move C, IIR.3 ; copy IIR.3 to Carry
move C, Acc.7 ; copy Acc.7 to Carry

Prefixing is required to select source registers beyond index 15h.

1.3.5 Using the Arithmetic and Logic Unit
The MAXQ7665/MAXQ7666 provide a 16-bit (MAXQ20) ALU, which allows operations to be performed between the active accumula-
tor and any other register. The ALU configuration provides 16 accumulator registers that are also 16 bits (MAXQ20) wide, of which any
one may be selected as the active accumulator.

1.3.5.1 Selecting the Active Accumulator
Any of the 16 accumulator registers A[0] through A[15] may be selected as the active accumulator by setting the low four bits of the
Accumulator Pointer Register (AP) to the index of the accumulator register you want to select.

move AP, #01h ; select A[1] as the active accumulator
move AP, #0Fh ; select A[15] as the active accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit destination for all
arithmetic and logical operations.

move A[0], #55h ; set A[0] = 55 hex (MAXQ10)
; = 0055 hex (MAXQ20)

move AP, #00h ; select A[0] as active accumulator
move Acc, #55h ; set A[0] = 55 hex (MAXQ10)

; = 0055 hex (MAXQ20)

1.3.5.2 Enabling Auto-Increment and Auto-Decrement
The accumulator pointer AP can be set to automatically increment or decrement after each arithmetic or logical operation. This is use-
ful for operations involving a number of accumulator registers, such as adding or subtracting two multibyte integers.

If auto-increment/decrement is enabled, the AP register increments or decrements after any of the following operations:

• ADD src (Add source to active accumulator)

• ADDC src (Add source to active accumulator with carry)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source from active accumulator with borrow)

• AND src (Logical AND active accumulator with source)

• OR src (Logical OR active accumulator with source)

MAXQ7665/MAXQ7666 User’s Guide

1-32Maxim Integrated

• XOR src (Logical XOR active accumulator with source)

• CPL (Bit-wise complement active accumulator)

• NEG (Negate active accumulator)

• SLA (Arithmetic shift left on active accumulator)

• SLA2 (Arithmetic shift left active accumulator two bit positions)

• SLA4 (Arithmetic shift left active accumulator four bit positions)

• SRA (Arithmetic shift right on active accumulator)

• SRA2 (Arithmetic shift right active accumulator two bit positions)

• SRA4 (Arithmetic shift right active accumulator four bit positions)

• RL (Rotate active accumulator left)

• RLC (Rotate active accumulator left through Carry flag)

• RR (Rotate active accumulator right)

• RRC (Rotate active accumulator right through Carry flag)

• SR (Logical shift active accumulator right)

• MOVE Acc, src (Copy data from source to active accumulator)

• MOVE dst, Acc (Copy data from active accumulator to destination)

• MOVE Acc, Acc (Recirculation of active accumulator contents)

• XCHN (Exchange nibbles within each byte of active accumulator)

• XCH (Exchange active accumulator bytes)

The active accumulator may not be the source in any instruction where it is also the implicit destination.

There is an additional notation that can be used to refer to the active accumulator for the instruction "MOVE dst, Acc." If the instruction
is instead written as "MOVE dst, A[AP]," the source value is still the active accumulator, but no AP auto-increment or auto-decrement
function will take place, even if this function is enabled. Note that the active accumulator may not be the destination for the MOVE dst,
A[AP] instruction (i.e., MOVE Acc, A[AP] is prohibited).

So, the two instructions

move A[7], Acc
move A[7], A[AP]

are equivalent, except that the first instruction triggers auto-increment/decrement (if it is enabled), while the second one will never do so.

The Accumulator Pointer Control Register (APC) controls the auto-increment/decrement mode as well as selects the range of bits (mod-
ulo) in the AP register that will be incremented or decremented. There are nine different unique settings for the APC register, as listed
in Table 1-7.

Table 1-7. Accumulator Pointer Control Register Settings

MAXQ7665/MAXQ7666 User’s Guide

1-33

APC.2
(MOD2)

APC.1
(MOD1)

APC.0
(MOD0)

APC.6
(IDS)

APC AUTO-INCREMENT/DECREMENT SETTING

0 0 0 X 00h No auto-increment/decrement (default mode)
0 0 1 0 01h Increment bit 0 of AP (modulo 2)
0 0 1 1 41h Decrement bit 0 of AP (modulo 2)
0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)
0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)
0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)
0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)
1 0 0 0 04h Increment all 4 bits of AP (modulo 16)
1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)

Maxim Integrated

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented. However, if these
bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator pointer. So, the operations can
be defined as follows:

• Increment modulo 2: AP = AP[3:1] + ((AP[0] + 1) mod 2)

• Decrement modulo 2: AP = AP[3:1] + ((AP[0] - 1) mod 2)

• Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)

• Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

• Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)

• Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)

• Increment modulo 16: AP = (AP + 1) mod 16

• Decrement modulo 16: AP = (AP - 1) mod 16

For this example, assume that all 16 accumulator registers are initially set to zero.

move AP, #02h ; select A[2] as active accumulator
move APC, #02h ; auto-increment AP[1:0] modulo 4

; AP A[0] A[1] A[2] A[3]
; 02 0000 0000 0000 0000

add #01h ; 03 0000 0000 0001 0000
add #02h ; 00 0000 0000 0001 0002
add #03h ; 01 0003 0000 0001 0002
add #04h ; 02 0003 0004 0001 0002
add #05h ; 03 0003 0004 0006 0002

1.3.5.3 ALU Operations Using the Active Accumulator and a Source
The following arithmetic and logical operations can use any register or immediate value as a source. The active accumulator Acc is
always used as the second operand and the implicit destination. Also, Acc may not be used as the source for any of these operations.

add A[4] ; Acc = Acc + A[4]
addc #32h ; Acc = Acc + 0032h + Carry

sub A[15] ; Acc = Acc – A[15]
subb A[1] ; Acc = Acc – A[1] - Carry
cmp #00h ; If (Acc == 0000h), set Equals flag

and A[0] ; Acc = Acc AND A[0]
or #55h ; Acc = Acc OR #0055h

xor A[1] ; Acc = Acc XOR A[1]

MAXQ7665/MAXQ7666 User’s Guide

1-34Maxim Integrated

1.3.5.4 ALU Operations Using Only the Active Accumulator
The following arithmetic and logical operations operate only on the active accumulator.

cpl ; Acc = NOT Acc
neg ; Acc = (NOT Acc) + 1
rl ; Rotate accumulator left (not using Carry)
rlc ; Rotate accumulator left through Carry
rr ; Rotate accumulator right (not using Carry)
rrc ; Rotate accumulator right through Carry
sla ; Shift accumulator left arithmetically once
sla2 ; Shift accumulator left arithmetically twice
sla4 ; Shift accumulator left arithmetically four times
sr ; Shift accumulator right, set Carry to Acc.0,

; set Acc.15 to zero (MAXQ20)
sra ; Shift accumulator right arithmetically once
sra2 ; Shift accumulator right arithmetically twice
sra4 ; Shift accumulator right arithmetically four times
xchn ; Swap low and high nibbles of each Acc byte
xch (MAXQ20 only) ; Swap low byte and high byte of Acc

1.3.5.5 ALU Bit Operations Using Only the Active Accumulator
The following operations operate on single bits of the current active accumulator in conjunction with the Carry flag. Any of these oper-
ations may use an Acc bit from 0 to 15.

move C, Acc.0 ; copy bit 0 of accumulator to Carry
move Acc.5, C ; copy Carry to bit 5 of accumulator
and Acc.3 ; Acc.3 = Acc.3 AND Carry
or Acc.0 ; Acc.0 = Acc.0 OR Carry
xor Acc.1 ; Acc.1 = Acc.1 OR Carry

None of the above bit operations cause the auto-increment, auto-decrement, or modulo operations defined by the accumulator point-
er control (APC) register.

1.3.5.6 Example: Adding Two 4-Byte Numbers Using Auto-Increment
move A[0], #5678h ; First number – 12345678h
move A[1], #1234h
move A[2], #0AAAAh ; Second number – 0AAAAAAAh
move A[3], #0AAAh
move APC, #81h ; Active Acc = A[0], increment low bit = mod 2
add A[2] ; A[0] = 5678h + AAAAh = 0122h + Carry
addc A[3] ; A[1] = 1234h + AAAh + 1 = 1CDFh

; 12345678h + 0AAAAAAAh = 1CDF0122h

1.3.6 Processor Status Flag Operations
The Processor Status Flag (PSF) register contains five flags that are used to indicate and store the results of arithmetic and logical oper-
ations, four of which can also be used for conditional program branching.

1.3.6.1 Sign Flag
The Sign flag (PSF.6) reflects the current state of the high bit of the active accumulator (Acc.15 for the MAXQ20). If signed arithmetic
is being used, this flag indicates whether the value in the accumulator is positive or negative.

Since the Sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the value in the active
accumulator can potentially change the value of the Sign flag. Also, any instruction that changes which accumulator is the active one
(including AP auto-increment/decrement) can also change the Sign flag.

The following operation uses the Sign flag:

• JUMP S, src (Jump if Sign flag is set)

MAXQ7665/MAXQ7666 User’s Guide

1-35 Maxim Integrated

1.3.6.2 Zero Flag
The Zero flag (PSF.7) is a dynamic flag that reflects the current state of the active accumulator Acc. If all bits in the active accumula-
tor are zero, the Zero flag equals 1. Otherwise, it equals 0.

Since the Zero flag is a dynamic reflection of (Acc = 0), any instruction that changes the value in the active accumulator can poten-
tially change the value of the Zero flag. Also, any instruction that changes which accumulator is the active one (including AP auto-incre-
ment/decrement) can also change the Zero flag.

The following operations use the Zero flag:

• JUMP Z, src (Jump if Zero flag is set)

• JUMP NZ, src (Jump if Zero flag is cleared)

1.3.6.3 Equals Flag
The Equals flag (PSF.0) is a static flag set by the CMP instruction. When the source given to the CMP instruction is equal to the active
accumulator, the Equals flag is set to 1. When the source is different from the active accumulator, the Equals flag is cleared to 0.

The following instructions use the value of the Equals flag. Please note that the ‘src’ for the JUMP E/NE instructions must be immediate.

• JUMP E, src (Jump if Equals flag is set)

• JUMP NE, src (Jump if Equals flag is cleared)

In addition to the CMP instruction, any instruction using PSF as the destination can alter the Equals flag.

1.3.6.4 Carry Flag
The Carry flag (PSF.1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or SUB/SUBB operation.
Unlike the other status flags, it can be set or cleared explicitly and is also used as a generic bit operand by many other instructions.

The following instructions can alter the Carry flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

• SLA, SLA2, SLA4 (Arithmetic shift left active accumulator)

• SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)

• SR (Shift active accumulator right)

• RLC/RRC (Rotate active accumulator left / right through Carry)

• MOVE C, Acc. (Set Carry to selected active accumulator bit)

• MOVE C, #i (Explicitly set, i = 1, or clear, i = 0, the Carry flag)

• CPL C (Complement Carry)

• AND Acc.

• OR Acc.

• XOR Acc.

• MOVE C, src. (Copy bit addressable register bit to Carry)

• any instruction using PSF as the destination

The following instructions use the value of the Carry flag:

• ADDC src (Add source and Carry to active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

• RLC/RRC (Rotate active accumulator left/right through Carry)

• CPL C (Complement Carry)

MAXQ7665/MAXQ7666 User’s Guide

1-36Maxim Integrated

• MOVE Acc., C (Set selected active accumulator bit to Carry)

• AND Acc. (Carry = Carry AND selected active accumulator bit)

• OR Acc. (Carry = Carry OR selected active accumulator bit)

• XOR Acc. (Carry = Carry XOR selected active accumulator bit)

• JUMP C, src (Jump if Carry flag is set)

• JUMP NC, src (Jump if Carry flag is cleared)

1.3.6.5 Overflow Flag
The Overflow flag (PSF.2) is a static flag indicating that the carry or borrow bit (Carry status Flag) resulting from the last ADD/ADDC or
SUB/SUBB operation did not match the carry or borrow of the high order bit of the active accumulator. The overflow flag is useful when
performing signed arithmetic operations.

The following instructions can alter the Overflow flag:

• ADD src (Add source to active accumulator)

• ADDC src (Add source and Carry to active accumulator)

• SUB src (Subtract source from active accumulator)

• SUBB src (Subtract source and Carry from active accumulator)

1.3.7 Controlling Program Flow
The MAXQ7665/MAXQ7666 provide several options to control program flow and branching. Jumps may be unconditional, condition-
al, relative, or absolute. Subroutine calls store the return address on the hardware stack for later return. Built-in counters and address
registers are provided to control looping operations.

1.3.7.1 Obtaining the Next Execution Address
The address of the next instruction to be executed can be read at any time by reading the Instruction Pointer (IP) register. This can be
particularly useful for initializing loops. Note that the value returned is actually the address of the current instruction plus 1, so this will
be the address of the next instruction executed as long as the current instruction does not cause a jump.

1.3.7.2 Unconditional Jumps
An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space). Relative jumps must use an
8-bit immediate operand, such as

Label1: ; must be within +127/-128 words of the JUMP
...
jump Label1

Absolute jumps can use a 16-bit immediate operand, a 16-bit register, or an 8-bit register.

jump LongJump ; assembles to: move PFX[0], #high(LongJump)
; jump #low(LongJump)

jump DP[0] ; absolute jump to the address in DP[0]
If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the register is used as
the low byte.

MAXQ7665/MAXQ7666 User’s Guide

1-37 Maxim Integrated

1.3.7.3 Conditional Jumps
Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S). Except where noted for JUMP
E and JUMP NE, the absolute and relative operands allowed are the same as for the unconditional JUMP command.

jump c, Label1 ; jump to Label1 if Carry is set
jump nc, LongJump ; jump to LongJump if Carry is not set
jump z, LC[0] ; jump to 16-bit register destination if

; Zero is set
jump nz, Label1 ; jump to Label1 if Zero is not set (Acc<>0)
jump s, A[2] ; jump to A[2] if Sign flag is set
jump e, Label1 ; jump to Label1 if Equal is set
jump ne, Label1 ; jump to Label1 if Equal is cleared

JUMP E and JUMP NE may only use immediate destinations.

1.3.7.4 Calling Subroutines
The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed on the stack before
transferring program execution to the branch address. The RET instruction is used to return from a normal call, and RETI is used to
return from an interrupt handler routine.

call Label1 ; if Label1 is relative,
; assembles to : call #immediate

call LongCall ; assembles to: move PFX[0], #high(LongCall)
; call #low(LongCall)

call LC[0] ; call to address in LC[0]
LongCall:

ret ; return from subroutine

1.3.7.5 Looping Operations
Looping over a section of code can be performed by using the conditional jump instructions. However, there is built-in functionality, in
the form of the ‘DJNZ LC[n], src’ instruction, to support faster, more compact looping code with separate loop counters. The 16-bit reg-
isters LC[0], and LC[1] are used to store these loop counts. The ‘DJNZ LC[n], src’ instruction automatically decrements the associat-
ed loop counter register and jumps to the loop address specified by src if the loop counter has not reached 0.

To initialize a loop, set the LC[n] register to the count you wish to use before entering the loop’s main body.

The desired loop address should be supplied in the src operand of the ‘DJNZ LC[n], src’ instruction. When the supplied loop address
is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the assembler automatically calculates the relative
offset and inserts this immediate value in the object code.

move LC[1], #10h ; loop 16 times
LoopTop: ; loop addr relative to djnz LC[n],src instruction

call LoopSub
djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero

When the supplied loop address is outside the relative jump range, the prefix register (PFX[0]) is used to supply the high byte of the
loop address as required.

move LC[1], #10h ; loop 16 times
LoopTop: ; loop addr not relative to djnz LC[n],src

call LoopSub
...
djnz LC[1], LoopTop ; decrement LC[1] and jump if nonzero

; assembles to: move PFX[0], #high(LoopTop)
; djnz LC[1], #low(LoopTop)

MAXQ7665/MAXQ7666 User’s Guide

1-38Maxim Integrated

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-bit register with
the src loop address for the ‘DJNZ LC[n], src’ loop. This ensures that the prefix register will not be needed to supply the loop address
and always yields the fastest execution of the DJNZ instruction.

move LC[0], #LoopTop ; using LC[0] as address holding register
; assembles to: move PFX[0], #high(LoopTop)
; move LC[0], #low(LoopTop)

move LC[1], #10h ; loop 16 times
...

LoopTop: ; loop address not relative to djnz LC[n],src
call LoopSub
...
djnz LC[1], LC[0] ; decrement LC[1] and jump if nonzero

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by performing the load in
the instruction just prior to the top of the loop:

move LC[1], #10h ; Set loop counter to 16
move LC[0], IP ; Set loop address to the next address

LoopTop: ; loop addr not relative to djnz LC[n],src
...

1.3.7.6 Conditional Returns
Similar to the conditional jumps, the MAXQ7665/MAXQ7666 microcontrollers also support a set of conditional return operations. Based
upon the value of one of the status flags, the CPU can conditionally pop the stack and begin execution at the address popped from
the stack. If the condition is not true, the conditional return instruction does not pop the stack and does not change the instruction point-
er. The following conditional return operations are supported:

RET C ; if C=1, a RET is executed
RET NC ; if C=0, a RET is executed
RET Z ; if Z=1 (Acc=00h), a RET is executed
RET NZ ; if Z=0 (Acc<>00h), a RET is executed
RET S ; if S=1, a RET is executed

1.3.8 Handling Interrupts
Handling interrupts in the MAXQ7665/MAXQ7666 is a three-part process. First, the location of the interrupt handling routine must be
set by writing the address to the 16-bit Interrupt Vector (IV) register. This register defaults to 0000h on reset, but this will usually not be
the desired location since this will often be the location of reset/power-up code.

move IV, IntHandler ; move PFX[0], #high(IntHandler)
; move IV, #low(IntHandler)
; PFX[0] write not needed if IntHandler addr=00xxh

Next, the interrupt must be enabled. For any interrupts to be handled, the IGE bit in the Interrupt and Control register (IC) must first be
set to 1. Next, the interrupt itself must be enabled at the module level and locally within the module itself. The module interrupt enable
is located in the Interrupt Mask register, while the location of the local interrupt enable will vary depending on the module in which the
interrupt source is located.

Once the interrupt handler receives the interrupt, the Interrupt in Service (INS) bit will be set by hardware to block further interrupts,
and execution control is transferred to the interrupt service routine. Within the interrupt service routine, the source of the interrupt must
be determined. Since all interrupts go to the same interrupt service routine, the Interrupt Identification Register (IIR) must be examined
to determine which module initiated the interrupt. For example, the II0 (IIR.0) bit will be set if there is a pending interrupt from module
0. These bits cannot be cleared directly; instead, the appropriate bit flag in the module must be cleared once the interrupt is handled.

MAXQ7665/MAXQ7666 User’s Guide

1-39 Maxim Integrated

INS is set automatically on entry to the interrupt handler and cleared automatically on exit (RETI).

IntHandler:
push PSF ; save C since used in identification process
move C, IIR.X ; check highest priority flag in IIR
jump C, ISR_X ; if IIR.X is set, interrupt from module X
move C, IIR.Y ; check next highest priority int source
jump C, ISR_Y ; if IIR.Y is set, interrupt from module Y
...

ISR_X:
...
reti

To support high priority interrupts while servicing another interrupt source, the IMR register may be used to create a user-defined prior-
itization. The IMR mask register should not be utilized when the highest priority interrupt is being serviced because the highest priority
interrupt should never be interrupted. This is default condition when a hardware branch is made the Interrupt Vector address (INS is set
to 1 by hardware and all other interrupt sources are blocked). The code below demonstrates how to use IMR to allow other interrupts.

ISR_Z:
pop PSF ; restore PSF
push IMR ; save current interrupt mask
move IMR, #int_mask ; new mask to allow only higher priority ints
move INS, #0 ; re-enable interrupts
...
(interrupt servicing code)
...
pop IMR ; restore previous interrupt mask
ret ; back to code or lower priority interrupt

Please note that configuring a given IMR register mask bit to 0 only prevents interrupt conditions from the corresponding module or sys-
tem from generating an interrupt request. Configuring an IMR mask bit to 0 does not prevent the corresponding IIR system or module iden-
tification flag from being set. This means that when using the IMR mask register functionality to block interrupts, there may be cases when
both the mask (IMR.x) and identifier (IIR.x) bits should be considered when determining if the corresponding peripheral should be serviced.

1.3.8.1 Conditional Return from Interrupt
Similar to the conditional returns, the MAXQ7665/MAXQ7666 microcontrollers also support a set of conditional return from interrupt
operations. Based upon the value of one of the status flags, the CPU can conditionally pop the stack, clear the INS bit to 0, and begin
execution at the address popped from the stack. If the condition is not true, the conditional return from interrupt instruction leaves the
INS bit unchanged, does not pop the stack and does not change the instruction pointer. The following conditional return from interrupt
operations are supported:

RETI C ; if C=1, a RETI is executed
RETI NC ; if C=0, a RETI is executed
RETI Z ; if Z=1 (Acc=00h), a RETI is executed
RETI NZ ; if Z=0 (Acc<>00h), a RETI is executed
RETI S ; if S=1, a RETI is executed

1.3.9 Accessing the Stack
The hardware stack is used automatically by the CALL, RET and RETI instructions, but it can also be used explicitly to store and retrieve
data. All values stored on the stack are 16 bits wide.

The PUSH instruction increments the stack pointer SP and then stores a value on the stack. When pushing a 16-bit value onto the stack,
the entire value is stored. However, when pushing an 8-bit value onto the stack, the high byte stored on the stack comes from the pre-
fix register. The @++SP stack access mnemonic is the associated destination specifier that generates this push behavior, thus the fol-
lowing two instruction sequences are equivalent:

move PFX[0], IC
push PSF ; stored on stack: IC:PSF

move PFX[0], IC
move @++SP, PSF ; stored on stack: IC:PSF

MAXQ7665/MAXQ7666 User’s Guide

1-40Maxim Integrated

The POP instruction removes a value from the stack and then decrements the stack pointer. The @SP-- stack access mnemonic is the
associated source specifier that generates this behavior, thus the following two instructions are equivalent:

pop PSF
move PSF, @SP--

The POPI instruction is equivalent to the POP instruction but additionally clears the INS bit to 0. Thus, the following two instructions
would be equivalent:

popi IP
reti

The @SP-- mnemonic can be used by the MAXQ microcontroller so that stack values may be used directly by ALU operations (e.g.
ADD src, XOR src, etc.) without requiring that the value be first popped into an intermediate register or accumulator.

add @SP-- ; sum the last three words pushed onto the stack
add @SP-- ; with Acc, disregarding overflow
add @SP--

The stack pointer SP can be set explicitly, however only those least significant bits needed to represent the stack depth for the asso-
ciated MAXQ device are used. For a MAXQ device that has a stack depth of 16 words, only the lowest four bits are used and setting
SP to 0Fh will return it to its reset state.

Since the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location. This allows more efficient use
of the stack if it is being used to save and restore registers at the start and end of a subroutine.

SubOne:
move PFX[0], IC
push PSF ; store IC:PSF on the stack
...
pop GR ; 16-bit register
move IC, GRH ; IC was stored as high byte
move PSF, GRL ; PSF was stored as low byte
ret

1.3.10 Accessing Data Memory
Data memory is accessed through the data pointer registers DP[0] and DP[1] or the Frame Pointer BP[OFFS]. Once one of these reg-
isters is set to a location in data memory, that location can be read or written as follows, using the mnemonic @DP[0], @DP[1], or
@BP[OFFS] as a source or destination.

move DP[0], #0000h ; set pointer to location 0000h
move A[0], @DP[0] ; read from data memory
move @DP[0], #55h ; write to data memory

Either of the data pointers may be post-incremented or post-decremented following any read or may be pre-incremented or pre-decre-
mented before any write access by using the following syntax.

move A[0], @DP[0]++ ; increment DP[0] after read
move @++DP[0], A[1] ; increment DP[0] before write
move A[5], @DP[1]-- ; decrement DP[1] after read
move @--DP[1], #00h ; decrement DP[1] before write

The Frame Pointer (BP[OFFS]) is actually composed of a base pointer (BP) and an offset from the base pointer (OFFS). For the frame
pointer, the offset register (OFFS) is the target of any increment or decrement operation. The base pointer (BP) is unaffected by incre-
ment and decrement operations on the Frame Pointer. Similar to DP[n], the OFFS register may be pre-incremented/decremented when
writing to data memory and may be post-incremented/decremented when reading from data memory.

move A[0], @BP[OFFS--] ; decrement OFFS after read
move @BP[++OFFS], A[1] ; increment OFFS before write

All three data pointers support both byte and word access to data memory. Each data pointer has its own word/byte select (WBSn)
special-function register bit to control the access mode associated with the data pointer. These three register bits (WBS2, which con-
trols BP[OFFS] access; WBS1, which controls DP[1] access; and WBS0, which controls DP[0] access) reside in the Data Pointer
Control (DPC) register. When a given WBSn control bit is configured to 1, the associated pointer is operated in the word access mode.
When the WBSn bit is configured to 0, the pointer is operated in the byte access mode. Word access mode allows addressing of
64kWords of memory while byte access mode allows addressing of 64kBytes of memory.

MAXQ7665/MAXQ7666 User’s Guide

1-41 Maxim Integrated

Each data pointer (DP[n]) and Frame Pointer base (BP) register is actually implemented internally as a 17-bit register (e.g., 16:0). The Frame
Pointer offset register (OFFS) is implemented internally as a 9-bit register (e.g., 8:0). The WBSn bit for the respective pointer controls whether
the highest 16 bits (16:1) of the pointer are in use, as is the case for word mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use,
as will be the case for byte mode (WBSn = 0). The WBS2 bit also controls whether the high 8 bits (8:1) of the offset register are in use
(WBS2 = 1) or the low 8 bits (7:0) are used (WBS2 = 0). All data pointer register reads, writes, auto-increment/decrement operations occur
with respect to the current WBSn selection. Data pointer increment and decrement operations only affect those bits specific to the current
word or byte addressing mode (e.g., incrementing a byte mode data pointer from FFFFh does not carry into the internal high order bit that
is utilized only for word mode data pointer access). Switching from byte to word access mode or vice versa does not alter the data pointer
contents. Therefore, it is important to maintain the consistency of data pointer address value within the given access mode.

move DPC, #0 ; DP[0] in byte mode
move DP[0], #2345h ; DP[0]=2345h (byte mode)

; internal bits 15:0 loaded
move DPC, #4 ; DP[0] in word mode
move DP[0], #2345h ; DP[0]=2345h (word mode)

; internal bits 16:1 loaded
move DPC, #0 ; DP[0] in byte mode
move GR, DP[0] ; GR = 468Bh (looking at bits 15:0)

The three pointers share a single read/write port on the data memory and thus, the user must knowingly activate a desired pointer
before using it for data memory read operations. This can be done explicitly using the data pointer select bits (SDPS1:0; DPC.1:0), or
implicitly by writing to the DP[n], BP, or OFFS registers as shown below. Any indirect memory write operation using a data pointer will
set the SDPS bits, thus activating the write pointer as the active source pointer.

move DPC, #2 ; (explicit) selection of FP as the pointer
move DP[1], DP[1] ; (implicit) selection of DP[1]; set SDPS1:0=01b
move OFFS, src ; (implicit) selection of FP; set SDPS1=1
move @DP[0], src ; (implicit) selection of DP[0]; set SDPS1:0=00b

Once the pointer selection has been made, it will remain in effect until:
• the source data pointer select bits are changed via the explicit or implicit methods described above (i.e., another data pointer

is selected for use)

• the memory to which the active source data pointer is addressing is enabled for code fetching using the Instruction Pointer, or

• a memory write operation is performed using a data pointer other than the current active source pointer.

move DP[1], DP[1] ; select DP[1] as the active pointer
move dst, @DP[1] ; read from pointer
move @DP[1], src ; write using a data pointer

; DP[0] is needed
move DP[0], DP[0] ; select DP[0] as the active pointer

To simplify data pointer increment/decrement operations without disturbing register data, a virtual NUL destination has been assigned
to system module 6, subindex 7 to serve as a bit bucket. Data pointer increment/decrement operations can be done as follows with-
out altering the contents of any other register:

move NUL, @DP[0]++ ; increment DP[0]
move NUL, @DP[0]-- ; decrement DP[0]

The following data pointer related instructions are invalid:

move @++DP[0], @DP[0]++
move @++DP[1], @DP[1]++
move @BP[++Offs], @BP[Offs++]
move @--DP[0], @DP[0]--
move @--DP[1], @DP[1]--
move @BP[--Offs], @BP[Offs--]
move @++DP[0], @DP[0]--
move @++DP[1], @DP[1]--
move @BP[++Offs], @BP[Offs--]
move @--DP[0], @DP[0]++
move @--DP[1], @DP[1]++

MAXQ7665/MAXQ7666 User’s Guide

1-42Maxim Integrated

move @BP[--Offs], @BP[Offs++]
move @DP[0], @DP[0]++
move @DP[1], @DP[1]++
move @BP[Offs], @BP[Offs++]
move @DP[0], @DP[0]--
move @DP[1], @DP[1]--
move @BP[Offs], @BP[Offs--]
move DP[0], @DP[0]++
move DP[0], @DP[0]--
move DP[1], @DP[1]++
move DP[1], @DP[1]--
move Offs, @BP[Offs--]
move Offs, @BP[Offs++]

1.4 System Register Descriptions
The MAXQ7665/MAXQ7666 system register map is shown in Table 1-8. The system register bit functions and reset value are shown in
Table 1-9. Those registers defined in the MAXQ7665/MAXQ7666 system register map are described in the following sections. The
address for each register are given in the format module[index], where module is the module specifier from 8h to Fh and index is the
register subindex from 0h to Fh.

Table 1-8. MAXQ7665/MAXQ7666 System Register Map

MAXQ7665/MAXQ7666 User’s Guide

1-43

MODULE NAME (BASE SPECIFIER)CYCLES TO
READ

CYCLES TO
WRITE

REGISTER
INDEX AP (8h) A (9h) PFX (Bh) IP (Ch) SP (Dh) DPC (Eh) DP (Fh)

1 1 0h AP A[0] PFX[0] IP

1 1 1h APC A[1] PFX[1] SP

1 1 2h A[2] PFX[2] IV

1 1 3h A[3] PFX[3] OFFS DP0

1 1 4h PSF A[4] PFX[4] DPC

1 1 5h IC A[5] PFX[5] GR

1 1 6h IMR A[6] PFX[6] LC0 GRL

1 1 7h A[7] PFX[7] LC1 BP DP1

1 2 8h SC A[8] GRS

1 2 9h A[9] GRH

1 2 Ah A[10] GRXL

1 2 Bh IIR A[11] FP

1 2 Ch A[12]

1 2 Dh A[13]

1 2 Eh CKCN A[14]

1 2 Fh WDCN A[15]

Note: Names that appear in italics indicate that all bits of a register are read-only. Names that appear in bold indicate that a register is 16 bits wide.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-44

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

A

P
.3

A

P
.2

A

P
.1

A

P
.0

A

P

08
h[

00
h]

0
0

0
0

0
0

0
0

C

LR

ID
S

—

—

—

M

O
D

2
M

O
D

1
M

O
D

0
A

P
C

08
h[

01
h]

0
0

0
0

0
0

0
0

Z

S

—

G

PF
1

G
PF

0
O

V

C

E

P
S

F

08
h[

04
h]

1
0

0
0

0
0

0
0

—

—

C

G
D

S

—

—

—

IN
S

IG

E

IC

08
h[

05
h]

0
0

0
0

0
0

0
0

IM

S

—

IM
5

IM
4

IM
3

IM
2

IM
1

IM
0

IM
R

08
h[

06
h]

0
0

0
0

0
0

0
0

TA

P

—

C
D

A
1

C
D

A
0

U
P

A

R
O

D

P
W

L
—

S

C

08
h[

08
h]

1
0

0
0

0
0

s
0

IIS

—

II5

II4

II3

II2

II1

II0

IIR

08
h[

0B
h]

0
0

0
0

0
0

0
0

X

T
—

R

G
M

D

S
TO

P

S
W

B

P
M

M
E

C

D
1

C
D

0
C

K
C

N

08
h[

0E
h]

s
0

s
0

0
0

0
1

P

O
R

E

W
D

I
W

D
1

W
D

0
W

D
IF

W

TR
F

E
W

T
R

W
T

W
D

C
N

08
h[

0F
h]

s
s

0
0

0
s

s
0

A
[n

].1
5

A
[n

].1
4

A
[n

].1
3

A
[n

].1
2

A
[n

].1
1

A
[n

].1
0

A
[n

].9

A
[n

].8

A
[n

].7

A
[n

].6

A
[n

].5

A
[n

].4

A
[n

].3

A
[n

].2

A
[n

].1

A
[n

].0

A
[n

]

(0
…

15
)

09
h[

0n
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
FX

[n
].

15

P
FX

[n
].

14

P
FX

[n
].

13

P
FX

[n
].

12

P
FX

[n
].

11

P
FX

[n
].

10

P
FX

[n
].

9
P

FX
[n

].
8

P
FX

[n
].

7
P

FX
[n

].
6

P
FX

[n
].

5
P

FX
[n

].
4

P
FX

[n
].

3
P

FX
[n

].
2

P
FX

[n
].

1
P

FX
[n

].
0

P
FX

[n
]

(0
…

7)

0B
h[

0n
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

IP
.1

5
IP

.1
4

IP
.1

3
IP

.1
2

IP
.1

1
IP

.1
0

IP
.9

IP

.8

IP
.7

IP

.6

IP
.5

IP

.4

IP
.3

IP

.2

IP
.1

IP

.0

IP

0C
h[

00
h]

1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

—

—

—

S
P

.3

S
P

.2

S
P

.1

S
P

.0

S
P

0D
h[

01
h]

0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1

IV
.1

5
IV

.1
4

IV
.1

3
IV

.1
2

IV
.1

1
IV

.1
0

IV
.9

IV

.8

IV
.7

IV

.6

IV
.5

IV

.4

IV
.3

IV

.2

IV
.1

IV

.0

IV

0D
h[

02
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LC
[0

].
15

LC

[0
].

14

LC
[0

].
13

LC

[0
].

12

LC
[0

].
11

LC

[0
].

10

LC
[0

].
9

LC
[0

].
8

LC
[0

].
7

LC
[0

].
6

LC
[0

].
5

LC
[0

].
4

LC
[0

].
3

LC
[0

].
2

LC
[0

].
1

LC
[0

].
0

LC
[0

]

0D
h[

06
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LC
[1

].
15

LC

[1
].

14

LC
[1

].
13

LC

[1
].

12

LC
[1

].
11

LC

[1
].

10

LC
[1

].
9

LC
[1

].
8

LC
[1

].
7

LC
[1

].
6

LC
[1

].
5

LC
[1

].
4

LC
[1

].
3

LC
[1

].
2

LC
[1

].
1

LC
[1

].
0

LC
[1

]

0D
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

O

FF
S.

7
O

FF
S.

6
O

FF
S.

5
O

FF
S.

4
O

FF
S.

3
O

FF
S.

2
O

FF
S.

1
O

FF
S.

0
O

FF
S

0E
h[

03
h]

0
0

0
0

0
0

0
0

—

—

—

—

—

—

—

—

—

—

—

W
B

S2

W
B

S1

W
B

S0

S
D

P
S

1
S

D
P

S
0

D
P

C

0E
h[

04
h]

0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

0

Ta
b

le
 1

-9
. M

A
X

Q
76

65
/M

A
X

Q
76

66
 S

ys
te

m
 R

eg
is

te
r

B
it

 F
u

n
ct

io
n

s
an

d
 R

es
et

 V
al

u
e

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-45

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

G
R

.1
5

G
R

.1
4

G
R

.1
3

G
R

.1
2

G
R

.1
1

G
R

.1
0

G
R

.9

G
R

.8

G
R

.7

G
R

.6

G
R

.5

G
R

.4

G
R

.3

G
R

.2

G
R

.1

G
R

.0

G
R

0E
h[

05
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G

R
L.

7
G

R
L.

6
G

R
L.

5
G

R
L.

4
G

R
L.

3
G

R
L.

2
G

R
L.

1
G

R
L.

0
G

R
L

0E
h[

06
h]

0
0

0
0

0
0

0
0

B
P

.1
5

B
P

.1
4

B
P

.1
3

B
P

.1
2

B
P

.1
1

B
P

.1
0

B
P

.9

B
P

.8

B
P

.7

B
P

.6

B
P

.5

B
P

.4

B
P

.3

B
P

.2

B
P

.1

B
P

.0

B
P

0E
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
R

S
.1

5
G

R
S

.1
4

G
R

S
.1

3
G

R
S

.1
2

G
R

S
.1

1
G

R
S

.1
0

G
R

S
.9

G

R
S

.8

G
R

S
.7

G

R
S

.6

G
R

S
.5

G

R
S

.4

G
R

S
.3

G

R
S

.2

G
R

S
.1

G

R
S

.0

G
R

S

0E
h[

08
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G

R
H

.7

G
R

H
.6

G

R
H

.5

G
R

H
.4

G

R
H

.3

G
R

H
.2

G

R
H

.1

G
R

H
.0

G

R
H

0E
h[

09
h]

0
0

0
0

0
0

0
0

G
R

XL
.1

5
G

R
XL

.1
4

G
R

XL
.1

3
G

R
XL

.1
2

G
R

XL
.1

1
G

R
XL

.1
0

G
R

XL
.9

G

R
XL

.8

G
R

XL
.7

G

R
XL

.6

G
R

XL
.5

G

R
XL

.4

G
R

XL
.3

G

R
XL

.2

G
R

XL
.1

G

R
XL

.0

G
R

XL

0E
h[

0A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

FP
.1

5
FP

.1
4

FP
.1

3
FP

.1
2

FP
.1

1
FP

.1
0

FP
.9

FP

.8

FP
.7

FP

.6

FP
.5

FP

.4

FP
.3

FP

.2

FP
.1

FP

.0

FP

0E
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

D
P

[0
].

15

D
P

[0
].

14

D
P

[0
].

13

D
P

[0
].

12

D
P

[0
].

11

D
P

[0
].

10

D
P

[0
].

9
D

P
[0

].
8

D
P

[0
].

7
D

P
[0

].
6

D
P

[0
].

5
D

P
[0

].
4

D
P

[0
].

3
D

P
[0

].
2

D
P

[0
].

1
D

P
[0

].
0

D
P

[0
]

0F
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

D
P

[1
].

15

D
P

[1
].

14

D
P

[1
].

13

D
P

[1
].

12

D
P

[1
].

11

D
P

[1
].

10

D
P

[1
].

9
D

P
[1

].
8

D
P

[1
].

7
D

P
[1

].
6

D
P

[1
].

5
D

P
[1

].
4

D
P

[1
].

3
D

P
[1

].
2

D
P

[1
].

1
D

P
[1

].
0

D
P

[1
]

0F
h[

07
h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Ta
b

le
 1

-9
. M

A
X

Q
76

65
/M

A
X

Q
76

66
 S

ys
te

m
 R

eg
is

te
r

B
it

 F
u

n
ct

io
n

s
an

d
 R

es
et

 V
al

u
e

(c
o

n
ti

n
u

ed
)

s
=

 B
it

af
fe

ct
ed

 o
nl

y
b

y
p

ow
er

-o
n

re
se

t a
nd

 n
ot

 b
y

ot
he

r
fo

rm
s

of
 r

es
et

. S
ee

 th
e

re
g

is
te

r
d

es
cr

ip
tio

n
fo

r
m

or
e

in
fo

rm
at

io
n.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-46

1.4.1 Accumulator Pointer Register (AP)

Register Description: Accumulator Pointer Register
Register Name: AP
Register Address: Module 08h, Index 00h

Bits 7 to 4: Reserved. Read 0, write ignored.

Bits 3 to 0: Accumulator Select 3 to 0 (AP.3 to AP.0). These bits select which of the 16 accumulator registers are used for arithmetic
and logical operations. If the APC register has been set to perform automatic increment/decrement of the active accumulator, this set-
ting will be automatically changed after each arithmetic or logical operation. If a MOVE AP, Acc instruction is executed, any enabled
AP inc/dec/modulo control will take precedence over the transfer of Acc data into AP.

1.4.2 Accumulator Pointer Control Register (APC)

Register Description: Accumulator Pointer Control Register
Register Name: APC
Register Address: Module 08h, Index 01h

Bit 7: Accumulator Pointer Clear (CLR). Writing this bit to 1 clears the accumulator pointer AP to 0. Once set, this bit will automati-
cally be reset to 0 by hardware. If a MOVE APC, Acc instruction is executed requesting that AP be set to 0 (i.e., CLR = 1), the AP clear
function overrides any enabled inc/dec/modulo control. All reads from this bit return 0.

Bit 6: Accumulator Pointer Increment/Decrement Select (IDS). If this bit is set to 0, the accumulator pointer AP is incremented fol-
lowing each arithmetic or logical operation according to MOD2:MOD0. If this bit is set to 1, the accumulator pointer AP is decrement-
ed following each arithmetic or logical operation according to MOD2:MOD0. If MOD2:MOD0 is set to 000, the setting of this bit is
ignored.

Bits 5 to 3: Reserved. Read 0, write ignored.

Bit # 7 6 5 4 3 2 1 0

Name — — — — AP.3 AP.2 AP.1 AP.0

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 7 6 5 4 3 2 1 0

Name CLR IDS — — — MOD2 MOD1 MOD0

Reset 0 0 0 0 0 0 0 0

Access rw rw r r r rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Maxim Integrated

Bits 2 to 0: Accumulator Pointer Auto-Increment/Decrement Modulus (MOD2 to MOD0). If these bits are set to a non-zero value,
the accumulator pointer (AP3:AP0) will be automatically incremented or decremented following each arithmetic or logical operation.
The mode for the auto-increment/decrement is determined as follows:

1.4.3 Processor Status Flags Register (PSF)

Register Description: Processor Status Flags Register
Register Name: PSF
Register Address: Module 08h, Index 04h

Bit 7: Zero Flag (Z). The value of this bit flag equals 1 whenever the active accumulator is equal to zero, and it equals 0 otherwise.

Bit 6: Sign Flag (S). This bit flag mirrors the current value of the high bit of the active accumulator (Acc.15).

Bit 5: Reserved. Read 0, write ignored.

Bits 4 and 3: General-Purpose Software Flag 1 and 0 (GPF1 and GPF0). These general-purpose register bits are provided for user
software control.

Bit 2: Overflow Flag (OV). This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or a carry out of bit 15 but not out
of bit 14 from the last arithmetic operation, otherwise, the OV flag remains as 0. OV indicates a negative number resulted as the sum
of two positive operands, or a positive sum resulted from two negative operands.

Bit 1: Carry Flag (C). This bit flag is set to 1 whenever an add or subtract operation (ADD, ADDC, SUB, SUBB) returns a carry or bor-
row. This bit flag is cleared to 0 whenever an add or subtract operation does not return a carry or borrow. Many other instructions poten-
tially affect the carry bit. See Section 14: MAXQ7665/MAXQ7666 Instruction Set Summary for details.

Bit 0: Equals Flag (E). This bit flag is set to 1 whenever a compare operation (CMP) returns an equal result. If a CMP operation returns
not equal, this bit is cleared.

MAXQ7665/MAXQ7666 User’s Guide

1-47

MOD2:MOD0 AUTO-INCREMENT/DECREMENT MODE

000 No auto-increment/decrement (default).

001 Increment/decrement AP[0] modulo 2.

010 Increment/decrement AP[1:0] modulo 4.

011 Increment/decrement AP[2:0] modulo 8.

100 Increment/decrement AP modulo 16.

101 to 111 Reserved (modulo 16 when set).

Bit # 7 6 5 4 3 2 1 0

Name Z S — GPF1 GPF0 OV C E

Reset 1 0 0 0 0 0 0 0

Access r r r rw rw r rw rw

r = read, w = write
Note: This register is cleared to 80h on all forms of reset.

Maxim Integrated

1.4.4 Interrupt and Control Register (IC)

Register Description: Interrupt and Control Register
Register Name: IC
Register Address: Module 08h, Index 05h

Bits 7, 6, 4, 3, and 2: Reserved. Read 0, write ignored.

Bit 5: System Clock Gating Disable (CGDS). If this bit is set to 0 (default mode), system clock gating circuitry is active. If this bit is
set to 1, the clock gating circuitry is disabled.

Bit 1: Interrupt In Service (INS). The INS is set by hardware automatically when an interrupt is acknowledged. No further interrupts
occur as long as the INS remains set. The interrupt service routine can clear the INS bit to allow interrupt nesting. Otherwise, the INS
bit is cleared by hardware upon execution of an RETI or POPI instruction.

Bit 0: Interrupt Global Enable (IGE). If this bit is set to 1, interrupts are globally enabled, but still must be locally enabled to occur. If
this bit is set to 0, all interrupts are disabled.

1.4.5 Interrupt Mask Register (IMR)
The first six bits in this register are interrupt mask bits for modules 0 to 5, one bit per module. The eighth bit, IMS, serves as a mask
for any system module interrupt sources. Setting a mask bit allows the enabled interrupt sources for the associated module or system
(for the case of IMS) to generate interrupt requests. Clearing the mask bit effectively disables all interrupt sources associated with that
specific module or all system interrupt sources (for the case of IMS). The interrupt mask register is intended to facilitate user-definable
interrupt prioritization.

Register Description: Interrupt Mask Register
Register Name: IMR
Register Address: Module 08h, Index 06h

Bit 7: Interrupt Mask for System Modules (IMS)

Bit 6: Reserved. Read 0, write ignored.

Bits 5 to 0: Interrupt Mask for Register Module 5 to 0 (IM5 to IM0)

MAXQ7665/MAXQ7666 User’s Guide

1-48

Bit # 7 6 5 4 3 2 1 0

Name — — CGDS — — — INS IGE

Reset 0 0 0 0 0 0 0 0

Access r r rw r r r rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 7 6 5 4 3 2 1 0

Name IMS — IM5 IM4 IM3 IM2 IM1 IM0

Reset 0 0 0 0 0 0 0 0

Access rw r rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Maxim Integrated

1.4.6 System Control Register (SC)

Register Description: System Control Register
Register Name: SC
Register Address: Module 08h, Index 08h

Bit 7: Test Access (JTAG) Port Enable (TAP). This bit controls whether the Test Access Port special-function pins are enabled. The
TAP defaults to being enabled. Clearing this bit to 0 disables the TAP special function pins. See Section 10 for more information about
JTAG and TAP.

Bits 6 and 0: Reserved. Read 0, write ignored.

Bits 5 and 4: Code Data Access Bits 1 and 0 (CDA1 and CDA0). The CDA bits are used to logically map physical program memo-
ry page to the data space for read/write access (see table below).

The logical data memory addresses of the program pages depend on whether execution is from Utility ROM or logical data memory.
Note that CDA1 is not implemented if the upper 32k of the program space is not used for the user code. No CDA bits are needed if
only one page of program space is incorporated.

Bit 3: Upper Program Access (UPA). The physical program memory is logically divided into four pages; P0 and P1 occupy the lower
32kWords while P2 and P3 occupy the upper 32kWords. P0 and P1 are assigned to the lower half of the program space and are always
active. P2 and P3 must be explicitly activated in the upper half of the program space by setting the UPA bit to 1. When UPA bit is
cleared to 0, the upper program memory space is occupied by the Utility ROM and the logical data memory, which is accessible as
program memory. Note that the UPA is not implemented if the upper 32k of the program space is not used for the user code.

Bit 2: ROM Operation Done (ROD). This bit is used to signify completion of a ROM operation sequence to the control units. This allows
the Debug engine to determine the status of a ROM sequence. Setting this bit to logic 1 causes an internal system reset if the JTAG
SPE bit is also set. Setting the ROD bit will clear the JTAG SPE bit if it is set and the ROD bit will be automatically cleared by hardware
once the control unit acknowledges the done indication. See Section 11 for more information.

Bit 1: Password Lock (PWL). This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte password to be
matched with the password in the program space before allowing access to the password protected in-circuit debug or bootstrap
loader ROM routines. Clearing this bit to 0 disables the password protection for these ROM routines. See Section 12 for more
information.

MAXQ7665/MAXQ7666 User’s Guide

1-49

Bit # 7 6 5 4 3 2 1 0

Name TAP — CDA1 CDA0 UPA ROD PWL —

Reset 1 0 0 0 0 0 1 0

Access rw r rw rw rw rw rw r

r = read, w = write
Note: This register is reset to 100000s0b on all forms of reset. Bit 1 (PWL) is set to 1 on a power-on reset only.

CDA1:CDA0
BYTE MODE

ACTIVE PAGE

WORD MODE

ACTIVE PAGE

00 P0 P0 and P1

01 P1 P0 and P1

10 P2 P2 and P3

11 P3 P2 and P3

Maxim Integrated

1.4.7 Interrupt Identification Register (IIR)
The first six bits in this register indicate interrupts pending in modules 0 to 5, one bit per module. The eighth bit, IIS, indicates a pend-
ing system interrupt, such as from the watchdog timer. The interrupt pending flags will be set only for enabled interrupt sources wait-
ing for service. The interrupt pending flag will be cleared when the pending interrupt sources within that module are disabled or when
the interrupt flags are cleared by software.

Register Description: Interrupt Identification Register
Register Name: IIR
Register Address: Module 08h, Index 0Bh

Bit 7: Interrupt Identifier Flag for System Modules (IIS)

Bit 6: Reserved. Read 0, write ignored.

Bits 5 to 0: Interrupt Identifier Flag for Register Module 5 to 0 (II5 to II0)

1.4.8 System Clock Control Register (CKCN)
The 8-bit CKCN register is part of the system register group and used to support system clock generation. It controls the system clock
speed and power management mode selection. See Section 5 for the description of this register.

Register Description: System Clock Control Register
Register Name: CKCN
Register Address: Module 08h, Index 0Eh

MAXQ7665/MAXQ7666 User’s Guide

1-50

Bit # 7 6 5 4 3 2 1 0

Name IIS — II5 II4 II3 II2 II1 II0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 00h on all forms of reset.

Bit # 7 6 5 4 3 2 1 0

Name XT — RGMD STOP SWB PMME CD1 CD0

Reset 0 0 1 0 0 0 0 1

Access rw r r rw rw rw rw rw

r = read, w = write
Note: Bits 4:0 are set to 00001b on all forms of reset. See bit description for bits 7 and 5.

Maxim Integrated

1.4.9 Watchdog Timer Control Register (WDCN)
The 8-bit WDCN register is part of the system register group and used to provide system control. It controls the watchdog timeout peri-
od and interrupt or reset generation on watchdog timeout. The watchdog timer is clocked by the internal 7.6MHz RC oscillator. See
Section 5 for a description of this register.

Register Description: Watchdog Timer Control Register
Register Name: WDCN
Register Address: Module 08h, Index 0Fh

1.4.10 Accumulator n Register (A[n])

Register Description: Accumulator n Register
Register Name: A[n]
Register Address: Module 09h, Index 0nh

The MAXQ7665/MAXQ7666 support 16 accumulator registers (A[0] to A[15]).

Bits 15 to 0: Accumulator n Register Bits 15 to 0 (A[n].15 to A[n].0). This register acts as the accumulator for all ALU arithmetic and
logical operations when selected by the accumulator pointer (AP). It can also be used as a general-purpose working register.

MAXQ7665/MAXQ7666 User’s Guide

1-51

Bit # 7 6 5 4 3 2 1 0

Name POR EWDI WD1 WD0 WDIF WTRF EWT RWT

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: Bits 5, 4, 3, and 0 are cleared to 0 on all forms of reset; for others, see the individual bit descriptions.

Bit # 15 14 13 12 11 10 9 8

Name A[n].15 A[n].14 A[n].13 A[n].12 A[n].11 A[n].10 A[n].9 A[n].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name A[n].7 A[n].6 A[n].5 A[n].4 A[n].3 A[n].2 A[n].1 A[n].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

1.4.11 Prefix Register (PFX[n])

Register Description: Prefix Register
Register Name: PFX[n]
Register Address: Module 0Bh, Index 0nh

Bits 15 to 0: Prefix Register Bits 15 to 0 (PFX[n].15 to PFX[n].0). The prefix register provides a means of supplying an additional 8
bits of high-order data for use by the succeeding instruction as well as providing additional indexing capabilities. This register will only
hold any data written to it for one execution cycle, after which it will revert to 0000h. Although this is a 16-bit register, only the lower 8
bits are actually used for prefixing purposes by the next instruction. Writing to or reading from any index in the Prefix module will select
the same 16-bit register. However, when the prefix register is written, the index n used for the PFX[n] write also determines the high-
order bits for the register source and destination specified in the following instruction.

The index selection reverts to 0 (default mode allowing selection of registers 0h to 7h for destinations) after one cycle in the same man-
ner as the contents of the prefix register.

MAXQ7665/MAXQ7666 User’s Guide

1-52

Bit # 15 14 13 12 11 10 9 8

Name PFX[n].15 PFX[n].14 PFX[n].13 PFX[n].12 PFX[n].11 PFX[n].10 PFX[n].9 PFX[n].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PFX[n].7 PFX[n].6 PFX[n].5 PFX[n].4 PFX[n].3 PFX[n].2 PFX[n].1 PFX[n].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

SOURCE, DESTINATION INDEX SELECTION
WRITE TO

SOURCE REGISTER RANGE DESTINATION REGISTER RANGE

PFX[0] 0h to Fh 0h to 7h

PFX[1] 10h to 1Fh 0h to 7h

PFX[2] 0h to Fh 8h to Fh

PFX[3] 10h to 1Fh 8h to Fh

PFX[4] 0h to Fh 10h to 17h

PFX[5] 10h to 1Fh 10h to 17h

PFX[6] 0h to Fh 18h to 1Fh

PFX[7] 10h to 1Fh 18h to 1Fh

Maxim Integrated

1.4.12 Instruction Pointer Register (IP)

Register Description: Instruction Pointer Register
Register Name: IP
Register Address: Module 0Ch, Index 00h

Bits 15 to 0: Instruction Pointer Register Bits 15 to 0 (IP.15 to IP.0). This register contains the address of the next instruction to be
executed and is automatically incremented by 1 after each program fetch. Writing an address value to this register will cause program
flow to jump to that address. Reading from this register will not affect program flow.

1.4.13 Stack Pointer Register (SP)

Register Description: Stack Pointer Register
Register Name: SP
Register Address: Module 0Dh, Index 01h

Bits 15 to 4: Reserved. Read 0, write ignored.

Bits 3 to 0: Stack Pointer Register Bits 3 to 0 (SP.3 to SP.0). These four bits indicate the current top of the hardware stack, from 0h
to Fh. This pointer is incremented after a value is pushed on the stack and decremented before a value is popped from the stack.

MAXQ7665/MAXQ7666 User’s Guide

1-53

Bit # 15 14 13 12 11 10 9 8

Name IP.15 IP.14 IP.13 IP.12 IP.11 IP.10 IP.9 IP.8

Reset 1 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name IP.7 IP.6 IP.5 IP.4 IP.3 IP.2 IP.1 IP.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 8000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — — — — SP.3 SP.2 SP.1 SP.0

Reset 0 0 0 0 1 1 1 1

Access r r r r rw rw rw rw

r = read, w = write
Note: This register is cleared to 000Fh on all forms of reset.

Maxim Integrated

1.4.14 Interrupt Vector Register (IV)

Register Description: Interrupt Vector Register
Register Name: IV
Register Address: Module 0Dh, Index 02h

Bits 15 to 0: Interrupt Vector Register Bits 15 to 0 (IV.15 to IV.0). This register contains the address of the interrupt service routine.
The interrupt handler will generate a CALL to this address whenever an interrupt is acknowledged.

1.4.15 Loop Counter 0 Register (LC[0])

Register Description: Loop Counter 0 Register
Register Name: LC[0]
Register Address: Module 0Dh, Index 06h

Bits 15 to 0: Loop Counter 0 Register Bits 15 to 0 (LC[0].15 to LC[0].0). This register is used as the loop counter for the DJNZ LC[0],
src operation. This operation decrements LC[0] by one and then jumps to the address specified in the instruction by src.

MAXQ7665/MAXQ7666 User’s Guide

1-54

Bit # 15 14 13 12 11 10 9 8

Name IV.15 IV.14 IV.13 IV.12 IV.11 IV.10 IV.9 IV.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name IV.7 IV.6 IV.5 IV.4 IV.3 IV.2 IV.1 IV.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name LC[0].15 LC[0].14 LC[0].13 LC[0].12 LC[0].11 LC[0].10 LC[0].9 LC[0].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name LC[0].7 LC[0].6 LC[0].5 LC[0].4 LC[0].3 LC[0].2 LC[0].1 LC[0].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

1.4.16 Loop Counter 1 Register (LC[1])

Register Description: Loop Counter 1 Register
Register Name: LC[1]
Register Address: Module 0Dh, Index 07h

Bits 15 to 0: Loop Counter 1 Register Bits 15 to 0 (LC[1].15 to LC[1].0). This register is used as the loop counter for the DJNZ LC[1],
src operation. This operation decrements LC[1] by one and then jumps to the address specified in the instruction by src.

1.4.17 Frame Pointer Offset Register (OFFS)

Register Description: Frame Pointer Offset Register
Register Name: OFFS
Register Address: Module 0Eh, Index 03h

Bits 7 to 0: Frame Pointer Offset Register Bits 7 to 0 (OFFS.7 to OFFS.0). This 8-bit register provides the frame pointer (FP) offset
from the base pointer (BP). The frame pointer is formed by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer
Offset Register (OFFS). The contents of this register can be post-incremented or post-decremented when using the frame pointer for
read operations and may be preincremented or pre-decremented when using the frame pointer for write operations. A carry out or bor-
row resulting from an increment/decrement operation has no effect on the Frame Pointer Base Register (BP).

MAXQ7665/MAXQ7666 User’s Guide

1-55

Bit # 15 14 13 12 11 10 9 8

Name LC[1].15 LC[1].14 LC[1].13 LC[1].12 LC[1].11 LC[1].10 LC[1].9 LC[1].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name LC[1].7 LC[1].6 LC[1].5 LC[1].4 LC[1].3 LC[1].2 LC[1].1 LC[1].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 7 6 5 4 3 2 1 0

Name OFFS.7 OFFS.6 OFFS.5 OFFS.4 OFFS.3 OFFS.2 OFFS.1 OFFS.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Maxim Integrated

1.4.18 Data Pointer Control Register (DPC)

Register Description: Data Pointer Control Register
Register Name: DPC
Register Address: Module 0Eh, Index 04h

Bits 15 to 5: Reserved. Read 0, write ignored.

Bit 4: Word/Byte Select 2 (WBS2). This bit selects access mode for BP[OFFS]. When WBS2 is set to logic 1, the BP[OFFS] is oper-
ated in word mode for data memory access; when WBS2 is cleared to logic 0, BP[OFFS] is operated in byte mode for data memory
access.

Bit 3: Word/Byte Select 1 (WBS1). This bit selects access mode for DP[1]. When WBS1 is set to logic 1, the DP[1] is operated in word
mode for data memory access; when WBS1 is cleared to logic 0, DP[1] is operated in byte mode for data memory access.

Bit 2: Word/Byte Select 0 (WBS0). This bit selects access mode for DP[0]. When WBS0 is set to logic 1, the DP[0] is operated in word
mode for data memory access; when WBS0 is cleared to logic 0, DP[0] is operated in byte mode for data memory access.

Bits 1 and 0: Source Data Pointer Select Bits 1 and 0 (SDPS1 and SDPS0). These bits select one of the three data pointers as the
active source pointer for the load operation. A new data pointer must be selected before being used to read data memory (see table
below).

These bits default to 00b but do not activate DP[0] as an active source pointer until the SDPS bits are explicitly cleared to 00b or the
DP[0] register is written by an instruction. Also, modifying the register contents of a data/frame pointer register (DP[0], DP[1], BP, or
OFFS) will change the setting of the SDPS bits to reflect the active source pointer selection.

MAXQ7665/MAXQ7666 User’s Guide

1-56

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — — — WBS2 WBS1 WBS0 SDPS1 SDPS0

Reset 0 0 0 1 1 1 0 0

Access r r r rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 001Ch on all forms of reset.

SDPS1 SDPS0 SOURCE POINTER SELECTION

0 0 DP[0]

0 1 DP[1]

1 0 FP (BP[OFFS])

1 1 Reserved (select FP if set)

Maxim Integrated

1.4.19 General Register (GR)

Register Description: General Register
Register Name: GR
Register Address: Module 0Eh, Index 05h

Bits 15 to 0: General Register Bits 15 to 0 (GR.15 to GR.0). This register is intended primarily for supporting byte operations on 16-
bit data. The 16-bit register is byte-readable, byte-writeable through the corresponding GRL and GRH 8-bit registers and byte-swap-
pable through the GRS 16-bit register.

1.4.20 General Register Low Byte (GRL)

Register Description: General Register Low Byte
Register Name: GRL
Register Address: Module 0Eh, Index 06h

Bits 7 to 0: General Register Low Byte Bits 7 to 0 (GRL.7 to GRL.0). This register reflects the low byte of the GR register and is
intended primarily for supporting byte operations on 16-bit data. Any data written to the GRL register will also be stored in the low byte
of the GR register.

MAXQ7665/MAXQ7666 User’s Guide

1-57

Bit # 15 14 13 12 11 10 9 8

Name GR.15 GR.14 GR.13 GR.12 GR.11 GR.10 GR.9 GR.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name GR.7 GR.6 GR.5 GR.4 GR.3 GR.2 GR.1 GR.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 7 6 5 4 3 2 1 0

Name GRL.7 GRL.6 GRL.5 GRL.4 GRL.3 GRL.2 GRL.1 GRL.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Maxim Integrated

1.4.21 Frame Pointer Base Register (BP)

Register Description: Frame Pointer Base Register
Register Name: BP
Register Address: Module 0Eh, Index 07h

Bits 15 to 0: Frame Pointer Base Register Bits 15 to 0 (BP.15 to BP.0). This register serves as the base pointer for the Frame Pointer
(FP). The Frame Pointer is formed by unsigned addition of Frame Pointer Base Register (BP) and Frame Pointer Offset Register (OFFS).
The content of this base pointer register is not affected by increment/decrement operations performed on the offset (OFFS) register.

1.4.22 General Register Byte-Swapped (GRS)

Register Description: General Register Byte-Swapped
Register Name: GRS
Register Address: Module 0Eh, Index 08h

Bits 15 to 0: General Register Byte-Swapped Bits 15 to 0 (GRS.15 to GRS.0). This register is intended primarily for supporting byte
operations on 16-bit data. This 16-bit read-only register returns the byte-swapped value for the data contained in the GR register.

MAXQ7665/MAXQ7666 User’s Guide

1-58

Bit # 15 14 13 12 11 10 9 8

Name BP.15 BP.14 BP.13 BP.12 BP.11 BP.10 BP.9 BP.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name BP.7 BP.6 BP.5 BP.4 BP.3 BP.2 BP.1 BP.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name GRS.15 GRS.14 GRS.13 GRS.12 GRS.11 GRS.10 GRS.9 GRS.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name GRS.7 GRS.6 GRS.5 GRS.4 GRS.3 GRS.2 GRS.1 GRS.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

1.4.23 General Register High Byte (GRH)

Register Description: General Register High Byte
Register Name: GRH
Register Address: Module 0Eh, Index 09h

Bits 7 to 0: General Register High Byte Bits 7 to 0 (GRH.7 to GRH.0). This register reflects the high byte of the GR register and is
intended primarily for supporting byte operations on 16-bit data. Any data written to the GRH register will also be stored in the high
byte of the GR register.

1.4.24 General Register Sign Extended Low Byte (GRXL)

Register Description: General Register Sign Extended Low Byte
Register Name: GRXL
Register Address: Module 0Eh, Index 0Ah

Bits 15 to 0: General Register Sign Extended Low Byte Bits 15 to 0 (GRXL.15 to GRXL.0). This register provides the sign extend-
ed low byte of GR as a 16-bit source.

MAXQ7665/MAXQ7666 User’s Guide

1-59

Bit # 7 6 5 4 3 2 1 0

Name GRH.7 GRH.6 GRH.5 GRH.4 GRH.3 GRH.2 GRH.1 GRH.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name GRXL.15 GRXL.14 GRXL.13 GRXL.12 GRXL.11 GRXL.10 GRXL.9 GRXL.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name GRXL.7 GRXL.6 GRXL.5 GRXL.4 GRXL.3 GRXL.2 GRXL.1 GRXL.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

1.4.25 Frame Pointer Register (FP)

Register Description: Frame Pointer Register
Register Name: FP
Register Address: Module 0Eh, Index 0Bh

Bits 15 to 0: Frame Pointer Register Bits 15 to 0 (FP.15 to FP.0). This register provides the current value of the frame pointer
(BP[OFFS]).

1.4.26 Data Pointer 0 Register (DP[0])

Register Description: Data Pointer 0 Register
Register Name: DP[0]
Register Address: Module 0Fh, Index 03h

Bits 15 to 0: Data Pointer 0 Register Bits 15 to 0 (DP[0].15 to DP[0].0). This register is used as a pointer to access data memory.
DP[0] can be automatically incremented or decremented following each read operation or can be automatically incremented or decre-
mented before each write operation.

MAXQ7665/MAXQ7666 User’s Guide

1-60

Bit # 15 14 13 12 11 10 9 8

Name FP.15 FP.14 FP.13 FP.12 FP.11 FP.10 FP.9 FP.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name FP.7 FP.6 FP.5 FP.4 FP.3 FP.2 FP.1 FP.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name DP[0].15 DP[0].14 DP[0].13 DP[0].12 DP[0].11 DP[0].10 DP[0].9 DP[0].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name DP[0].7 DP[0].6 DP[0].5 DP[0].4 DP[0].3 DP[0].2 DP[0].1 DP[0].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

1.4.27 Data Pointer 1 Register (DP[1])

Register Description: Data Pointer 1 Register
Register Name: DP[1]
Register Address: Module 0Fh, Index 07h

Bits 15 to 0: Data Pointer 1 Register Bits 15 to 0 (DP[1].15 to DP[1].0). This register is used as a pointer to access data memory.
DP[1] can be automatically incremented or decremented following each read operation or can be automatically incremented or decre-
mented before each write operation.

1.5 Peripheral Register Modules
The MAXQ7665/MAXQ7666 microcontrollers use peripheral registers to control and monitor peripheral modules. These registers reside
in Modules 0h to 5h, with subindex values 0h to 1Fh. The MAXQ7665/MAXQ7666 peripheral register map is shown in Table 1-10. The
peripheral register module bit function and reset values are shown in Table 1-11. Each peripheral module and its associated regis-
ters/bits are covered separately in the following sections.

MAXQ7665/MAXQ7666 User’s Guide

1-61

Bit # 15 14 13 12 11 10 9 8

Name DP[1].15 DP[1].14 DP[1].13 DP[1].12 DP[1].11 DP[1].10 DP[1].9 DP[1].8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name DP[1].7 DP[1].6 DP[1].5 DP[1].4 DP[1].3 DP[1].2 DP[1].1 DP[1].0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

Note: Names that appear in bold italics indicate that all bits of a register are read-only.

Table 1-10. MAXQ7665/MAXQ7666 Peripheral Register Map

MAXQ7665/MAXQ7666 User’s Guide

1-62

MODULE NAME (BASE SPECIFIER)REGISTER
INDEX M0 M1 M2 M3 M4 M5

00h PO0 MCNT T2CNA0 T2CNA2 C0C VMC

01h MA T2H0 T2H2 C0S APE

02h MB T2RH0 T2RH2 C0IR ACNT

03h EIF0 MC2 T2CH0 T2CH2 C0TE DCNT

04h MC1 T2CNA1 C0RE DACI

05h MC0 T2H1 COR

06h SPIB T2RH1 C0DP DACO

07h SBUF0 SPICN T2CH1 C0DB

08h PI0 SPICF T2CNB0 T2CNB2 C0RMS ADCD

09h SPICK T2V0 T2V2 C0TMA TSO

0Ah FCNTL T2R0 T2R2 AIE

0Bh EIE0 FDATA T2C0 T2C2 ASR

0Ch MC1R T2CNB1 OSCC

0Dh MC0R T2V1

0Eh T2R1

0Fh T2C1

10h PD0 T2CFG0 T2CFG2

11h T2CFG1 C0M1C

12h C0M2C

13h EIES0 C0M3C

14h C0M4C

15h C0M5C

16h C0M6C

17h C0M7C

18h ICDT0 C0M8C

19h ICDT1 C0M9C

1Ah ICDC C0M10C

1Bh ICDF C0M11C

1Ch FADDR ICDB C0M12C

1Dh SCON0 ICDA C0M13C

1Eh SMD0 ICDD C0M14C

1Fh PR0 C0M15C

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-63

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

P
O

0.
7

P
O

0.
6

P
O

0.
5

P
O

0.
4

P
O

0.
3

P
O

0.
2

P
O

0.
1

P
O

0.
0

P
O

0

00
h[

00
h]

0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1

—

—

—

—

—

—

—

—

IE
7

IE
6

IE
5

IE
4

IE
3

IE
2

IE
1

IE
0

E
IF

0

00
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

S
B

U
F0

.7

S
B

U
F0

.6

S
B

U
F0

.5

S
B

U
F0

.4

S
B

U
F0

.3

S
B

U
F0

.2

S
B

U
F0

.1

S
B

U
F0

.0

S
B

U
F0

00
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

P
I0

.7

P
I0

.6

P
I0

.5

P
I0

.4

P
I0

.3

P
I0

.2

P
I0

.1

P
I0

.0

P
I0

00
h[

08
h]

0

0
0

0
0

0
0

0
s

s
s

s
s

s
s

s

—

—

—

—

—

—

—

—

E
X

7
E

X
6

E
X

5
E

X
4

E
X

3
E

X
2

E
X

1
E

X
0

E
IE

0

00
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

P
D

0.
7

P
D

0.
6

P
D

0.
5

P
D

0.
4

P
D

0.
3

P
D

0.
2

P
D

0.
1

P
D

0.
0

P
D

0

00
h[

10
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

IT
7

IT
6

IT
5

IT
4

IT
3

IT
2

IT
1

IT
0

E
IE

S
0

00
h[

13
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

S
M

0/
FE

S

M
1

S
M

2
R

E
N

TB

8
R

B
8

TI

R
I

S
C

O
N

0

00
h[

1D
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

—

—

—

—

E
S

I
S

M
O

D

FE
D

E

S
M

D
0

00
h[

1E
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
R

0.
15

P

R
0.

14

P
R

0.
13

P

R
0.

12

P
R

0.
11

P

R
0.

10

P
R

0.
9

P
R

0.
8

P
R

0.
7

P
R

0.
6

P
R

0.
5

P
R

0.
4

P
R

0.
3

P
R

0.
2

P
R

0.
1

P
R

0.
0

P
R

0

00
h[

1F
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
1.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 0

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

s
=

 D
ep

en
d

en
t o

n
th

e
p

in
’s

 s
ta

te
.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-64

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

O
F

M
C

W

C
LD

S

Q
U

O

P
C

S

M
S

U
B

M

M
A

C

S
U

S

M
C

N
T

01
h[

00
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

M
A

.1
5

M
A

.1
4

M
A

.1
3

M
A

.1
2

M
A

.1
1

M
A

.1
0

M
A

.9

M
A

.8

M
A

.7

M
A

.6

M
A

.5

M
A

.4

M
A

.3

M
A

.2

M
A

.1

M
A

.0

M
A

01

h[
01

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

M
B

.1
5

M
B

.1
4

M
B

.1
3

M
B

.1
2

M
B

.1
1

M
B

.1
0

M
B

.9

M
B

.8

M
B

.7

M
B

.6

M
B

.5

M
B

.4

M
B

.3

M
B

.2

M
B

.1

M
B

.0

M
B

01

h[
02

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

M
C

2.
15

M

C
2.

14

M
C

2.
13

M

C
2.

12

M
C

2.
11

M

C
2.

10

M
C

2.
9

M
C

2.
8

M
C

2.
7

M
C

2.
6

M
C

2.
5

M
C

2.
4

M
C

2.
3

M
C

2.
2

M
C

2.
1

M
C

2.
0

M
C

2
01

h[
03

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

M
C

1.
15

M

C
1.

14

M
C

1.
13

M

C
1.

12

M
C

1.
11

M

C
1.

10

M
C

1.
9

M
C

1.
8

M
C

1.
7

M
C

1.
6

M
C

1.
5

M
C

1.
4

M
C

1.
3

M
C

1.
2

M
C

1.
1

M
C

1.
0

M
C

1
01

h[
04

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

M
C

0.
15

M

C
0.

14

M
C

0.
13

M

C
0.

12

M
C

0.
11

M

C
0.

10

M
C

0.
9

M
C

0.
8

M
C

0.
7

M
C

0.
6

M
C

0.
5

M
C

0.
4

M
C

0.
3

M
C

0.
2

M
C

0.
1

M
C

0.
0

M
C

0
01

h[
05

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

S
P

IB
.1

5
S

P
IB

.1
4

S
P

IB
.1

3
S

P
IB

.1
2

S
P

IB
.1

1
S

P
IB

.1
0

S
P

IB
.9

S

P
IB

.8

S
P

IB
.7

S

P
IB

.6

S
P

IB
.5

S

P
IB

.4

S
P

IB
.3

S

P
IB

.2

S
P

IB
.1

S

P
IB

.0

S
P

IB
01

h[
06

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

—

—

—

—

—

—

—

—

S
TB

Y

S
P

IC

R
O

V
R

W

C
O

L
M

O
D

F
M

O
D

FE

M
S

TM

S
P

IE
N

S

P
IC

N

01
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

E
S

P
II

—

—

—

—

C
H

R

C
K

P
H

A

C
K

P
O

L
S

P
IC

F
01

h[
08

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

—

—

—

—

—

—

—

—

C
K

R
.7

C

K
R

.6

C
K

R
.5

C

K
R

.4

C
K

R
.3

C

K
R

.2

C
K

R
.1

C

K
R

.0

S
P

IC
K

01

h[
09

h]

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

—

—

—

—

—

—

—

—

FB
U

S
Y

FE

R
R

FI

N
E

FB

Y
P

D

Q
5

FC
2

FC
1

—

FC
N

TL
*

(T
yp

e
A

Fl

as
h)

01

h[
0A

h]

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

—

—

—

—

—

—

—

—

FR
D

Y

FE
R

R

—

—

FC
R

A
3

FC
R

A
2

FC
R

A
1

FC
R

A
0

FC
N

TL
*

(T
yp

e
F

Fl
as

h)

01
h[

0A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

FD
A

TA
.1

5
FD

A
TA

.1
4

FD
A

TA
.1

3
FD

A
TA

.1
2

FD
A

TA
.1

1
FD

A
TA

.1
0

FD
A

TA
.9

FD

A
TA

.8

FD
A

TA
.7

FD

A
TA

.6

FD
A

TA
.5

FD

A
TA

.4

FD
A

TA
.3

FD

A
TA

.2

FD
A

TA
.1

FD

A
TA

.0

FD
A

TA
*

01
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

M
C

1R
.1

5
M

C
1R

.1
4

M
C

1R
.1

3
M

C
1R

.1
2

M
C

1R
.1

1
M

C
1R

.1
0

M
C

1R
.9

M

C
1R

.8

M
C

1R
.7

M

C
1R

.6

M
C

1R
.5

M

C
1R

.4

M
C

1R
.3

M

C
1R

.2

M
C

1R
.1

M

C
1R

.0

M
C

1R

01
h[

0C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

M
C

0R
.1

5
M

C
0R

.1
4

M
C

0R
.1

3
M

C
0R

.1
2

M
C

0R
.1

1
M

C
0R

.1
0

M
C

0R
.9

M

C
0R

.8

M
C

0R
.7

M

C
0R

.6

M
C

0R
.5

M

C
0R

.4

M
C

0R
.3

M

C
0R

.2

M
C

0R
.1

M

C
0R

.0

M
C

0R

01
h[

0D
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

FA
D

D
R

.1
5

FA
D

D
R

.1
4

FA
D

D
R

.1
3

FA
D

D
R

.1
2

FA
D

D
R

.1
1

FA
D

D
R

.1
0

FA
D

D
R

.9

FA
D

D
R

.8

FA
D

D
R

.7

FA
D

D
R

.6

FA
D

D
R

.5

FA
D

D
R

.4

FA
D

D
R

.3

FA
D

D
R

.2

FA
D

D
R

.1

FA
D

D
R

.0

FA
D

D
R

*
(T

yp
e

F
Fl

as
h

O
nl

y)

01
h[

1C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
2.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 1

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

*
FC

N
TL

, F
D

AT
A

, a
nd

 F
A

D
D

R
 a

re
 n

ot
 a

cc
es

si
b

le
 b

y
p

ro
g

ra
m

 c
od

e
in

si
d

e
th

e
fla

sh
 m

em
or

y
(b

lo
ck

ed
 b

y
ha

rd
w

ar
e)

 a
nd

 a
re

 a
cc

es
si

b
le

 o
nl

y
to

 th
e

ut
ili

ty
 R

O
M

 a
nd

 d
at

a
R

A
M

.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-65

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

E
T2

T2

O
E0

T2

PO
L0

TR

2L

TR
2

C
P

R
L2

S

S
2

G
2E

N

T2
C

N
A

0

02
h[

00
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
H

0.
7

T2
H

0.
6

T2
H

0.
5

T2
H

0.
4

T2
H

0.
3

T2
H

0.
2

T2
H

0.
1

T2
H

0.
0

T2
H

0

02
h[

01
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
R

H
0.

7
T2

R
H

0.
6

T2
R

H
0.

5
T2

R
H

0.
4

T2
R

H
0.

3
T2

R
H

0.
2

T2
R

H
0.

1
T2

R
H

0.
0

T2
R

H
0

02
h[

02
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
C

H
0.

7
T2

C
H

0.
6

T2
C

H
0.

5
T2

C
H

0.
4

T2
C

H
0.

3
T2

C
H

0.
2

T2
C

H
0.

1
T2

C
H

0.
0

T2
C

H
0

02
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

E
T2

T2

O
E0

T2

PO
L0

TR

2L

TR
2

C
P

R
L2

S

S
2

G
2E

N

T2
C

N
A

1

02
h[

04
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
H

1.
7

T2
H

1.
6

T2
H

1.
5

T2
H

1.
4

T2
H

1.
3

T2
H

1.
2

T2
H

.1

T2
H

1.
0

T2
H

1

02
h[

05
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
R

H
1.

7
T2

R
H

1.
6

T2
R

H
1.

5
T2

R
H

1.
4

T2
R

H
1.

3
T2

R
H

1.
2

T2
R

H
1.

1
T2

R
H

1.
0

T2
R

H
1

02
h[

06
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
C

H
1.

7
T2

C
H

1.
6

T2
C

H
1.

5
T2

C
H

1.
4

T2
C

H
1.

3
T2

C
H

1.
2

T2
C

H
1.

1
T2

C
H

1.
0

T2
C

H
1

02
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

E
T2

L
—

—

—

TF

2
TF

2L

TC
C

2
TC

2L

T2
C

N
B

0

02
h[

08
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
V0

.1
5

T2
V0

.1
4

T2
V0

.1
3

T2
V0

.1
2

T2
V0

.1
1

T2
V0

.1
0

T2
V0

.9

T2
V0

.8

T2
V0

.7

T2
V0

.6

T2
V0

.5

T2
V0

.4

T2
V0

.3

T2
V0

.2

T2
V0

.1

T2
V0

.0

T2
V0

02
h[

09
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
R

0.
15

T2

R
0.

14

T2
R

0.
13

T2

R
0.

12

T2
R

0.
11

T2

R
0.

10

T2
R

0.
9

T2
R

0.
8

T2
R

0.
7

T2
R

0.
6

T2
R

0.
5

T2
R

0.
4

T2
R

0.
3

T2
R

0.
2

T2
R

0.
1

T2
R

0.
0

T2
R

0

02
h[

0A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
C

0.
15

T2

C
0.

14

T2
C

0.
13

T2

C
0.

12

T2
C

0.
11

T2

C
0.

10

T2
C

0.
9

T2
C

0.
8

T2
C

0.
7

T2
C

0.
6

T2
C

0.
5

T2
C

0.
4

T2
C

0.
3

T2
C

0.
2

T2
C

0.
1

T2
C

0.
0

T2
C

0

02
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

E
T2

L
—

—

—

TF

2
TF

2L

TC
C

2
TC

2L

T2
C

N
B

1

02
h[

0C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
V1

.1
5

T2
V1

.1
4

T2
V1

.1
3

T2
V1

.1
2

T2
V1

.1
1

T2
V1

.1
0

T2
V1

.9

T2
V1

.8

T2
V1

.7

T2
V1

.6

T2
V1

.5

T2
V1

.4

T2
V1

.3

T2
V1

.2

T2
V1

.1

T2
V1

.0

T2
V1

02
h[

0D
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
R

1.
15

T2

R
1.

14

T2
R

1.
13

T2

R
1.

12

T2
R

1.
11

T2

R
1.

10

T2
R

1.
9

T2
R

1.
8

T2
R

1.
7

T2
R

1.
6

T2
R

1.
5

T2
R

1.
4

T2
R

1.
3

T2
R

1.
2

T2
R

1.
1

T2
R

1.
0

T2
R

1

02
h[

0E
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
C

1.
15

T2

C
1.

14

T2
C

1.
13

T2

C
1.

12

T2
C

1.
11

T2

C
1.

10

T2
C

1.
9

T2
C

1.
8

T2
C

1.
7

T2
C

1.
6

T2
C

1.
5

T2
C

1.
4

T2
C

1.
3

T2
C

1.
2

T2
C

1.
1

T2
C

1.
0

T2
C

1

02
h[

0F
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

T2
D

IV
2

T2
D

IV
1

T2
D

IV
0

T2
M

D

C
C

F1

C
C

F0

C
/T

2
T2

C
FG

0

02
h[

10
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
3.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 2

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-66

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

—

T2
D

IV
2

T2
D

IV
1

T2
D

IV
0

T2
M

D

C
C

F1

C
C

F0

C
/T

2
T2

C
FG

1

02
h[

11
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

IC
D

T0
.1

5
IC

D
T0

.1
4

IC
D

T0
.1

3
IC

D
T0

.1
2

IC
D

T0
.1

1
IC

D
T0

.1
0

IC
D

T0
.9

IC

D
T0

.8

IC
D

T0
.7

IC

D
T0

.6

IC
D

T0
.5

IC

D
T0

.4

IC
D

T0
.3

IC

D
T0

.2

IC
D

T0
.1

IC

D
T0

.0

IC
D

T0

02
h[

18
h]

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

IC
D

T1
.1

5
IC

D
T1

.1
4

IC
D

T1
.1

3
IC

D
T1

.1
2

IC
D

T1
.1

1
IC

D
T1

.1
0

IC
D

T1
.9

IC

D
T1

.8

IC
D

T1
.7

IC

D
T1

.6

IC
D

T1
.5

IC

D
T1

.4

IC
D

T1
.3

IC

D
T1

.2

IC
D

T1
.1

IC

D
T1

.0

IC
D

T1

02
h[

19
h]

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

d

b

d
b

—

—

—

—

—

—

—

—

D
M

E

—

R
E

G
E

—

C

M
D

.3

C
M

D
.2

C

M
D

.1

C
M

D
.0

IC

D
C

02
h[

1A
h]

0

0
0

0
0

0
0

0
d

w

0
d

w

0
d

w

d
w

d

w

d
w

—

—

—

—

—

—

—

—

—

—

—

—

P
S

S
1

P
S

S
0

S
P

E

TX
C

IC

D
F

02
h[

1B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

IC
D

B
.7

IC

D
B

.6

IC
D

B
.5

IC

D
B

.4

IC
D

B
.3

IC

D
B

.2

IC
D

B
.1

IC

D
B

.0

IC
D

B

02
h[

1C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

IC
D

A
.1

5
IC

D
A

.1
4

IC
D

A
.1

3
IC

D
A

.1
2

IC
D

A
.1

1
IC

D
A

.1
0

IC
D

A
.9

IC

D
A

.8

IC
D

A
.7

IC

D
A

.6

IC
D

A
.5

IC

D
A

.4

IC
D

A
.3

IC

D
A

.2

IC
D

A
.1

IC

D
A

.0

IC
D

A

02
h[

1D
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

IC
D

D
.1

5
IC

D
D

.1
4

IC
D

D
.1

3
IC

D
D

.1
2

IC
D

D
.1

1
IC

D
D

.1
0

IC
D

D
.9

IC

D
D

.8

IC
D

D
.7

IC

D
D

.6

IC
D

D
.5

IC

D
D

.4

IC
D

D
.3

IC

D
D

.2

IC
D

D
.1

IC

D
D

.0

IC
D

D

02
h[

1E
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
3.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 2

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es
 (

co
n

ti
n

u
ed

)

d
b

 =
 S

p
ec

ia
l:

re
ad

/w
rit

e
ac

ce
ss

 o
nl

y
in

 b
ac

kg
ro

un
d

 o
r

d
eb

ug
 m

od
e.

d
w

 =
 S

p
ec

ia
l:

w
rit

e-
on

ly
 b

y
d

eb
ug

 e
ng

in
e.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-67

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

E
T2

T2

O
E0

T2

PO
L0

TR

2L

TR
2

C
P

R
L2

S

S
2

G
2E

N

T2
C

N
A

2

03
h[

00
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
H

2.
7

T2
H

2.
6

T2
H

2.
5

T2
H

2.
4

T2
H

2.
3

T2
H

2.
2

T2
H

2.
1

T2
H

2.
0

T2
H

2

03
h[

01
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
R

H
2.

7
T2

R
H

2.
6

T2
R

H
2.

5
T2

R
H

2.
4

T2
R

H
2.

3
T2

R
H

2.
2

T2
R

H
2.

1
T2

R
H

2.
0

T2
R

H
2

03
h[

02
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

T2
C

H
2.

7
T2

C
H

2.
6

T2
C

H
2.

5
T2

C
H

2.
4

T2
C

H
2.

3
T2

C
H

2.
2

T2
C

H
2.

1
T2

C
H

2.
0

T2
C

H
2

03
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

E
T2

L
—

—

—

TF

2
TF

2L

TC
C

2
TC

2L

T2
C

N
B

2

03
h[

08
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
V2

.1
5

T2
V2

.1
4

T2
V2

.1
3

T2
V2

.1
2

T2
V2

.1
1

T2
V2

.1
0

T2
V2

.9

T2
V2

.8

T2
V2

.7

T2
V2

.6

T2
V2

.5

T2
V2

.4

T2
V2

.3

T2
V2

.2

T2
V2

.1

T2
V2

.0

T2
V2

03
h[

09
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
R

2.
15

T2

R
2.

14

T2
R

2.
13

T2

R
2.

12

T2
R

2.
11

T2

R
2.

10

T2
R

2.
9

T2
R

2.
8

T2
R

2.
7

T2
R

2.
6

T2
R

2.
5

T2
R

2.
4

T2
R

2.
3

T2
R

2.
2

T2
R

2.
1

T2
R

2.
0

T2
R

2

03
h[

0A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T2
C

2.
15

T2

C
2.

14

T2
C

2.
13

T2

C
2.

12

T2
C

2.
11

T2

C
2.

10

T2
C

2.
9

T2
C

2.
8

T2
C

2.
7

T2
C

2.
6

T2
C

2.
5

T2
C

2.
4

T2
C

2.
3

T2
C

2.
2

T2
C

2.
1

T2
C

2.
0

T2
C

2

03
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

T2
D

IV
2

T2
D

IV
1

T2
D

IV
0

T2
M

D

C
C

F1

C
C

F0

C
/T

2
T2

C
FG

2

03
h[

10
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
4.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 3

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-68

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

E
R

IE

S
TI

E

P
D

E

S
IE

S
TA

C

R
S

T
A

U
TO

B

E
R

C
S

S

W
IN

T
C

0C

04
h[

00
h]

0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

1

—

—

—

—

—

—

—

—

B
S

S

E
C

96
/1

28

W
K

S

R
X

S

TX
S

E

R
2

E
R

1
E

R
0

C
0S

04
h[

01
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

IN
TI

N
7

IN
TI

N
6

IN
TI

N
5

IN
TI

N
4

IN
TI

N
3

IN
TI

N
2

IN
TI

N
1

IN
TI

N
0

C
0I

R

04
h[

02
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

C
0T

E
.7

C

0T
E

.6

C
0T

E
.5

C

0T
E

.4

C
0T

E
.3

C

0T
E

.2

C
0T

E
.1

C

0T
E

.0

C
0T

E

04
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

C
0R

E
.7

C

0R
E

.6

C
0R

E
.5

C

0R
E

.4

C
0R

E
.3

C

0R
E

.2

C
0R

E
.1

C

0R
E

.0

C
0R

E

04
h[

04
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

C
A

N
0B

A

IN
C

D
E

C

A
ID

C

0B
P

R
7

C
0B

P
R

6
—

C

0B
IE

C

0I
E

C

O
R

04
h[

05
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
0D

P
.1

5
C

0D
P

.1
4

C
0D

P
.1

3
C

0D
P

.1
2

C
0D

P
.1

1
C

0D
P

.1
0

C
0D

P
.9

C

0D
P

.8

C
0D

P
.7

C

0D
P

.6

C
0D

P
.5

C

0D
P

.4

C
0D

P
.3

C

0D
P

.2

C
0D

P
.1

C

0D
P

.0

C
0D

P

04
h[

06
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
0D

B
.1

5
C

0D
B

.1
4

C
0D

B
.1

3
C

0D
B

.1
2

C
0D

B
.1

1
C

0D
B

.1
0

C
0D

B
.9

C

0D
B

.8

C
0D

B
.7

C

0D
B

.6

C
0D

B
.5

C

0D
B

.4

C
0D

B
.3

C

0D
B

.2

C
0D

B
.1

C

0D
B

.0

C
0D

B

04
h[

07
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

C
0R

M
S

.1
5

C
0R

M
S

.1
4

C
0R

M
S

.1
3

C
0R

M
S

.1
2

C
0R

M
S

.1
1

C
0R

M
S

.1
0

C
0R

M
S

.9

C
0R

M
S

.8

C
0R

M
S

.7

C
0R

M
S

.6

C
0R

M
S

.5

C
0R

M
S

.4

C
0R

M
S

.3

C
0R

M
S

.2

C
0R

M
S

.1
C

0R
M

S

04
h[

08
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

C
0T

M
A

.1
5

C
0T

M
A

.1
4

C
0T

M
A

.1
3

C
0T

M
A

.1
2

C
0T

M
A

.1
1

C
0T

M
A

.1
0

C
0T

M
A

.9

C
0T

M
A

.8

C
0T

M
A

.7

C
0T

M
A

.6

C
0T

M
A

.5

C
0T

M
A

.4

C
0T

M
A

.3

C
0T

M
A

.2

C
0T

M
A

.1
C

0T
M

A

04
h[

09
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
1C

04
h[

11
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
2C

04
h[

12
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
3C

04
h[

13
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
4C

04
h[

14
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
5C

04
h[

15
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
6C

04
h[

16
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
7C

04
h[

17
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
5.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 4

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-69

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
8C

04
h[

18
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
9C

04
h[

19
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
10

C

04
h[

1A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
11

C

04
h[

1B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
12

C

04
h[

1C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
13

C

04
h[

1D
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
14

C

04
h[

1E
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

M
S

R
D

Y

E
TI

E

R
I

IN
TR

Q

E
X

TR
Q

M

TR
Q

R

O
W

/T
IH

D

TU
P

C

0M
15

C

04
h[

1F
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Ta
b

le
 1

-1
5.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 4

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es
 (

co
n

ti
n

u
ed

)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

1-70

R
E

G
IS

T
E

R
 B

IT
R

E
G

IS
T

E
R

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

—

—

—

—

—

—

—

—

—

—

V
IO

B
I1

V

IO
B

I0

V
D

B
I1

V

D
B

I0

V
D

B
R

1
V

D
B

R
0

V
M

C

05
h[

00
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
s

s

—

—

—

V
IB

E

V
D

B
E

V

D
P

E

—

—

P
G

G
2

P
G

G
1

P
G

G
0

TS
E

P

G
A

E

—

D
A

C
E

A

D
C

E

A
P

E

05
h[

01
h]

0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0

A
D

C
M

X
4

A
D

C
M

X
3

A
D

C
M

X
2

A
D

C
M

X
1

A
D

C
M

X
0

A
D

C
D

IF

A
D

C
B

IP

—

—

A
D

C
D

U
L

—

A
D

C
A

S
D

A

D
C

B
Y

A

D
C

S
2

A
D

C
S

1
A

D
C

S
0

A
C

N
T

05
h[

02
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

D
A

C
LD

2
D

A
C

LD
1

D
A

C
LD

0
—

—

—

—

D

C
N

T

05
h[

03
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

D
A

C
I.1

1
D

A
C

I.1
0

D
A

C
I.9

D

A
C

I.8

D
A

C
I.7

D

A
C

I.6

D
A

C
I.5

D

A
C

I.4

D
A

C
I.3

D

A
C

I.2

D
A

C
I.1

D

A
C

I.0

D
A

C
I

05
h[

04
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

D
A

C
O

.1
1

D
A

C
O

.1
0

D
A

C
O

.9

D
A

C
O

.8

D
A

C
O

.7

D
A

C
O

.6

D
A

C
O

.5

D
A

C
O

.4

D
A

C
O

.3

D
A

C
O

.2

D
A

C
O

.1

D
A

C
O

.0

D
A

C
O

05
h[

06
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

A
D

C
D

.1
1

A
D

C
D

.1
0

A
D

C
D

.9

A
D

C
D

.8

A
D

C
D

.7

A
D

C
D

.6

A
D

C
D

.5

A
D

C
D

.4

A
D

C
D

.3

A
D

C
D

.2

A
D

C
D

.1

A
D

C
D

.0

A
D

C
D

05
h[

08
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TS
O

.1
5

TS
O

.1
4

TS
O

.1
3

TS
O

.1
2

TS
O

.1
1

TS
O

.1
0

TS
O

.9

TS
O

.8

TS
O

.7

TS
O

.6

TS
O

.5

TS
O

.4

TS
O

.3

TS
O

.2

TS
O

.1

TS
O

.0

TS
O

05
h[

09
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

—

—

—

—

—

H
FF

IE

V
IO

B
IE

D

V
B

IE

—

A
O

R
IE

A

D
C

IE

—

A
IE

05
h[

0A
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

V
IO

LV
L

D
V

LV
L

—

—

X
H

FR
Y

—

—

—

—

H

FF
IN

T
V

IO
B

I
D

V
B

I
—

A

D
C

O
V

A

D
C

R
Y

—

A

SR

05
h[

0B
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

—

—

—

—

H
FO

C
1

H
FO

C
0

H
FI

C
1

H
FI

C
0

A
D

C
C

D
2

A
D

C
C

D
1

A
D

C
C

D
0

—

—

E
X

TH
F

R
C

E

H
FE

O

S
C

C
*

05
h[

0C
h]

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0

Ta
b

le
 1

-1
6.

 M
A

X
Q

76
65

/M
A

X
Q

76
66

 M
o

d
u

le
 5

 R
eg

is
te

r
B

it
 F

u
n

ct
io

n
s

an
d

 R
es

et
 V

al
u

es

*O
S

C
C

 is
 c

le
ar

ed
 to

 0
00

2h
 o

n
p

ow
er

-o
n

re
se

t a
nd

 is
 n

ot
 a

ffe
ct

ed
 b

y
ot

he
r

fo
rm

s
of

 r
es

et
.

s
=

 B
it

af
fe

ct
ed

 o
nl

y
b

y
p

ow
er

-o
n

re
se

t a
nd

 n
ot

 b
y

ot
he

r
fo

rm
s

of
 r

es
et

. S
ee

 th
e

re
g

is
te

r
d

es
cr

ip
tio

n
fo

r
m

or
e

in
fo

rm
at

io
n.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-1

SECTION 2: POWER-SUPPLY/SUPERVISORY MONITORING MODULE

This section contains the following information:

2.1 Architecture .2-3

2.1.1 Power-Supply/Supervisory Module Pins .2-5

2.2 Power-Supply/Supervisory Monitoring Registers .2-6

2.2.1 Voltage Monitor Control Register (VMC) .2-6

2.2.2 Analog Power Enable Register (APE) .2-8

2.2.3 Analog Interrupt Enable Register (AIE) .2-9

2.2.4 Analog Status Register (ASR) .2-10

2.3 Supply Configuration .2-11

2.4 Linear Regulator .2-12

2.5 Power-On Reset .2-12

2.5.1 Power-Up Counter .2-13

2.5.2 DVDD Brownout Reset (BOR) .2-13

2.5.3 Reset Output .2-15

2.6 Power-Supply Voltage Monitors .2-15

2.6.1 Digital Core Supply (DVDD) Monitor .2-15

2.6.2 Digital I/O Supply (DVDDIO) Monitor .2-16

2.7 Reset Mode .2-17

2.7.1 Watchdog Timer Reset .2-17

2.7.2 External Reset .2-18

2.7.3 Internal System Reset .2-18

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-2

Figure 2-1. MAXQ7665/MAXQ7666 Power-Supply Block Diagram .2-4

Figure 2-2. Supply Configuration 1 (Using Internal Linear Regulator) .2-11

Figure 2-3. Supply Configuration 2 (External DVDD) .2-11

Figure 2-4. MAXQ7665/MAXQ7666 Power-On Reset .2-12

Figure 2-5. MAXQ7665/MAXQ7666 Brownout Reset .2-14

Figure 2-6. MAXQ7665/MAXQ7666 Brownout/Power-On Reset .2-14

Figure 2-7. DVDD Brownout Interrupt Threshold Detection .2-16

Figure 2-8. DVDDIO Brownout Threshold Detection .2-17

Figure 2-9. MAXQ7665/MAXQ7666 External Reset .2-18

LIST OF FIGURES

Table 2-1. MAXQ7665/MAXQ7666 Power-Supply/Supervisory Module Pins2-5

Table 2-2. DVDD Brownout Reset Threshold Range .2-13

Table 2-3. DVDD Brownout Interrupt Threshold Range .2-15

Table 2-4. DVDDIO Brownout Interrupt Threshold Range .2-16

LIST OF TABLES

Maxim Integrated

SECTION 2: POWER-SUPPLY/SUPERVISORY MONITORING MODULE
The MAXQ7665/MAXQ7666 power-supply/supervisory monitoring module supports dedicated supply pins to independently power analog,
digital I/O, and digital core functions. The analog functions and digital I/O are powered from an external +5V supply, while the internal digi-
tal core is powered from a +3.3V supply, which can be supplied by an on-chip linear regulator. Except where explicitly noted, the MAXQ7665
and MAXQ7666 support identical features.

The MAXQ7665/MAXQ7666 power-supply/supervisory monitoring module features include the following.

• Dedicated analog supply (+5.0V) and ground pins

• Dedicated digital I/O supply (+5.0V) and ground pins

• Dedicated digital core supply (+3.3V) and ground pins

• On-chip +3.3V linear regulator

• Digital core brownout interrupt and reset voltage monitors

• Digital I/O brownout voltage monitor (can also be used to monitor analog supply)

• User-programmable thresholds for digital core brownout reset and interrupt generation

• User-programmable thresholds for digital I/O brownout interrupt generation

• Five reset sources: power-on, brownout, external, WDT, and internal system

2.1 Architecture
Figure 2-1 shows a simplified functional block diagram of the MAXQ7665/MAXQ7666 power-supply/supervisory monitoring module.
The MAXQ7665/MAXQ7666 microcontrollers are +5V-powered devices. Three power supplies are used to operate the various mod-
ules in the microcontroller. The MAXQ7665/MAXQ7666’s digital I/O supply (DVDDIO) uses two +5.0V supply pins to power the digital
I/Os. An internal +3.3V linear regulator powers the digital core functions composed of internal CPU, memory, oscillator, and digital
peripherals. If required, an external +3.3V supply (DVDD) can instead be used by disabling (REGEN pin connected to DVDDIO) the
internal regulator. The analog module uses a separate power-supply line (AVDD) to allow additional filtering to maintain superior ana-
log performance.

The MAXQ7665/MAXQ7666 contain two brownout power-supply monitors. One power-supply monitor is dedicated to the DVDDIO for
brownouts, while the other monitors brownouts of the DVDD core supply of the microcontroller, and can actually cause a reset if DVDD
is too low. The AVDD supply can be connected to the DVDDIO supply lines, and can then also be monitored by the DVDDIO monitor.
The power-on reset circuit is integrated into the DVDD power-supply monitor and the default trip level is between 2.7V and 2.99V. The
DVDDIO and DVDD brownout detection thresholds are user selectable, and can be configured independently to interrupt the micro-
controller when either of the selected thresholds are crossed.

MAXQ7665/MAXQ7666 User’s Guide

2-3 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-4

Figure 2-1. MAXQ7665/MAXQ7666 Power-Supply Block Diagram

AVDD

AGND

AGND

DVDDIO

DVDDIO

REGEN

GNDIO

ANALOG
MODULE

(MUX, ADC, PGA,
DAC, TEMP
SENSOR)

MAXQ7665/MAXQ7666
POWER-SUPPLY CONNECTION SCHEME

DIGITAL
INPUT/

OUTPUT

DIGITAL
CORE

(CPU, FLASH,
RAM,

OSCILLATOR,
AND

DIGITAL
PERIPHERALS)

+3.3V
LINEAR

REGULATOR

VDDIO
POWER-
SUPPLY

MONITOR

DVDD
POWER-SUPPLY

MONITOR POWER-
ON RESET

DVDD

DVDD

RESET

DGND

DGND

DGND

Maxim Integrated

2.1.1 Power-Supply/Supervisory Module Pins
The power-supply module signals are shown in Table 2-1.

Table 2-1. MAXQ7665/MAXQ7666 Power-Supply/Supervisory Module Pins
PIN NUMBER POWER-SUPPLY

SIGNAL 48 56
FUNCTION

AVDD 44 50

Analog VDD Supply. AVDD is the power supply for all analog input/output functions including ADC,
PGA, DAC, and temperature sensor. For the MAXQ7665/MAXQ7666, the analog supply voltage is
+5.0V. If required, connect AVDD to DVDDIO through some supply filtering, which can allow for
voltage monitoring on the AVDD line. If AVDD is a separate supply, no voltage monitoring is applied
and the supply voltage should not deviate more than ±300mV from DVDDIO. Bypass AVDD to AGND
with a 0.1 F capacitor placed as close to the device as possible.

AGND 5, 8 5, 8 Analog Ground*

DVDDIO 26, 39 30, 44

Digital Input/Output Supply Voltage. DVDDIO is the power supply for all digital input/output pins
(except XIN, XOUT, and RESET). For the MAXQ7665/MAXQ7666, the digital I/O supply voltage is
+5.0V. DVDDIO also powers the internal +3.3V linear regulator (if used). Bypass DVDDIO to GNDIO
with a 0.1 F capacitor placed as close to the device as possible.

GNDIO 27 31 Digital Input/Output Ground. GNDIO is the ground for all the digital I/O pins (except XIN, XOUT,
RESET).*

REGEN 38 43

Active-Low Linear Power Regulator Enable Input. REGEN controls the internal +3.3V linear regulator.
When REGEN is connected GNDIO, the linear regulator is enabled; when REGEN is connected to
DVDDIO, the linear regulator is disabled and an external +3.3V supply must be provided to the DVDD
pin.

DVDD 40 45

Digital Supply Voltage. DVDD is the power supply for all core CPU functions, flash, RAM, oscillator,
and digital peripherals. For the MAXQ7665/MAXQ7666, the digital supply voltage is +3.3V and can be
generated by the internal +3.3V linear regulator. Bypass DVDD to DGND with a 4.7 F ±20% capacitor
with maximum ESR of 0.5 . In addition, bypass DVDD with a 0.1 F capacitor. Place both bypass
capacitors as close to the device as possible.

DGND 18, 19, 31 20, 21, 36 Digital Ground. These pins serve as the digital ground for the CPU core functions, flash, SRAM, digital
peripherals, and oscillator port.*

RESET 41 47

Active-Low Reset I/O. This is an active-low open-drain signal with an internal pullup resistor to DVDD.
During POR, this pin remains low until DVDD rises above the default power-on reset threshold and a
timeout period expires. RESET is pulled low by the internal voltage monitoring circuitry if DVDD falls
below the selected brownout reset threshold. This pin can also be pulled low externally by the user or
internally by the watchdog timer. All these events reset the MAXQ7665/MAXQ7666.

MAXQ7665/MAXQ7666 User’s Guide

2-5

* For PCB layout guidelines, refer to Application Note 801 (www.maxim-ic.com/AN801) and Application Note 637 (www.maxim-ic.com/AN637).

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-6

2.2 Power-Supply/Supervisory Monitoring Registers
The MAXQ7665/MAXQ7666 power-supply/supervisory monitoring peripheral registers are described here. All these peripheral regis-
ters are directly accessible by the microcontroller through the module/index address.

2.2.1 Voltage Monitor Control Register (VMC)
The VMC register contains the DVDD and DVDDIO voltage-monitor threshold select bits. This register is cleared to a default value of
0000h by all forms of reset except bits 1 and 0, which are cleared by power-on reset only.

Register Description: Voltage Monitor Control Register
Register Name: VMC
Register Address: Module 05h, Index 00h

Bits 15 to 6: Reserved. Read 0, write ignored.

Bits 5, 4: DVDDIO Brownout Interrupt Threshold Bits 1, 0 (VIOBI1, VIOBI0). These bits are used to select the brownout interrupt
threshold level for the DVDDIO voltage supply. An interrupt flag (VIOBI) is set if the DVDDIO brownout detection is enabled (VIBE = 1
in the APE register) and the DVDDIO voltage falls in the threshold range selected in the following table. To convert the interrupt flag to
an interrupt, the DVDDIO brownout interrupt enable bit (VIOBIE in the AIE register) must be set. Also, global interrupt mask bits IM5
(in the IMR register) and IGE (in the IC register) must be enabled.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — — VIOBI1 VIOBI0 VDBI1 VDBI0 VDBR1 VDBR0

Reset 0 0 0 0 0 0 0 0

Access r r rw rw rw rw rw rw

VIOBI1:VIOBI0 BROWNOUT INTERRUPT THRESHOLD
RANGE (V)*

00 4.25–4.74 (default)

01 4.30–4.79

10 4.35–4.84

11 4.40–4.89

r = read, w = write
Note: The VDBR1 and VDBR0 bits are reset only by POR. Other bits are cleared by all forms of reset.

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

Maxim Integrated

Bits 3, 2: DVDD Brownout Interrupt Threshold Bits 1, 0 (VDBI1, VDBI0). These bits are used to select the brownout interrupt thresh-
old level for the DVDD voltage supply. An interrupt flag (DVBI) is set if the DVDD brownout detection is enabled (VDBE = 1 in the APE
register) and the DVDD voltage falls in the threshold range (see table below). To convert the interrupt flag to an interrupt, the DVDD
brownout interrupt enable bit (DVBIE in the AIE register) must be set. Also, global interrupt mask bits IM5 (in the IMR register) and IGE
(in the IC register) must be enabled.

Bits 1, 0: DVDD Brownout Reset Threshold Bits 1, 0 (VDBR1, VDBR0). These bits are used to select the brownout reset threshold
level for the DVDD voltage supply. A reset state is generated to halt program execution if the DVDD brownout reset supervisor is
enabled (VDPE = 1 in the APE register) and the DVDD voltage falls in the threshold range (see table below). Note: The DVDD brownout
reset supervisor is enabled (VDPE = 1) by default after all forms of reset.

VDBI1: VDBI0 BROWNOUT INTERRUPT THRESHOLD
RANGE (V)*

00 2.77–2.99 (default)

01 2.84–3.13

10 2.91–3.20

11 2.99–3.27

VDBR1: VDBR0 BROWNOUT RESET THRESHOLD
RANGE (V)*

00 2.70–2.99 (default)

01 2.77–3.06

10 2.84–3.13

11 2.91–3.20

MAXQ7665/MAXQ7666 User’s Guide

2-7

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-8

2.2.2 Analog Power Enable Register (APE)
The APE register contains the power-enable bits to control and turn on/off the DVDDIO and DVDD power-supply voltage monitoring.

Register Description: Analog Power Enable Register
Register Name: APE
Register Address: Module 05, Index 01h

Bits 15, 14, 13, 9, 8, and 2: Reserved. Read 0, write ignored.

Bit 12: I/O Voltage Brownout Detection Enable (VIBE). The DVDDIO brownout detection is enabled when this bit is set to logic 1. An
interrupt request is generated if the DVDDIO brownout interrupt enable (VIOBIE in the AIE register) bit is set and the voltage monitor
detects the DVDDIO voltage falling in the threshold range determined by the VIOBI[1:0] bits in the VMC register.

Note: To be acknowledged by the microcontroller interrupt logic, this interrupt request must also be enabled by the IGE bit in the IC
register and the IM5 mask in the IMR peripheral register.

Bit 11: Digital Voltage Brownout Detection Enable (VDBE). The DVDD brownout detection is enabled when this bit is set to logic 1.
An interrupt request is generated if the DVDD brownout interrupt enable (DVBIE in the AIE register) bit is set and the voltage monitor
detects the DVDD voltage falls in the threshold range determined by the VDBI[1:0] bits in the VMC register.

Note: To be acknowledged by the microcontroller interrupt logic, this interrupt request must also be enabled by the IGE bit in the IC
register and the IM5 mask in the IMR peripheral register.

Bit 10: Digital Voltage Brownout Reset Enable (VDPE). The DVDD brownout reset supervisor is enabled when this bit is set to logic
1. A reset state is generated to halt program execution if the DVDD voltage falls in the threshold range determined by the VDBR[1:0]
bits in the VMC register. This bit defaults to logic 1 on reset. Clearing this bit to 0 disables the brownout reset supervisor.

Bits 7, 6, 5: PGA Gain Setting Bits 2, 1, 0 (PGG2, PGG1, PGG0). See Section 3 for more information on these register bits.

Bit 4: Temperature Sensor Enable (TSE). See Section 3 for more information on this register bit.

Bit 3: Programmable Gain Amp Enable (PGAE). Section 3 for more information on this register bit.

Bit 1: DAC Enable (DACE). See Section 3 for more information on this register bit.

Bit 0: ADC Enable (ADCE). See Section 3 for more information on this register bit.

Bit # 15 14 13 12 11 10 9 8

Name — — — VIBE VDBE VDPE — —

Reset 0 0 0 0 0 1 0 0

Access r r r rw rw rw r r

Bit # 7 6 5 4 3 2 1 0

Name PGG2 PGG1 PGG0 TSE PGAE — DACE ADCE

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw r rw rw

r = read, w = write
Note: This register is cleared to 0400h on all forms of reset.

Maxim Integrated

2.2.3 Analog Interrupt Enable Register (AIE)
The AIE register is used to enable interrupts from a variety of analog sources including DVDDIO and DVDD brownout detection.

Register Description: Analog Interrupt Enable Register
Register Name: AIE
Register Address: Module 05h, Index 0Ah

Bits 15 to 7 and 3: Reserved. Read 0, write ignored.

Bit 6: External High-Frequency Oscillator Failure Interrupt Enable (HFFIE). See Section 5 for more information on this register bit.

Bit 5: I/O Voltage Brownout Interrupt Enable (VIOBIE). This bit must be set to logic 1 to generate an interrupt request when a
brownout condition is detected on the DVDDIO voltage and the VIOBI flag (in the ASR register) is set to logic 1. Clearing this bit to 0
disables the interrupt capability from the VIOBI flag. Note: To be acknowledged by the microcontroller interrupt logic, this interrupt
request must also be enabled by the IGE bit in the IC register and the IM5 mask in the IMR peripheral register.

Bit 4: Digital Brownout Interrupt Enable (DVBIE). This bit must be set to logic 1 to generate an interrupt request when a brownout
condition is detected on the DVDD voltage and the DVBI flag (in the ASR register) is set to logic 1. Clearing this bit to 0 disables the
interrupt capability from the DVBI flag. Note: To be acknowledged by the microcontroller interrupt logic, this interrupt request must also
be enabled by the IGE bit in the IC register and the IM5 mask in the IMR peripheral register.

Bit 2: ADC Overrun Interrupt Enable (AORIE). See Section 3 for more information on this register bit.

Bit 1: ADC Data Ready Interrupt Enable (ADCIE). See Section 3 for more information on this register bit.

Bit 0: This bit is implemented and available to be used as a user-software-controlled bit.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFIE VIOBIE DVBIE — AORIE ADCIE —

Reset 0 0 0 0 0 0 0 1

Access r rw rw rw r rw rw rw

r = read, w = write

MAXQ7665/MAXQ7666 User’s Guide

2-9 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-10

2.2.4 Analog Status Register (ASR)
The ASR register reports the status of the DVDD and DVDDIO supply brownout detection.

Register Description: Analog Status Register
Register Name: ASR
Register Address: Module 05h, Index 0Bh

Bit 15: I/O Voltage Brownout Comparator Level (VIOLVL). This bit reflects the DVDDIO voltage brownout comparator’s current out-
put state when read. This bit is set to logic 1 when the DVDDIO supply is higher than the threshold level (as programmed by the
VIOBI[1:0] threshold bits in the VMC register) and is cleared to logic 0 when the supply voltage is below the threshold level. At power-
up or when the DVDDIO voltage monitor is disabled (VIBE = 0), this bit is cleared to 0.

Bit 14: Digital Voltage Brownout Comparator Level (DVLVL). This bit reflects the DVDD voltage brownout comparator’s current out-
put state when read. This bit is set to logic 1 when the DVDD supply is higher than the threshold level (as programmed by the VDBI[1:0]
threshold bits in the VMC register) and is cleared to logic 0 when the supply voltage is below the threshold level. At power-up or when
the DVDD voltage monitor is disabled (VDBE = 0), this bit is cleared to 0.

Bits 13, 12, 10 to 7, 3, and 0: Reserved. Read 0, write ignored.

Bit 11: High-Frequency Oscillator Ready (XHFRY). See Section 5 for more information on this register bit.

Bit 6: External High-Frequency Oscillator Failure Flag (HFFINT). See Section 5 for more information on this register bit.

Bit 5: I/O Voltage Brownout Flag (VIOBI). This flag is set to logic 1 when a brownout interrupt condition is detected on the DVDDIO
supply voltage. This bit is cleared after reading from the ASR register. If enabled (VIOBIE = 1), the DVDDIO brownout interrupt is gen-
erated by this register bit.

Bit 4: Digital Brownout Flag (DVBI). This flag is set to logic 1 when a brownout interrupt condition is detected on the DVDD supply
voltage. This bit is cleared after reading from the ASR register. If enabled (DVBIE = 1), the DVDD brownout interrupt is generated by
this register bit.

Bit 2: ADC Overrun Flag (ADCOV). See Section 3 for more information on this register bit.

Bit 1: ADC Data Ready Flag (ADCRY). See Section 3 for more information on this register bit.

Bit # 15 14 13 12 11 10 9 8

Name VIOLVL DVLVL — — XHFRY — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFINT VIOBI DVBI — ADCOV ADCRY —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: The ADCOV bit is cleared by all forms of reset. All other bits are reset only by POR. Reading the ASR resets to 0 all the status flag bits except

VIOLVL and DVLVL.

Maxim Integrated

2.3 Supply Configuration
The MAXQ7665/MAXQ7666 use three supplies to power the internal analog, digital core, and digital I/O circuits. The supplies are con-
figured as listed:

• AVDD = +5V

• DVDD = +3.3V (with internal linear regulator enabled or through an external supply)

• DVDDIO = +5V

Figure 2-2 and Figure 2-3 show the recommended supply configurations. Bypass capacitors should be mounted as close as possible
to the body of the MAXQ7665/MAXQ7666 to reduce noise. Note: If AVDD is a separate supply, no voltage monitoring is applied and
the supply voltage should not deviate more than ±300mV from DVDDIO. For PCB layout guidelines, refer to Application Note 801
(www.maxim-ic.com/AN801) and Application Note 637 (www.maxim-ic.com/AN637).

Figure 2-2. Supply Configuration 1 (Using Internal Linear Regulator)

0.1μF

DVDD

REGEN

4.7μF0.1μF

NOTE: USE A LOW-ESR CAPACITOR SIMILAR TO VISHAY TYPE 591D.

DGND

DGND

DGND

DVDDIO

DVDDIO

GNDIO

DRIVEN FROM
INTERNAL LDO

1μF

MAIN SUPPLY
GENERATION

0.1μF

AGND

AVDD

AGND

+5.0V

GND

(SEE NOTE)

Figure 2-3. Supply Configuration 2 (External DVDD)

0.1μF

DVDD

DGND

0.1μF

NOTE: USE A LOW-ESR CAPACITOR SIMILAR TO VISHAY TYPE 591D.

DGND

DGND

DVDDIO

DVDDIO

GNDIO

1μF

MAIN SUPPLY
GENERATION

0.1μF

AGND

AVDD

AGND

+5.0V

EXTERNAL LDO

+3.3V

GND

+5.0V

GND

(SEE NOTE)

REGEN

MAXQ7665/MAXQ7666 User’s Guide

2-11 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-12

2.4 Linear Regulator
The MAXQ7665/MAXQ7666 contain a +3.3V, low dropout (LDO) linear regulator. The regulator powers the MAXQ7665/MAXQ7666 dig-
ital core functions including the CPU, flash, SRAM, oscillator, and all the digital peripherals. The linear regulator is powered by the +5V
DVDDIO supply. The REGEN signal must be connected to GNDIO to enable the internal regulator. When the internal linear regulator is
disabled (REGEN connected to DVDDIO), an external +3.3V supply must be used.

2.5 Power-On Reset
The MAXQ7665/MAXQ7666 support an on-chip power-on reset (POR) circuit to ensure proper initialization of internal device states. The
POR circuit provides a power-on rising voltage threshold and a minimum power-on delay sufficient to accomplish this initialization. When
power is first applied to the MAXQ7665/MAXQ7666, the MAXQ7665/MAXQ7666 are held in a power-on reset state (Figure 2-4). The
MAXQ7665/MAXQ7666 power-on circuitry (POR) monitors the DVDD supply voltage in relation to the on-chip band gap voltage reference.
On power-up, once DVDD exceeds ~1.2V, the RESET pin is asserted to be logic-low. All the internal system and peripheral registers are
reset if DVDD from cold start exceeds ~1.2. Also, above this voltage, the power-on-reset delay counter is started.

For the MAXQ7665/MAXQ7666 to exit power-on reset, the following two conditions must apply:

• DVDD is above the power-on-reset rising voltage threshold level VRST (2.7V–2.99V power-on default)

• The internal RC oscillator has completed 65,536 cycles (power-on-reset delay for power supply to stabilize; about 8.6ms at 7.6MHz)

Once the power-up period has elapsed, the reset condition is removed automatically (RESET pin goes high) and software execution will
begin at the reset vector location 8000h (in the utility ROM). Software can determine whether a reset was caused by a power-on reset by
checking the POR flag in the WDCN register. This flag is set to 1 following a power-on reset, and should be cleared by software after it
has been checked.

Figure 2-4. MAXQ7665/MAXQ7666 Power-On Reset

POWER-UP DELAY (65,536 RC CYCLES
OR 8.6ms AT 7.6MHz)

INTERNAL RESET

NOMINAL DVDD
(+3.3V)

VRST
(+2.7V)

+1.2V

DGND

INTERNAL
RC

STARTUP TIME

RESET PIN

Note: In a brownout reset (BOR) situation (see Section 2.5.2), where the voltage drops below the DVDD BOR threshold (e.g., 2.7V) and
rises back above the default power-on-reset rising voltage threshold level (2.7V), the POR flag in WDCN register will not be set unless
DVDD drops below ~1.2V. The POR flag will be set if DVDD voltage drops below ~1.2V and rises back above the default POR rising
voltage threshold (2.7V). In such a case, the MAXQ7665/MAXQ7666 go through a complete POR reset as described above.

Maxim Integrated

2.5.1 Power-Up Counter
An independent power-up counter functions as the startup counter to count 65,536 cycles of the internal 7.6MHz RC oscillator from ini-
tial power-on. This time period is verified by the counter after the DVDD level reaches the reset threshold (VRST). The counter is active
only during initial power-up and is completely shut off during normal operation.

2.5.2 DVDD Brownout Reset (BOR)
The DVDD brownout reset monitoring is enabled when the VDPE bit in the APE register is set to logic 1. The BOR circuitry monitors the
DVDD voltage and invokes a brownout reset state to halt program execution if the DVDD voltage falls in the threshold range deter-
mined by the VDBR[1:0] bits in the VMC register. The MAXQ7665/MAXQ7666 are held in the brownout reset state (Figure 2-5) while
the DVDD voltage is below the reset threshold level and the RESET pin is asserted to be logic-low. Table 2-2 shows the supported
brownout reset threshold range. When the DVDD power sources return above the threshold level, a brownout reset cycle is performed.
For the MAXQ7665/MAXQ7666 to exit brownout reset, the following condition must apply:

• DVDD is above the brownout reset threshold level determined by the VDBR[1:0] bits.

Once the above condition is satisfied, the brownout reset condition is removed automatically (RESET pin goes high) and software exe-
cution will begin at the reset vector location 8000h (in the utility ROM). A brownout reset cycle is similar to power-on reset cycle shown
in Figure 2-4, except that there is no power-up counter delay, VRST is determined by the VDBR[1:0] bits, and some selected register
bits are maintained and not reset to default state. For example, the VDBR1 and VDBR0 bits are only cleared by POR, not by BOR.

A brownout reset caused by a DVDD drop below the selected threshold level appears to be the same as a power-on reset, only if DVDD
voltage falls below ~1.2V and rises back above the default POR rising voltage threshold. In such a case, the MAXQ7665/MAXQ7666
go through a complete POR reset (see Figure 2-6) as described in Section 2.5 and the POR flag in the WDCN register will be set.

Note: The DVDD brownout reset monitoring is enabled (VDPE = 1) by default after all forms of reset. The VDBR1 and VDBR0 bits are
only cleared by POR (only if DVDD goes below ~1.2V in the case of BOR) and retain the selected level after all other forms of reset.

Table 2-2. DVDD Brownout Reset Threshold Range

VDBR1:VDBR0 DVDD BROWNOUT
 RESET THRESHOLD RANGE (V)*

00 2.70–2.99 (default)

01 2.77–3.06

10 2.84–3.13

11 2.91–3.20

MAXQ7665/MAXQ7666 User’s Guide

2-13

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-14

Figure 2-5. MAXQ7665/MAXQ7666 Brownout Reset

NOMINAL
DVDD (+3.3V)

+3.06V

+2.77V

DGND

DVDD BROWNOUT RESET
THRESHOLD RANGE

VDBR[1:0] = 01

BROWNOUT RESET

INTERNAL RESET

RESET PIN BOR STATE

Figure 2-6. MAXQ7665/MAXQ7666 Brownout/Power-On Reset

NOMINAL
DVDD (+3.3V)

DEFAULT BOR
THRESHOLD

BROWNOUT RESET

INTERNAL RESET

BOR STATE

RESET PIN

+3.06V

+2.77V
+2.70V

~ +1.20V

DGND

POR STATE

POWER-UP
DELAY

DVDD BROWNOUT RESET
THRESHOLD RANGE

VDBR[1:0] = 01

Maxim Integrated

2.5.3 Reset Output
The MAXQ7665/MAXQ7666 assert the RESET signal during power-up and also during reset conditions caused by an internal source
(such as brownout, watchdog, or internal reset). On power-up, once DVDD exceeds 1.2V, RESET is asserted to be logic-low. As DVDD
rises, RESET remains low. When DVDD exceeds the default BOR threshold, RESET is kept low until the internal RC oscillator has com-
pleted 65,536 cycles; after this period, if DVDD remains above the default BOR threshold, RESET goes high. If a brownout reset condi-
tion occurs, RESET is asserted low. Each time a DVDD BOR reset is triggered, it stays low until DVDD exceeds the BOR reset threshold.

Note: The RESET pin is an output and an input. The MAXQ7665/MAXQ7666 is placed into an external reset mode if the RESET pin is
held low for at least four clock cycles. See Section 2.7.2 for more information on external reset.

2.6 Power-Supply Voltage Monitors
The MAXQ7665/MAXQ7666 contain two power-supply voltage monitors that can be used to continually monitor the DVDD and DVDDIO
supply voltages for brownout conditions and initiate interrupt requests if enabled. The DVDD and DVDDIO voltage monitors can be inde-
pendently activated by programming the corresponding enable bits (VDBE and VIBE) in the analog power-enable (APE) register.

2.6.1 Digital Core Supply (DVDD) Monitor
The digital core supply monitor detects a brownout condition on the +3.3V DVDD supply. The DVDD supply monitor can be indepen-
dently activated by programming the corresponding enable bit (VDBE) in the analog power enable (APE) register. A brownout is detect-
ed when the DVDD supply voltage drops below the programmed brownout detection threshold (Figure 2-7). The brownout interrupt
threshold level is user selectable, and can be programmed using the brownout interrupt threshold bits (VDBI[1:0]) in the VMC regis-
ter. The supported threshold levels are listed in Table 2-3. If enabled, a DVDD brownout interrupt can be generated that allows for sav-
ing data and the present state of the MAXQ7665/MAXQ7666. A DVDD brownout interrupt is generated only if the interrupt enable bit
(DVBIE) in the analog interrupt enable (AIE) register is set. Also, global interrupt mask bits IM5 (in the IMR register) and IGE in (the IC
register) must be enabled.

If the DVDD supply falls further, then the brownout reset threshold is tripped, terminating program operation and holding the
MAXQ7665/MAXQ7666 in the brownout reset state. The MAXQ7665/MAXQ7666 remain in the brownout reset state until the supply rises
above the reset threshold. The DVDD monitor brownout interrupt and reset trip points can differ from device to device within the pro-
grammed threshold range. This tolerance error is caused by the monitor comparator offsets, and threshold setting circuitry. The
brownout interrupt and reset thresholds will track each other to some degree. If the brownout interrupt trip point is trending towards the
lower side of the threshold level, then the brownout reset trip point will also trend towards the lower side of the threshold level. The
brownout reset is always below the brownout interrupt threshold for equivalent settings, ensuring adequate notice of a failing supply
condition.

Table 2-3. DVDD Brownout Interrupt Threshold Range

MAXQ7665/MAXQ7666 User’s Guide

2-15

VDBI[1:0] DVDD (CORE) (V)*

00 (default) 2.77–2.99

01 2.84–3.13

10 2.91–3.20

11 2.99–3.27

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

2-16

Figure 2-7. DVDD Brownout Interrupt Threshold Detection

NOMINAL
DVDD (+3.3V)

BROWNOUT
RESET TRIGGER

POINT

BROWNOUT
INTERRUPT TRIGGER

POINT

+3.13V

+3.06V

+2.84V

+2.77V

DGND

DVLVL FLAG
(ASR[14])

DVBI FLAG
(ASR[4])

DVDD BROWNOUT
INTERRUPT

THRESHOLD RANGE
VDBI[1:0] = 01

DVDD BROWNOUT
RESET THRESHOLD

RANGE VDBR[1:0] = 01BROWNOUT
RESET

INTERNAL RESET

BOR STATE

VDBE BIT SET BY μC

FLAG ARBITRARILY
CLEARED BY μC

RESET OUTPUT

BROWNOUT
INTERRUPT

2.6.2 Digital I/O Supply (DVDDIO) Monitor
The DVDDIO monitor detects a brownout condition on the +5V digital I/O supply. The DVDDIO supply monitor can be independently
activated by programming the corresponding enable bit (VIBE) in the APE register. A brownout is detected when the DVDDIO supply
voltage falls in the programmed DVDDIO brownout detection threshold range (Figure 2-8). The brownout interrupt threshold range is
user selectable, and can be programmed using the brownout interrupt threshold bits (VIOBI[1:0]) in the VMC register. The supported
threshold range are listed in Table 2-4. If enabled, an interrupt can be generated that allows for saving data and the present state of
the MAXQ7665/MAXQ7666. A DVDDIO brownout interrupt is generated only if the interrupt enable bit (VIOBIE) in the AIE register is
set. Also, global interrupt mask bits IM5 (in the IMR register) and IGE in (the IC register) must be enabled.

Table 2-4. DVDDIO Brownout Interrupt Threshold Range

VIOBI[1:0] DVDDIO (V)*

00 (default) 4.25–4.74

01 4.30–4.79

10 4.35–4.84

11 4.40–4.89

* Reconfirm the values provided in this table with those in the latest MAXQ7665 and MAXQ7666 data sheets.

Maxim Integrated

Figure 2-8. DVDDIO Brownout Interrupt Threshold Detection

NOMINAL
DVDDIO (+5.0V)

DVDDIO
BROWNOUT
INTERRUPT

DVDDIO BROWNOUT
INTERRUPT THRESHOLD
RANGE VIOBI[1:0] = 01

VIOBI FLAG CLEARED
IN INTERRUPT HANDLER

VIOLVL
FLAG

+4.79V

+4.30V

GNDIO

VIOBI
FLAG

2.7 Reset Mode
When the MAXQ7665/MAXQ7666 are in reset mode, the enabled system clock oscillator continues running, but no instruction execu-
tion or other system or peripheral operations occur, and all input/output pins return to default states. Once the condition that caused
the reset (whether internal or external) is removed, code execution resumes at address 8000h for all reset types. Some of the reset
sources will also trigger a delaying count of 65,536 clocks (as discussed above) before execution starts.

There are five different sources that can cause the MAXQ7665/MAXQ7666 to enter reset mode. See Section 2.5 for information on
power-on and brownout reset.

• Power-on reset

• Brownout reset

• Watchdog timer reset

• External reset

• Internal system reset

2.7.1 Watchdog Timer Reset
The MAXQ7665/MAXQ7666 watchdog timer is described in Section 5. The watchdog timer is a programmable hardware timer that can
be set to reset the MAXQ7665/MAXQ7666 in the case of a software lockup or other unrecoverable error. Once the watchdog is enabled
in this manner, the processor must refresh the watchdog periodically to avoid a reset. If the processor does not reset the watchdog timer
before it elapses, the watchdog will initiate a reset state. When running at 7.6MHz, the maximum watchdog time period before reset is
approximately 276ms.

If the watchdog resets the MAXQ7665/MAXQ7666, it remains in reset and holds the RESET pin low for four clock cycles. Once the reset
condition has completed, the processor will begin executing program code at address 8000h. When a reset occurs due to a watch-
dog timeout, the watchdog timer reset flag in the WDCN register is set to 1 and can only be cleared by software. User software can
examine this bit following a reset to determine if that reset was caused by a watchdog timeout.

Since the XT bit in the CKCN register and the HFE bit in the OSCC register are cleared to 0 only on power-on reset, it is possible to
exit a watchdog reset with the clock source set to the high frequency crystal oscillator. In this case, execution resumes running from
the RC oscillator, and the switchover to the high-frequency oscillator occurs automatically when the crystal oscillator is ready.

MAXQ7665/MAXQ7666 User’s Guide

2-17 Maxim Integrated

2.7.2 External Reset
During normal operation, the MAXQ7665/MAXQ7666 devices are placed into an external reset mode by holding the RESET pin low for
at least four clock cycles. If the MAXQ7665/MAXQ7666 devices are in the low-power stop mode (i.e., system clock is not active), the
RESET pin becomes an asynchronous source, forcing the reset state immediately after being taken to logic 0. Once the MAXQ7665/
MAXQ7666 enter reset mode, it remains in reset as long as the RESET pin is held at logic 0. After the RESET pin returns to logic 1, the
processor starts the internal 7.6MHz RC oscillator if necessary and exits the reset state within four clock cycles (Figure 2-9) and begins
program execution at address 8000h.

The RESET pin is an output and an input. If a reset condition is caused by an internal source (such as a brownout reset, watchdog, or
internal reset), an output reset pulse or low level is generated at the RESET pin as long as the MAXQ7665/MAXQ7666 remain in reset.
If the RESET pin is connected to an incompatible external reset circuit, it may not be able to drive the output reset signal. However, if
this occurs it does not affect the internal reset condition.

Because the XT bit in the CKCN register and the HFE bit in the OSCC register are cleared to 0 only on power-on reset, it is possible to
exit an external reset with the clock source set to the high-frequency crystal oscillator. In this case, execution resumes running from
the RC oscillator, and the switchover to the high-frequency oscillator occurs automatically when the crystal oscillator is ready.

2.7.3 Internal System Reset
The MAXQ7665/MAXQ7666 support internal system reset capability from in-system programming mode. An internal system reset is
generated when the ROD bit in the system control register is set. The SPE bit in the ICDF register must also be set. The bootloader
software can use this capability to initiate an internal system reset when the flash loader completes its operation. See Section 12 for
more details on in-system programming.

MAXQ7665/MAXQ7666 User’s Guide

2-18

Figure 2-9. MAXQ7665/MAXQ7666 External Reset

SYSTEM CLOCK

RESET

RESET
SAMPLING

INTERNAL
RESET

FIRST
INSTRUCTION

FETCH

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-1

SECTION 3: ANALOG I/O MODULE

This section contains the following information:

3.1 Architecture .3-5

3.1.1 Analog I/O Pins .3-6

3.2 Analog I/O Module Control and Status Registers .3-7

3.2.1 Analog Power Enable Register (APE) .3-7

3.2.2 ADC Control Register (ACNT) .3-8

3.2.3 DAC Control Register (DCNT) .3-11

3.2.4 DAC Input Data Register (DACI) .3-12

3.2.5 DAC Output Data Register (DACO) .3-12

3.2.6 ADC Data Register (ADCD) .3-13

3.2.7 Temperature Sense Offset Register (TSO) .3-13

3.2.8 Analog Interrupt Enable Register (AIE) .3-14

3.2.9 Analog Status Register (ASR) .3-15

3.2.10 Oscillator Control Register (OSCC) .3-16

3.3 Analog-to-Digital Converter (ADC) Port .3-17

3.3.1 ADC Signals .3-18

3.3.2 Differential Inputs .3-18

3.3.3 True-Differential Analog Input T/H .3-20

3.3.4 Unipolar/Bipolar .3-21

3.3.5 Transfer Function .3-22

3.3.6 Programmable Gain Amplifier .3-25

3.3.7 Analog Input Protection .3-26

3.3.8 ADC Clock .3-27

3.3.9 Auto Shutdown Mode .3-27

3.3.10 ADC Conversion Start Sources and Timing .3-28

3.3.11 ADC Interrupts .3-32

3.3.12 Using the ADC .3-33

Maxim Integrated

3.4 Temperature Sensor .3-34

3.4.1 Temperature Sensor Signals. 3-35

3.4.2 Using the Temperature Sensor . 3-35

3.4.3 Internal Temperature Sensor . 3-36

3.4.4 Remote Temperature Sensor Driver . 3-36

3.4.4.1 Differential Temperature Measurement .3-37

3.4.4.2 Single-Ended Temperature Measurement .3-37

3.4.5 Remote Temperature Sensor Selection .3-37

3.5 Digital-to-Analog Converter (DAC) Port .3-37

3.5.1 DAC Signals . 3-38

3.5.2 External Reference Input and Output Buffer . 3-38

3.5.3 Loading DAC Data Register for Conversion . 3-39

3.5.4 DAC Power-Down . 3-40

3.5.5 Using the DAC . 3-40

MAXQ7665/MAXQ7666 User’s Guide

3-2Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-3

Figure 3-1. Analog I/O Module Block Diagram .3-5

Figure 3-2. Differential Input ADC Block Diagram .3-17

Figure 3-3. Multiplexer Input Connection Scheme .3-19

Figure 3-4A. Equivalent Input Circuit (Acquisition Mode with PGA Bypassed) 3-21

Figure 3-4B. Equivalent Input Circuit (Hold/Conversion Mode with PGA Bypassed) 3-21

Figure 3-5. Unipolar Transfer Function (PGA Gain = 1) .3-22

Figure 3-6. Bipolar Transfer Function (PGA Gain = 1) .3-23

Figure 3-7. PGA Block Diagram .3-25

Figure 3-8. Analog Input Range Measuring a Positive Analog Input Value 3-26

Figure 3-9. Analog Input Range Measuring a Negative Analog Input Value 3-27

Figure 3-10. Single-Edge ADC Conversion Timing; ADC Previously Off and PGA Bypassed . . .3-31

Figure 3-11. Single-Edge ADC Conversion Timing; ADC Previously On and PGA Bypassed . . .3-31

Figure 3-12. Dual-Edge ADC Conversion Timing; ADC Previously Off and PGA > 13-32

Figure 3-13. Flow Chart for Initializing and Using the ADC .3-33

Figure 3-14. MAXQ7665/MAXQ7666 Temperature Sensor Block Diagram3-34

Figure 3-15. Temperature Transfer Function .3-36

Figure 3-16. DAC Block Diagram .3-38

LIST OF FIGURES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-4

Table 3-1. Analog I/O Module Signals .3-6

Table 3-2. ADC Signals .3-18

Table 3-3. PGA Gain and Channel Input Capacitance .3-20

Table 3-4. Unipolar Code Table (PGA Gain = 1) .3-22

Table 3-5. Unipolar Input Scaling .3-23

Table 3-6. Bipolar Code Table (PGA Gain = 1) .3-24

Table 3-7. Bipolar Input Scaling .3-24

Table 3-8. ADC Conversion Start Source Selection .3-28

Table 3-9. ADC Dual- and Single-Edge Modes .3-29

Table 3-10. Temperature Sensor Signals .3-35

Table 3-11. Remote Sensor Transistor Manufacturers .3-37

Table 3-12. DAC Signals .3-38

Table 3-13. DAC Input Code to Output Voltage (Gain = 1) .3-39

Table 3-14. DAC Load Control Selection .3-39

LIST OF TABLES

Maxim Integrated

SECTION 3: ANALOG I/O MODULE
The MAXQ7665/MAXQ7666 contain an ultra-low-power precision analog I/O module for measuring and controlling a host of sensors,
motors, bridges, and other analog peripherals. The analog I/O module has all the components to make the MAXQ7665/MAXQ7666
stand-alone data-acquisition machines ideal for harsh environment applications. Except where explicitly noted, the MAXQ7665 and
MAXQ7666 support identical features.

The analog I/O module includes the following features:

• 8 differential analog-input multiplexer

• Low-power, 12-bit, 500ksps successive approximation ADC

• 12-bit, buffered, voltage-output DAC

• On-chip ±1°C accurate temperature sensor (typ)

• Remote temperature sensor drive circuit

• Internal programmable gain amplifier (x1, x2, x4, x8, x16, x32)

• Individual external reference inputs for the ADC and DAC

3.1 Architecture
The analog-input multiplexer supports 8 differential measurements and feeds the programmable gain amplifier (PGA) and the 12-bit
SAR ADC. The low noise, programmable gain amplifier with gains of x1 to x32 allows interfacing to a variety of devices with different
signal amplitudes. The ADC conversion clock source is the same as the system clock source (internal oscillator or external
crystal/clock) and has a user-programmable clock division ratio. The 12-bit voltage-out DAC has internal feedback resistors for reduc-
ing external component count. The internal temperature sensor performs temperature measurements with an internal diode-connect-
ed transistor. In the remote temperature sensor drive configuration, the device provides the proper bias necessary to measure tem-
perature with up to two external diode-connected transistor sensors. The MAXQ7665/MAXQ7666 support independent external refer-
ence inputs for the ADC and DAC to allow the use of high precision, high quality reference sources.

Figure 3-1 shows a functional block diagram of the MAXQ7665/MAXQ7666 analog I/O module.

MAXQ7665/MAXQ7666 User’s Guide

3-5

Figure 3-1. Analog I/O Module Block Diagram

AIN0
AIN1
AIN2
AIN3

AIN4
AIN5
AIN6
AIN7
AIN8
AIN9

AIN10
AIN11
AIN12
AIN13

AIN14
AIN15

PGAE

DACE

12-BIT
500kHz

ADC

12-BIT
DAC

PGA

DATA BUS (15:0)

ANALOG I/O FUNCTIONAL BLOCKS

8 DIFFERENTIAL
CHANNEL

MULTIPLEXER

TIMER 2
TIMER 1
TIMER 0

ADCCLK

VDAC

INTERNAL
TEMP

SENSOR

RE
FA

DC

RE
FD

AC

50kΩ

50kΩ

TSE

PGG[2:0]

ADCDIFADCMX[4:0]

P0
.5

/
DA

CL
OA

D

P0
.4

/
AD

CC
NV

ADCSADCE

ADCBY ADCDUL

ADCBIP

ADCASD

Maxim Integrated

3.1.1 Analog I/O Pins
The analog I/O module has 24 pins associated with the analog functions on the microcontroller. Table 3-1 shows the external interface
signals used by the analog I/O module.

Table 3-1. Analog I/O Module Signals

MAXQ7665/MAXQ7666 User’s Guide

3-6

SIGNAL FUNCTION

AIN15

AIN14

AIN13

AIN12

AIN11

AIN10

AIN9

AIN8

AIN7

AIN6

AIN5

AIN4

AIN3

AIN1

ADC Analog Input #. These are dedicated analog input pins connected through the internal analog multiplexer to the PGA and ADC.
The analog multiplexer supports 8 differential-input measurements. In differential-input mode, the inputs are paired: AIN14 to
AIN15, AIN12 to AIN13, AIN10 to AIN11, AIN8 to AIN9, AIN6 to AIN7, AIN4 to AIN5, AIN2 to AIN3, AIN0 to AIN1.

AIN2/TS2

AIN0/TS0

ADC Analog Input/Remote Temperature Sensor. Analog input pins AIN2 and AIN0 are shared with the remote temperature-sensor
drive line. If the remote temperature-sensor drive circuit is not selected, the pin can be used as a differential input to the
multiplexer. In differential-input configuration, AIN2 is referenced to AIN3 while AIN0 is referenced to AIN1. When selected, the
remote temperature-sensor drive circuit supplies suitable current to drive an external diode-connected transistor to monitor
temperature away from the microcontroller. The remote temperature measurement can be made either in single-ended or
differential configuration. Note: In differential configuration, AIN3 is used as the return path for AIN2 and AIN1 is used as the return
path for AIN0.

DACOUT DAC Voltage Output. DACOUT is a dedicated output pin. If the DAC is disabled, the pin is configured as a 100k pulldown
resistor to AGND. The DACOUT line can be used for precision drive applications.

P0.4/ADCCNV
ADC Conversion Start Input/Port 0 Data Bit 4. The ADC conversion start is a shared pin with the general-purpose digital I/O port 0
bit 4. As ADCCNV, this pin can trigger ADC sampling and conversion on a rising or falling edge. After power-up or a reset this
pin defaults to a digital I/O port pin with pullup enabled.

P0.5/DACLOAD
DAC Load Input/Port 0 Data Bit 5. The DAC load is a shared pin with the general-purpose digital I/O port 0 bit 5. As DACLOAD,
this pin can trigger DAC conversion by loading the DAC output register on a rising or falling edge. After power-up or a reset this
pin defaults to a digital I/O port pin with pullup enabled.

REFADC ADC Reference Input. The REFADC input pin is used to supply an external precision voltage reference to the ADC. The REFADC
can handle a voltage range from 1V to AVDD. The REFADC input determines the full-scale range (FSR) of the internal 12-bit ADC.

REFDAC DAC Reference Input. The REFDAC input pin is used to supply an external precision voltage reference to the DAC. The REFDAC
can handle a voltage range from 0 to AVDD. The REFDAC input determine the full-scale range (FSR) of the internal 12-bit DAC.

AVDD Analog VDD Supply. The analog supply voltage is +5.0V for the MAXQ7665/MAXQ7666.

AGND Analog Ground (2 pins)

EP

Exposed Paddle. The MAXQ7665/MAXQ7666 TQFN package has an exposed paddle on the bottom of the package, providing a
very low thermal resistance path for heat removal from the IC, as well as low-inductance path to ground. The pad is electrically
connected to AGND and should be soldered to the circuit board analog ground plane for proper thermal and electrical
performance. Refer to Maxim’s Application Note HFAN-08.1: Thermal Considerations for QFN and Other Exposed Pad Packages
for additional information.

Maxim Integrated

3.2 Analog I/O Module Control and Status Registers
The analog I/O module uses the following control and status registers.

3.2.1 Analog Power Enable Register (APE)
Register Description: Analog Power Enable Register
Register Name: APE
Register Address: Module 05h, Index 01h

Bits 15, 14, 13, 9, 8, and 2: Reserved. Read 0, write ignored.

Bit 12: I/O Voltage Brownout Detection Enable (VIBE). See Section 2 for details on this bit.

Bit 11: Digital Voltage Brownout Detection Enable (VDBE). See Section 2 for details on this bit.

Bit 10: Digital Voltage Reset Enable (VDPE). See Section 2 for details on this bit.

Bits 7, 6, 5: PGA Gain Setting Bits 2, 1, 0 (PGG2, PGG1, PGG0). These bits set the PGA gain as shown in the following table. The
PGA is bypassed when the PGA gain selected is 1.

Bit 4: Temperature Sensor Enable (TSE). Setting this bit to logic 1 enables the temperature sensor. Clearing this bit to logic 0 turns
off the power to the temperature sensor and disables its operation. The ADCMX4:ADCMX0 bits in the ADC control register determine
if the internal or external temperature sensor configuration is used.

Bit 3: PGA Enable (PGAE). The PGA is enabled when this bit is set to logic 1. Clearing this bit to 0 disables the PGA. The PGAE should
be enabled 5µs before attempting a conversion with a PGA gain other than 1. Note: To bypass the PGA, select a PGA gain of 1
(PGG2:PGG0) and clear the PGAE bit to 0. Setting PGAE = 0 significantly reduces power consumption.

Bit 1: DAC Enable (DACE). Setting this bit to logic 1 enables the DAC block to be ready for conversion. Clearing this bit to logic 0
turns off the power to the DAC block and disables its operation.

Bit 0: ADC Enable (ADCE). Setting this bit to logic 1 enables the ADC block to be ready for conversion. Clearing this bit to logic 0
turns off the power to the ADC block and disables its operation.

MAXQ7665/MAXQ7666 User’s Guide

3-7

Bit # 15 14 13 12 11 10 9 8

Name — — — VIBE VDBE VDPE — —

Reset 0 0 0 0 0 1 0 0

Access r r r rw rw rw r r

Bit # 7 6 5 4 3 2 1 0

Name PGG2 PGG1 PGG0 TSE PGAE — DACE ADCE

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw r rw rw

r = read, w = write
Note: This register is cleared to 0400h on all forms of reset.

PGG2:PGG0 PGA GAIN
000 1 (Default)
001 2
010 4
011 8
100 16
101 32
110 Reserved, should not be used
111 Reserved, should not be used

Maxim Integrated

3.2.2 ADC Control Register (ACNT)
Register Description: ADC Control Register
Register Name: ACNT
Register Address: Module 05h, Index 02h

Bits 15 to 11: ADC Input Multiplexer Bits 4 to 0 (ADCMX4 to ADCMX0). These multiplexer bits select the inputs to the ADC and con-
trol the state of the temperature sensor.

MAXQ7665/MAXQ7666 User’s Guide

3-8

Bit # 15 14 13 12 11 10 9 8

Name ADCMX4 ADCMX3 ADCMX2 ADCMX1 ADCMX0 ADCDIF ADCBIP —

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw r

Bit # 7 6 5 4 3 2 1 0

Name — ADCDUL — ADCASD ADCBY ADCS2 ADCS1 ADCS0

Reset 0 0 0 0 0 0 0 0

Access r rw r rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

ADCDIF = 1
ADCMX4:ADCMX0

POSITIVE NEGATIVE
MEASURE

00000 AIN0 AIN1 Voltage

00001 AIN1 AIN1 Offset Voltage

00010 AIN2 AIN3 Voltage

00011 AIN3 AIN3 Offset Voltage

00100 AIN4 AIN5 Voltage

00101 AIN5 AIN5 Offset Voltage

00110 AIN6 AIN7 Voltage

00111 AIN7 AIN7 Offset Voltage

01000 AIN8 AIN9 Voltage

01001 AIN9 AIN9 Offset Voltage

01010 AIN10 AIN11 Voltage

01011 AIN11 AIN11 Offset Voltage

01100 AIN12 AIN13 Voltage

01101 AIN13 AIN13 Offset Voltage

01110 AIN14 AIN15 Voltage

01111 AIN15 AIN15 Offset Voltage

1x00x Internal Internal Internal Temperature

1x01x AIN0 AIN1 Remote Temperature 1

1x10x AIN2 AIN3 Remote Temperature 2

11110 — — Reserved

11111 — — Reserved

Maxim Integrated

When ADCMX4 is cleared, the ADC input channel is configured for a differential voltage measurement. When ADCMX0 is set, the ADC’s
positive and negative inputs are internally connected to the same analog input pin so the user can measure zero offset error, if any.
When ADCMX4 is set, the ADC input channel is configured to measure remote or internal temperature, and the bits ADCMX3:ADCMX0
control the temperature measurement.

The bits ADCMX1 and ADCMX2 determine if internal or external temperature sense mode is selected.

The bits ADCMX0 and ADCMX3 determine the state of the temperature sensor when measuring temperature.

ADCMX0: TS Auto-Zero Control. This bit puts the temperature sensor in auto-zero state when it is set to logic 1. The auto-zero-
ing is used to cancel internal offset effects.

ADCMX3: TS Current Control. This bit sets the temperature sensor current to its high value when set to logic 1, and sets the cur-
rent to its low value when cleared to logic 0.

The ADC performs temperature measurement by measuring the voltage across a diode-connected transistor at two different current
levels.

Note: The temperature measurement process is fully automated in the MAXQ7665/MAXQ7666 ROM utility routine "tempConv." All the
required setup and temperature measurement algorithm steps for both internal and external temperature measurements are handled
in the utility routine and it returns the local or remote temperature result.

Bit 10: Differential Input (ADCDIF). The ADC operates only on differential inputs and this bit must be set to logic 1 if the remote or
internal temperature sensor drive circuit is not selected. For the remote temperature sensor, this bit determines if the input is single-
ended or differential. When this bit is set to logic 1, the remote temperature sense-diode anode connects to the designated positive
input, and cathode connects to the designated negative input. When this bit is cleared to 0, the sense-diode cathode connects to
AGND. If using internal temperature sense mode, leave this bit as 0.

Bit 9: ADC Bipolar Mode Select (ADCBIP). When this bit is set to logic 1, the ADC is in bipolar mode. When this bit is cleared to 0,
the ADC is in unipolar mode.

Bits 8, 7, 5: Reserved. Read returns 0, write ignored.

Bit 6: ADC Dual-Mode Select (ADCDUL). This bit determines the ADC’s acquisition time. When ADCDUL is set to 1, the ADC operates in
dual-edge mode. The rising edge of ADC_CNVST (internal signal formed by a combination of all three conversion start sources described
below) causes the ADC to power up and begin acquisition; the falling edge causes it to sample and perform a conversion. When ADC-
DUL is 0, the ADC operates in single-edge mode. The rising edge controls the entire conversion, i.e., power-up, acquisition, and conver-
sion sequence if the ADC was off; if the ADC was on, it stays in acquisition mode until the rising edge and then starts conversion.

Note: Setting ADCDUL = 1 and PGA gain = 1 is illegal. If ADCDUL is set as 1, make sure the PGA gain (selected by the PGG2:PGG0
bits in the APE register) is greater than 1.

Bit 4: ADC Auto Shutdown (ADCASD). Setting this bit to logic 1 shuts down the ADC automatically after the conversion is complet-
ed. Clearing this bit to 0 disables the auto shutdown function, and leaves the ADC powered on.

Bit 3: ADC Start/Busy (ADCBY). Setting this bit to logic 1 enables the ADC to perform a conversion when ADCS2:ADCS0 is also set
to 111. ADCBY remains set while the conversion is in progress. A read of this bit reflects the busy status of the ADC. ADCBY is cleared
by hardware when the conversion is complete and the data is ready. Attempting to change ADCBY from 1 to 0 by software is blocked
by hardware in order to allow the conversion to complete.

Note that if software-controlled conversions are implemented (by setting ADCS2:ADCS0 to 111) when ADCDUL is also set, then to com-
plete a conversion the user must first write ADCBY to 1 and then write a second time to attempt to set it back to 0. Setting ADCBY to
1 puts the ADC into acquisition mode. The second write attempting to set ADCBY back to 0 moves the ADC from acquisition to the
conversion phase. The second write will not affect the value of ADCBY until the ADC cycle has completed.

MAXQ7665/MAXQ7666 User’s Guide

3-9

ADCMX2 ADCMX1 FUNCTION

0 0 Internal diode-connected transistor based temperature measurement

0 1 Remote diode-connected transistor based temperature measurement on AIN0

1 0 Remote diode-connected transistor based temperature measurement on AIN2

1 1 Reserved

Maxim Integrated

Bits 2 to 0: ADC Source Select Bits 2 to 0 (ADCS2 to ADCS0). These bits select the ADC conversion start source used to trigger
analog-to-digital conversion:

In mode 110, the ADC completes a conversion every 16 clocks with a PGA gain of 1. For other gains the PGA is active and conver-
sions complete every 56 clocks.

Note that the ADC conversion start source could be one of the timers, ADC conversion start pin, or software writes to ADC start bit. All
three conversion start sources support single-edge or dual-edge modes of operation. Single- or dual-edge mode is controlled by ADC-
DUL bit. Also, all three conversion start sources support auto-shutdown after a conversion. See the ADCASD control bit description.

Note: It is recommended that the ADCS bits are updated before triggering conversions so the ADC conversion start source selection
fully takes effect. As an example, the ADCBY bit should not be set in the same ACNT register write which changes the ADCS bits to
111. The same recommendation also applies to other conversion start sources. When the ADCS bits are being updated, avoid gener-
ating an ADC conversion trigger from the timers or the ADC conversion start pin.

MAXQ7665/MAXQ7666 User’s Guide

3-10

ADCS2:ADCS0 CONVERSION START SOURCE

000 Timer 0.

001 Timer 1.

010 Timer 2.

011 Reserved, functions as 010 if set.

100 From ADC conversion start pin: P0.4/ADCCNV.

101 From ADC conversion start pin with inverted data.

110 Continuous conversion every 16 clocks.

111 From ADC start bit: ACNT.3.

Maxim Integrated

3.2.3 DAC Control Register (DCNT)
Register Description: DAC Control Register
Register Name: DCNT
Register Address: Module 05h, Index 03h

Bits 15 to 7, 3 to 0: Reserved. Read returns 0, write ignored.

Bits 6 to 4: DAC Load Select Bits 2 to 0 (DACLD2 to DACLD0). These bits determine the mechanism of data transfer for DAC con-
version by generating the DACLOAD signal:

MAXQ7665/MAXQ7666 User’s Guide

3-11

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — DACLD2 DACLD1 DACLD0 — — — —

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw r r r r

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

DACLD2:DACLD0 DATA TRANSFER

000

DAC conversion data is sourced from the DACO register under the control of the external DACLOAD input signal. On the rising
edge of the DACLOAD input, the DACO register is loaded with the contents of DACI register and converted. The DAC output signal
(DACOUT) then immediately tracks the DACO value. Note that this selection enables DACLOAD alternate function on the shared
DACLOAD/P0.5 pin.

001
DAC conversion data is sourced from the DACO register under the control of software write to DACI register. The DACO register is
loaded with the contents of DACI when the DACI register is written. The DAC output signal (DACOUT) then immediately tracks the
DACO value.

010 Reserved.

011 Reserved, functions as 001 if set.

100

DAC conversion data is sourced from the DACO register under the control of the external DACLOAD input signal. On the falling
edge of the DACLOAD input, the DACO register is loaded with the contents of DACI register and converted. The DAC output signal
(DACOUT) then immediately tracks the DACO value. Note that this selection enables DACLOAD alternate function on the shared
DACLOAD/P0.5 pin.

101

Square-wave mode. The data source for the DAC depends upon edges supplied by the DACLOAD pin.
1) A falling edge on DACLOAD after entering square-wave mode supplies the data in DACI to the DAC.
2) A rising edge on DACLOAD after entering square-wave mode supplies the data in DACO to the DAC.
The DAC output signal (DACOUT) tracks the DACI value on a falling edge and the DACO value on a rising edge. Note that as the
DAC settling time is up to 15 s, toggling DACLOAD at rates substantially faster than that may not allow the DAC to settle at either of
the intended output values.

110 Reserved.

111 Reserved.

Maxim Integrated

3.2.4 DAC Input Data Register (DACI)
Register Description: DAC Input Data Register
Register Name: DACI
Register Address: Module 05h, Index 04h

Bits 15 to 12: Reserved. Read returns 0, write ignored.

Bits 11 to 0: DAC Input Data 11 to 0 (DACI.11 to DACI.0). This register holds input data for DAC conversion.

3.2.5 DAC Output Data Register (DACO)
Register Description: DAC Output Data Register
Register Name: DACO
Register Address: Module 05h, Index 06h

Bits 15 to 12: Reserved. Read returns 0, write ignored.

Bits 11 to 0: DAC Output Data 11 to 0 (DACO.11 to DACO.0). This register holds output data for DAC conversion. Data from the DAC
input register is transferred to this output register for DAC conversion as controlled by the DACLD2:DACLD0 bits.

MAXQ7665/MAXQ7666 User’s Guide

3-12

Bit # 15 14 13 12 11 10 9 8

Name — — — — DACI.11 DACI.10 DACI.9 DACI.8

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name DACI.7 DACI.6 DACI.5 DACI.4 DACI.3 DACI.2 DACI.1 DACI.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — DACO.11 DACO.10 DACO.9 DACO.8

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name DACO.7 DACO.6 DACO.5 DACO.4 DACO.3 DACO.2 DACO.1 DACO.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

3.2.6 ADC Data Register (ADCD)
Register Description: ADC Data Register
Register Name: ADCD
Register Address: Module 05h, Index 08h

Bits 15 to 12: Reserved. Read returns 0, write ignored.

Bits 11 to 0: ADC Data 11 to 0 (ADCD.11 to ADCD.0). This register holds output data from ADC conversion. Data from the ADC is
latched in to this register at the falling edge of the ADCBY signal.

3.2.7 Temperature Sense Offset Register (TSO)
Register Description: Temperature Sense Offset Register
Register Name: TSO
Register Address: Module 05h, Index 09h

Bits 15 to 0: Temperature Sense Offset Data 15 to 0 (TSO.15 to TSO.0). This 16-bit read-only register holds sign-extended two’s-
complement offset data for temperature sensing conversion. The effective bit length of this register is 12 bits. The upper four bits are
sign extended. The offset stored in this register is added to the final temperature result to convert the raw temp sensor output (in
degrees Kelvin) to degrees Celsius. The temperature conversion utility ROM routine automatically adds the offset stored in this regis-
ter to the final temperature result.

MAXQ7665/MAXQ7666 User’s Guide

3-13

Bit # 15 14 13 12 11 10 9 8

Name — — — — ADCD.11 ADCD.10 ADCD.9 ADCD.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ADCD.7 ADCD.6 ADCD.5 ADCD.4 ADCD.3 ADCD.2 ADCD.1 ADCD.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name TSO.15 TSO.14 TSO.13 TSO.12 TSO.11 TSO.10 TSO.9 TSO.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name TSO.7 TSO.6 TSO.5 TSO.4 TSO.3 TSO.2 TSO.1 TSO.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

3.2.8 Analog Interrupt Enable Register (AIE)
Register Description: Analog Interrupt Enable Register
Register Name: AIE
Register Address: Module 05h, Index 0Ah

Bits 15 to 7 and 3: Reserved. Read returns 0, write ignored.

Bit 6: High-Frequency Oscillator Failure Interrupt Enable (HFFIE). See Section 5 for details on this bit.

Bit 5: I/O Voltage Brownout Interrupt Enable (VIOBIE). See Section 2 for details on this bit.

Bit 4: Digital Brownout Interrupt Enable (DVBIE). See Section 2 for details on this bit.

Bit 2: ADC Overrun Interrupt Enable (AORIE). This bit must be set to logic 1 to generate an interrupt request when an ADC result
overrun occurs and the ADCOV flag is set to logic 1. Clearing this bit to 0 disables the interrupt capability from ADCOV. Note: To be
acknowledged by the microcontroller interrupt logic, this interrupt request must also be enabled by the IGE bit in the IC register and
IM5 mask in the IMR peripheral register.

Bit 1: ADC Data Ready Interrupt Enable (ADCIE). This bit must be set to logic 1 to generate an interrupt request when the ADC com-
pletes a conversion and the ADCRY flag is set to logic 1. Clearing this bit to 0 disables the interrupt capability from ADCRY. Note: To
be acknowledged by the microcontroller interrupt logic, this interrupt request must also be enabled by the IGE bit in the IC register
and IM5 mask in the IMR peripheral register.

Bit 0: This bit is implemented and available to be used as a user-software-controlled bit.

MAXQ7665/MAXQ7666 User’s Guide

3-14

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFIE VIOBIE DVBIE — AORIE ADCIE —

Reset 0 0 0 0 0 0 0 1

Access r rw rw rw r rw rw rw

r = read, w = write
Note: This register is cleared to 0001h on all forms of reset.

Maxim Integrated

3.2.9 Analog Status Register (ASR)
Register Description: Analog Status Register
Register Name: ASR
Register Address: Module 05h, Index 0Bh

Bit 15: I/O Voltage Brownout Comparator Level (VIOLVL). See Section 2 for details on this bit.

Bit 14: Digital Voltage Brownout Comparator Level (DVLVL). See Section 2 for details on this bit.

Bits 13, 12, 10 to 7, 3, and 0: Reserved. Read returns 0, write ignored.

Bit 11: High-Frequency Oscillator Ready (XHFRY). See Section 5 for details on this bit.

Bit 6: External High-Frequency Oscillator Failure Flag (HFFINT). See Section 5 for details on this bit.

Bit 5: I/O Voltage Brownout Flag (VIOBI). See Section 2 for details on this bit.

Bit 4: Digital Voltage Brownout Flag (DVBI). See Section 2 for details on this bit.

Bit 2: ADC Overrun Flag (ADCOV). This flag signifies that an ADC result overrun has occurred when it is set to logic 1. This bit is
cleared after reading from the ASR register. ADC overrun occurs if prior ADC data gets overwritten before it is read (i.e., ADCRY = 1
at falling edge of ADCBY). If enabled, the ADC overrun interrupt is generated by this register bit.

Bit 1: ADC Data Ready Flag (ADCRY). This flag is set to logic 1 when the ADC completes its conversion and data is ready for access.
This bit is cleared after reading data from the ADCD register. If enabled, the ADC data ready interrupt is generated by this register bit.

MAXQ7665/MAXQ7666 User’s Guide

3-15

Bit # 15 14 13 12 11 10 9 8

Name VIOLVL DVLVL — — XHFRY — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFINT VIOBI DVBI — ADCOV ADCRY —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: The ADCOV bit is cleared by all forms of reset. All other bits are only reset by POR. Reading the ASR register resets to 0 all the status flag bits

except VIOLVL and DVLVL.

Maxim Integrated

3.2.10 Oscillator Control Register (OSCC)
Register Description: Oscillator Control Register
Register Name: OSCC
Register Address: Module 05h, Index 0Ch

Bits 15 to 12, 4, and 3: Reserved. Read returns 0, write ignored.

Bits 11 and 10: High-Frequency Crystal Output Capacitance Select 1 and 0 (HFOC1 and HFOC0). See Section 5 for details on
these bits.

Bits 9 and 8: High-Frequency Crystal Input Capacitance Select 1 and 0 (HFIC1 and HFIC0). See Section 5 for details on these bits.

Bits 7 to 5: ADC Clock Divider Bits 2 to 0 (ADCCD2 to ADCCD0). These bits determine the ADC clock frequency that is divided
down from the system clock. The MAXQ7665/MAXQ7666 ADC uses the divided-system clock to clock the multiplexer front-end selec-
tion, track and hold acquisition, and each step of the successive approximation conversion. Note that there is no ADC clock in stop
mode.

Bit 2: External High-Frequency Clock Enable (EXTHF). See Section 5 for details on this bit.

Bit 1: Internal RC Oscillator Enable (RCE). See Section 5 for details on this bit.

Bit 0: High-Frequency Crystal Oscillator Enable (HFE). See Section 5 for details on this bit.

MAXQ7665/MAXQ7666 User’s Guide

3-16

Bit # 15 14 13 12 11 10 9 8

Name — — — — HFOC1 HFOC0 HFIC1 HFIC0

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name ADCCD2 ADCCD1 ADCCD0 — — EXTHF RCE HFE

Reset 0 0 0 0 0 0 1 0

Access rw rw rw r r rw rw rw

r = read, w = write (Note that some clock control bits may have locking mechanisms for write.)
Note: This register is cleared to 0002h on power-on reset and is not affected by other forms of reset.

ADCCD2:ADCCD0 DIVIDE RATIO ADC CLOCK

000 1 (default) ADC Clock = System Clock

001 2 ADC Clock = System Clock/2

010 4 ADC Clock = System Clock/4

011 8 ADC Clock = System Clock/8

100 16 ADC Clock = System Clock/16

101–111 Reserved,
divide by 16 if set ADC Clock = System Clock/16

Maxim Integrated

3.3 Analog-to-Digital Converter (ADC) Port
The MAXQ7665/MAXQ7666 contain a low-power, high-precision, 12-bit, 500ksps successive approximation analog-to-digital convert-
er (ADC) and 8 differential-input channel multiplexer. The ADC can be configured to run from a variety of conversion start sources both
internal and external to the microcontroller. The ADC conversion rate is reduced to 142ksps when PGA gains greater than 1 are used
to allow for adequate analog signal settling. PGA functional details are covered in Section 3.3.6. The on-chip temperature sensor and
the remote temperature sense drive makes use of the ADC for temperature measurements (see Section 3.4 for details).

The ADC features the following:

• 12-bit SAR converter

• 8 differential analog-input channels

• Integrated track-and-hold (T/H) input circuit

• Integrated PGA on the input path with 1x, 2x, 4x, 8x, 16x, and 32x gains

• 500ksps sampling rate for PGA gain = 1

• 142ksps sampling rate for PGA gain > 1

• Bipolar/unipolar selection

• Selectable ADC conversion start source from on-chip timers, ADC conversion pin, and software write

• Acquisition time control

• Auto shutdown on conversion

• End of conversion and overrun status interrupts
Figure 3-2 shows a simplified functional block diagram of the ADC in differential input configuration.

MAXQ7665/MAXQ7666 User’s Guide

3-17

Figure 3-2. Differential Input ADC Block Diagram

AIN0
AIN2
AIN4
AIN6
AIN8

AIN10
AIN12
AIN14

AIN1
AIN3
AIN5
AIN7
AIN9

AIN11
AIN13
AIN15

PO.4/ADCCNV

CONVERSION
CONTROL

ADCBY
TIMERS 0, 1, 2

ADCDUL

ADCS
2 1 0

2 1 0
PGG ADCRDY

ADCOV

ADCBIP

PGAE

ADCE

REFADC

ADC
CLOCK

DIV

ADCASD

12
DATA
BUS

0 1 2 3 4
ADCMX

2 1 0

ADCCD

SYSTEM
CLOCK

8:1
MUX

8:1
MUX

12-BIT ADC
500ksps

ADCDIF

PGA
1 TO 32

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-18

3.3.1 ADC Signals
The MAXQ7665/MAXQ7666 ADC uses 18 external signals (other than analog supply and ground) as explained in Table 3-2.

Table 3-2. ADC Signals

3.3.2 Differential Inputs
The MAXQ7665/MAXQ7666 ADC use a fully differential successive-approximation register (SAR) conversion technique and an on-chip
T/H block to convert temperature and voltage signals into a 12-bit digital result. Differential configurations are supported using an ana-
log input channel multiplexer that supports 8 differential channels.

In differential input configuration, analog inputs AIN+ and AIN- are selected from the following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,
AIN6/AIN7, AIN8/AIN9, AIN10/AIN11, AIN12/AIN13, and AIN14/AIN15. The differential input configuration references all input signals
to the complementary multiplexer channel input, minimizing common-mode DC offsets and noise. Figure 3-3 shows the multiplexer
connection scheme. The analog input is configured for differential conversion by writing logic 1 to the ADCDIF control bit, while ana-
log input channel selection is controlled by the ADCMX control field in the ACNT peripheral register.

The remote temperature sensor configuration in differential mode uses analog input channel pairs AIN2/AIN3 and/or AIN0/AIN1. In sin-
gle-ended remote temperature sensor configuration, only channels AIN2 and AIN0 are used. Internal temperature sensor configura-
tion measures local die temperature and does not use any analog input channel.

PIN NUMBER
SIGNAL

48-PIN 56-PIN
FUNCTION

AIN15 45 53

AIN14 46 54

AIN13 47 55

AIN12 48 56

AIN11 1 1

AIN10 2 2

AIN9 3 3

AIN8 4 4

AIN7 9 11

AIN6 10 12

AIN5 11 13

AIN4 12 14

AIN3 13 15

AIN2 14 16

AIN1 15 17

AIN0 16 18

ADC Analog Input 15 to 0. These are dedicated analog input pins connected through the internal analog
multiplexer to the PGA and ADC. The analog multiplexer supports 8 differential-input measurements. In
differential input mode, the inputs are paired: AIN14 to AIN15, AIN12 to AIN13, AIN10 to AIN11, AIN8 to
AIN9, AIN6 to AIN7, AIN4 to AIN5, AIN2 to AIN3, AIN0 to AIN1.

(See Section 3.4: Temperature Sensor for discussion on using analog inputs AIN2 and AIN0 for measuring
remote temperature.)

P0.4/ADCCNV 36 41
Port 0 Data Bit 4/ADC Conversion Start. The ADC conversion start is a shared pin with the digital I/O port 0
bit 4. As ADCCNV, this pin can trigger ADC sampling and conversion on a rising or falling edge. After
power-up or a reset this pin defaults to a digital I/O port pin with pullup enabled.

REFADC 6 6
ADC Reference Input. The REFADC input pin is used to supply an external precision voltage reference to
the ADC. The REFADC can handle a voltage range from 1V to AVDD. The REFADC input determines the
full-scale range (FSR) of the internal 12-bit ADC.

AVDD 44 52 Analog VDD Supply. For the MAXQ7665/MAXQ7666, the analog supply voltage is +5.0V.

AGND 5, 8 5, 8 Analog Ground

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-19

Figure 3-3. Multiplexer Input Connection Scheme

AIN14

AIN12

AIN10

AIN8

AIN6

AIN4

AIN2

AIN0

AIN15

AIN13

AIN11

AIN9

AIN7

AIN5

AIN3

AIN1

1

CIN+

CIN-

TRK
CMD

12-BIT ADC
500ksps

23

ADCMX

12 0
PGG

PGA
x1, x2,
x4, x8,

x16, x32

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-20

3.3.3 True-Differential Analog Input T/H
The equivalent input circuit of Figure 3-4 A and B shows the MAXQ7665/MAXQ7666’s analog input architecture when the PGA is
bypassed (PGA disabled and PGA gain = 1). In track mode, a positive input capacitor is connected to AIN0, AIN2, AIN4…AIN14 and
a negative input capacitor is connected to AIN1, AIN3, AIN5…AIN15 in differential mode. T/H timing is controlled by the ADC source
select (ADCS2:ADCS0) and ADC dual-mode select (ADCUL) fields in the ADC control register (ACNT). ADCS selects an ADC con-
version start source, which could be one of the timers, ADCCNV pin, or software writes to the ADC start bit. All three conversion start
sources support single-edge or dual-edge modes of operation, which are determined by the ADCDUL bit. When ADCDUL is set to 1,
the ADC operates in dual-edge mode. The rising edge of the selected conversion start source causes the ADC to power up and begin
acquisition; the falling edge causes it to sample and perform a conversion. If ADCDUL is set as 1, make sure the PGA gain (selected
by the PGG2:PGG0 bits in the APE register) is greater than 1. Setting ADCDUL = 1 and PGA gain = 1 is illegal. When ADCDUL is 0,
the ADC operates in single-edge mode. The rising edge controls the entire conversion, i.e., power-up, acquisition, and conversion
sequence if the ADC was off; if the ADC was on, it stays in acquisition mode until the rising edge and then starts conversion. Once a
conversion has been initiated, the T/H enters acquisition mode for the next conversion on the 13th falling edge of ADCCLK, if auto shut-
down (ADCASD = 0 in ADC control register) is disabled. See Section 3.3.10 for ADC conversion start sources and timing details.

The time required for the T/H to acquire an input signal is determined by how quickly its input capacitance is charged. If the input sig-
nal’s source impedance is high, the acquisition time lengthens. The acquisition time, tACQ, is the minimum time needed for the signal
to be acquired. It is calculated by the following equation:

tACQ ≥ k x (RSOURCE + RIN) x CIN

Where:

k = 9 ≈ ln (2 x 212)

The constant, k, is the number of RC time constants required so that the voltage on the internal sampling capacitor reaches 12-bit
accuracy, i.e., so that the difference between the input voltage and the sampling capacitor voltage is equal to 0.5 LSB.

RSOURCE is the source impedance of the input signal, RIN = 1kΩ is the equivalent differential analog input resistance, and CIN = 14pF
is the equivalent differential analog input capacitance when PGA = 1. Note that for PGA = 1, tACQ is never less than 375ns (3 ADCCLK
periods at 8MHz), and any source impedance less than 1kΩ does not significantly affect the ADC’s AC performance. For higher source
impedance, a longer acquisition time is required.

For PGA > 1, tACQ requires an additional 5µs (40 ADCCLK cycles at 8MHz). The additional cycles are due to PGA settling time and
automatically introduced by the internal hardware. The PGA uses a switched capacitor technique (see Section 3.3.6), and channel
input capacitance CIN increases with gain as shown in Table 3-3.

With PGA > 1, any source impedance less than 5kΩ does not significantly affect the ADC’s AC performance.

Table 3-3. PGA Gain and Channel Input Capacitance

PGA
CIN (pF)

(CIN = CIN + = CIN-)

x2 2

x4 4

x8 8

x16 16

x32 32

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-21

3.3.4 Unipolar/Bipolar
The MAXQ7665/MAXQ7666 ADC produces a digital output that corresponds to the differential analog input voltage as long as the dif-
ferential analog inputs are within the specified range. The analog inputs are configured for differential conversion when the ADCDIF
control bit is set. When performing differential conversions, the control bit ADCBIP in analog control register selects between unipolar
and bipolar operation modes. Unipolar mode sets the differential input range from 0 to REFADC (for PGA gain of 1, it is less if the gain
is > 1). A negative differential analog input in unipolar mode causes the digital output code to be 0. Selecting bipolar mode sets the
differential input range to -REFADC/2 to +REFADC/2 (for PGA gain of 1, it is less if the gain is > 1). The digital output code is straight
binary in unipolar mode and two’s complement in bipolar mode (see Section 3.3.5: Transfer Function).

Figure 3-4A. Equivalent Input Circuit (Acquisition Mode with PGA Bypassed)

CONTROL
LOGIC

CAPACITIVE
DAC

AGND

AIN+

AIN-

CIN+

CIN-

RIN+

RIN-

COMP

AVDD

CONTROL
LOGIC

CAPACITIVE
DAC

AGND

AIN+

AIN-

CIN+

AVDD

CIN-

RIN+

RIN-

COMP

Figure 3-4B. Equivalent Input Circuit (Hold/Conversion Mode with PGA Bypassed)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-22

3.3.5 Transfer Function
The MAXQ7665/MAXQ7666 ADC output is straight binary in unipolar mode. Figure 3-5 shows the MAXQ7665/MAXQ7666 ADC unipo-
lar transfer function for PGA gain of 1. Table 3-4 shows the unipolar relationship between the differential analog input voltage and the
digital output code for PGA gain of 1.

Table 3-4. Unipolar Code Table (PGA Gain = 1)

Figure 3-5. Unipolar Transfer Function (PGA Gain = 1)

000

001

002

003

004

FFC

FFB

FFD

FFE

FFF

0 1 2 3 4 FSFS - 1.5 LSB

FULL-SCALE
TRANSITIONFS = REFADC

ZS = 0
1 LSB = REFADC / 4096

OU
TP

UT
 C

OD
E

(h
ex

)

DIFFERENTIAL INPUT VOLTAGE (LSB)

BINARY DIGITAL OUTPUT CODE
ADCD11:ADCD0

HEXADECIMAL EQUIVALENT OF
ADCD11:ADCD0

DECIMAL EQUIVALENT OF
ADCD11:ADCD0 (CODE12)

IDEAL DIFFERENTIAL INPUT
VOLTAGE (V)

(REFADC = 5.0V)

1111 1111 1111 0xFFF 4095 +4.99878 ± 0.5 LSB

1111 1111 1110 0xFFE 4094 +4.99756 ± 0.5 LSB

1000 0000 0001 0x801 2049 +2.50122 ± 0.5 LSB

1000 0000 0000 0x800 2048 +2.5 ± 0.5 LSB

0111 1111 1111 0x7FF 2047 +2.49878 ± 0.5 LSB

0000 0000 0001 0x001 1 +0.00122 ± 0.5 LSB

0000 0000 0000 0x000 0 +0.000 + 0.5 LSB

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-23

Table 3-5 shows the input range for various PGA settings (PGG2:PGG0) in unipolar mode. When the PGA is used (gain > 1), the dif-
ferential input range at the analog multiplexer input is reduced by the gain factor. The maximum PGA output value is limited to 3.2V.
For gain > 1, differential input range x PGA gain ≤ 3.2V and the ADC output code range is limited to 0–2621 (decimal).

Table 3-5. Unipolar Input Scaling

The MAXQ7665/MAXQ7666 ADC output is two’s complement in bipolar mode. Figure 3-6 shows the MAXQ7665/MAXQ7666 ADC bipo-
lar transfer function for PGA gain = 1. Table 3-6 shows the bipolar relationship between the differential analog input voltage and the
digital output code for PGA gain = 1. In bipolar mode, the inputs are measured in a truly differential fashion where either input can
exceed the other by up to REFADC/2 (for gain = 1, but limited for gain > 1).

PGG2 PGG1 PGG0 GAIN
FACTOR

DIFFERENTIAL INPUT
RANGE AT MUX

INPUTS

DIFFERENTIAL INPUT
RANGE WITH 5.0V

EXTERNAL REFERENCE

LSB SIZE WITH 5.0V
EXTERNAL

REFERENCE

OUTPUT CODE RANGE
(DECIMAL)

0 0 0 x1 0 to +REFADC 0 to 4.99878V 1.22mV 0–4095

0 0 1 x2 0 to +REFADC/2
(1.6V max)

0 to 1.6V 610.35 V

0 1 0 x4 0 to +REFADC/4
(0.8V max)

0 to 0.8V 305.18 V

0 1 1 x8 0 to +REFADC/8
(0.4V max)

0 to 0.4V 152.59 V

1 0 0 x16 0 to +REFADC/16
(0.2V max)

0 to 0.2V 76.29 V

1 0 1 x32 0 to +REFADC/32
(0.1V max)

0 to 0.1V 38.15 V

0–2621
(REFADC = +5V)

Figure 3-6. Bipolar Transfer Function (PGA Gain = 1)

800

801

FFE

001

000

FFF

7FE

7FF

-FS 0 +FS

OU
TP

UT
 C

OD
E

(h
ex

)

DIFFERENTIAL INPUT VOLTAGE (LSB)

+FS - 1.5 LSB

FULL-SCALE
TRANSITION+FS = REFADC / 2

ZS = 0
-FS = -REFADC / 2
1 LSB = REFADC / 4096

-FS + 0.5 LSB

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-24

Table 3-6. Bipolar Code Table (PGA Gain = 1)

Table 3-7 shows the input range for various PGA settings (PGG2:PGG0) in bipolar mode. When the PGA is used (gain > 1), the differ-
ential input range at the analog multiplexer input is reduced by the gain factor:

full-scale differential input range = ±REFADC / (2 x PGA gain factor)

Table 3-7. Bipolar Input Scaling

The differential analog input voltage as a function of REFADC, PGA gain factor (PGA_GF), and the ideal (error-free) digital output code
are determined with the following equation:

ΔVAIN = LSB x CODE12 ± 0.5 x LSB

Where:

ΔVAIN = VAIN+ - VAIN-

LSB = REFADC / (PGA_GF x 212) = REFADC / (PGA_GF x 4096)

CODE12 = the decimal equivalent of the digital output code (see Table 3-4 and Table 3-6)

PGA_GF = PGA gain factor (1, 2, 4, 8, 16, or 32)

±0.5 x LSB represents the quantization error that is inherent to any ADC

When using a 4.096V reference and a PGA gain factor of 1, 1 LSB equals 1.0mV. When using a 5.0V reference and a PGA gain factor
of 1, 1 LSB equals 1.22mV.

BINARY DIGITAL OUTPUT CODE
ADCD11:ADCD0

HEXADECIMAL EQUIVALENT OF
ADCD11:ADCD0

DECIMAL EQUIVALENT OF
ADCD11:ADCD0 (CODE12)

IDEAL DIFFERENTIAL INPUT
VOLTAGE (V)

(REFADC = 5.0V)

0111 1111 1111 0x7FF +2047 +2.49878 ± 0.5 LSB

0111 1111 1110 0x7FE +2046 +2.49756 ± 0.5 LSB

0000 0000 0001 0x001 +1 +0.00122 ± 0.5 LSB

0000 0000 0000 0x000 0 0.000 ± 0.5 LSB

1111 1111 1111 0xFFF -1 -0.00122 ± 0.5 LSB

1000 0000 0001 0x801 -2047 -2.49878 ± 0.5 LSB

1000 0000 0000 0x800 -2048 -2.5 ± 0.5 LSB

PGG2 PGG1 PGG0 GAIN
FACTOR

DIFFERENTIAL
INPUT RANGE AT

MUX INPUTS

DIFFERENTIAL INPUT RANGE
WITH 5.0V EXTERNAL

REFERENCE

LSB SIZE WITH 5.0V
EXTERNAL

REFERENCE

OUTPUT CODE
RANGE (DECIMAL)

0 0 0 x1 ±REFADC/2 -2.5V to 2.5V 1.22mV

0 0 1 x2 ±REFADC/4 -1.25V to 1.25V 610.35μV

0 1 0 x4 ±REFADC/8 -0.625V to 0.625V 305.18μV

0 1 1 x8 ±REFADC/16 -0.313V to 0.313V 152.59μV

1 0 0 x16 ±REFADC/32 -0.156V to 0.156V 76.29μV

1 0 1 x32 ±REFADC/64 -0.078V to 0.078V 38.15μV

-2048 to +2047

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-25

3.3.6 Programmable Gain Amplifier
The MAXQ7665/MAXQ7666 programmable gain amplifier (PGA) receives its inputs from the input multiplexer and feeds its outputs to the
12-bit ADC. Figure 3-7 shows the MAXQ7665/MAXQ7666 PGA block diagram. The PGA has software-selectable gains of x1, x2, x4, x8,
x16, and x32. The PGA uses a switched capacitor technique that reduces power and improves linearity and accuracy. The PGA has a 5µs
warmup/turn-on time from the PGA enable (bit 3 in APE register). The analog front-end should be configured before attempting any con-
versions to ensure that the PGA and ADC are enabled and fully functional. This is most important after a power-down or reset condition.

The MAXQ7665/MAXQ7666 PGA is bypassed when set to gain = 1 (PGG2:PGG0 = 000). If the PGAE bit in the APE register is cleared
(PGA disabled), power consumption is also reduced significantly. To bypass the PGA, disabling the PGA alone is not enough; the gain
must be set to 1. This allows for full-speed analog signal acquisition and conversion. The analog front-end can acquire and convert an
analog signal in 2µs (500ksps) when a gain of x1 is selected. For higher gains (≥ x2) the PGA settling time requires an additional 40
cycles (5µs at 8MHz clock) to settle to a final value. So the maximum throughput rate for gains greater than or equal to x2 is 142ksps.
Longer settling time through the analog front-end can be experienced when the device that is being measured has a source imped-
ance of ≥ 5kΩ. In that case, the ADC conversion clock should be programmed to allow for additional settling time caused by high
source impedance. To properly budget the appropriate amount of time for the signal to settle, see Section 3.3.10. Note: When the PGA
is bypassed (PGA gain = 1 and PGAE = 0), make sure the ADC single-edge mode (ADCDUL = 0) is selected. In single-edge mode,
the ADC control logic provides the necessary power-up, acquisition, and conversion delay to ensure maximum throughput. When using
the ADC dual-edge mode (ADCDUL = 1), power-up and acquisition period is under user control. It is valid to use this mode only for
PGA gain > 1.

See Section 3.3.3 for discussion of the effect of the PGA on the ADC equivalent input circuit and Section 3.3.5 for the effect of the PGA on
the ADC transfer function. Section 3.3.10 discusses the effect of the PGA on the ADC conversion timing.

Figure 3-7. PGA Block Diagram

2pF

ADC IN+

ADC IN-

AIN+

AIN-

x2

4pF x4

PGA

CIN

CIN

8pF x8

16pF x16

32pF x32

PGG
2 1 0

x1

32pF x32

16pF x16

8pF x8

4pF x4

2pF x2

x1

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-26

3.3.7 Analog Input Protection
Internal ESD protection diodes limit all analog inputs to AVDD and AGND, allowing the inputs to swing from (AGND - 0.3V) to (AVDD
+ 0.3V) without damage. However, for accurate conversions near full scale, the inputs should not exceed AVDD by more than +50mV
or be lower than AGND by -50mV. Input voltages beyond AGND - 0.3V and AVDD + 0.3V forward bias the internal protection diodes.
In this situation, limit the forward diode current to 50mA to avoid damaging the MAXQ7665/MAXQ7666.

The MAXQ7665/MAXQ7666’s common-mode analog input range or absolute analog input range is specified from AGND to AVDD.
Signals may run outside that range but will be interpreted as an overrange (ADC data output set to 0xFFF in unipolar mode and to
0x7FF in bipolar mode) or an underrange condition (ADC data output set to 0x000 in unipolar mode and to 0x800 in bipolar mode).
Analog input signals cannot excurse outside of the ABS max input signal ratings of +0.3V above AVDD or -0.3V below AGND.

Figure 3-8 shows the common mode or absolute analog input range as specified with a selected REFADC value. In unipolar input con-
figuration (ADCBIP = 0, register bit location ACNT.9), the output data coding of the ADC is straight binary.

In bipolar input configuration (ADCBIP = 1, register bit location ACNT.9), the output data coding of the ADC is two’s complement.
Bipolar mode is commonly used with a differential analog input configuration (ADCDIF = 1, register bit location ACNT.10), where the
analog input signals are referenced to their complementary analog input (AIN+/-) pin. Figure 3-9 shows how a negative ADC value is
created. The absolute voltage of each analog input signal must be within the MAXQ7665/MAXQ7666 supply range so as to satisfy the
critical absolute maximum tolerance ratings of the analog inputs, and must also be within the REFADC range to produce useful infor-
mation from the ADC.

Figure 3-8. Analog Input Range Measuring a Positive Analog Input Value

REFADC

REFADC MAX INPUT = AVDD

AGND

AGND - 0.3V

AVDD

AVDD + 0.3V ABS MAX+

ABS MAX-

AIN+

AIN-

ADCIN = (AIN+ - AIN-) x PGA GAIN

REFADC MIN INPUT = 1V

DIFFERENTIAL
ANALOG
INPUT DIFFERENTIAL INPUT

VOLTAGE RANGE

ABSOLUTE INPUT RANGE
(EITHER AIN+ OR AIN- PIN)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-27

3.3.8 ADC Clock
The MAXQ7665/MAXQ7666 ADC clock frequency is controlled by the ADCCD2:ADCCD0 bits in the OSCC control register and the sys-
tem clock speed. These bits determine the ADC clock frequency that is divided down from the system clock. Clock divide ratios of 1,
2, 4, 8, or 16 are supported. The MAXQ7665/MAXQ7666 ADC uses the divided system clock to clock the multiplexer front-end selec-
tion, track-and-hold acquisition, and each step of the successive approximation conversion. Note the system clock speed is deter-
mined by the divide ratio selected through the CD1 and CD0 bits in the CKCN register. By default, the CD1 and CD0 bits selected
divide ratio is 2 and the system clock speed is 3.8MHz if the internal RC oscillator is selected as the system clock source (XT = 0). The
ADCCD2:ADCCD0 bits selection further divides the system clock frequency to form the ADC clock.

The XT bit in the system clock control register, CKCN, selects the system clock source. If the XT bit is 0 (reset value), the internal RC
oscillator is configured as the system clock source. The internal RC oscillator runs at a nominal 7.6MHz frequency and is trimmed to
1% accuracy at room temperature. If the XT bit is set as 1, the external crystal/clock is configured as the system clock source. See
Section 5 for additional details on the system clock sources.

3.3.9 Auto Shutdown Mode
Power consumption is reduced significantly by placing the MAXQ7665/MAXQ7666 ADC in auto shutdown mode after a conversion.
Auto shutdown is ideal for infrequent data sampling and fast wake-up time applications. The ADCASD bit in the ACNT register con-
trols auto shutdown. If the ADCASD bit is set, the ADC automatically shuts down when a conversion is complete and the ADC data
ready (ADCRY) flag in the analog status register is set. If the ADCASD is not set, the ADC returns to acquisition mode after a conver-
sion. Auto shutdown reduces the ADC supply current (refer to the MAXQ7665/MAXQ7666 data sheet for exact current saving), but
there is a power-up delay of 10 ADC clock cycles (1.25µs at 8MHz) after an auto shutdown.

Note that auto shutdown is different from a full power-down state. The ADC is disabled and fully powered down if the ADCE bit in the
APE register is cleared. Full power-down reduces ADC supply current (refer to the MAXQ7665/MAXQ7666 data sheet for exact current
saving) and is ideal for infrequent data sampling. The ADCE bit is the master control for ADC operation and, unless set, no ADC con-
version is possible. From full power-down state (ADCE = 0), the ADC requires 10 ADC clock cycles (1.25µs at 8MHz) to power up.

Data in the ADC peripheral registers is not lost when the ADC is in auto shutdown or full power-down state. Setting the ADC auto shut-
down affects the PGA response. There is an additional delay of 40 cycles introduced in the PGA because of the ADC entering auto
shutdown state.

Figure 3-9. Analog Input Range Measuring a Negative Analog Input Value

REFADC

REFADC MAX INPUT = AVDD

AGND

AGND - 0.3V

AVDD

AVDD + 0.3V ABS MAX+

ABS MAX-

AIN-

AIN+

ADCIN = (AIN+ - AIN-) x PGA GAIN

REFADC MIN INPUT = 1V

DIFFERENTIAL
ANALOG
INPUT

DIFFERENTIAL INPUT
VOLTAGE RANGE

ABSOLUTE INPUT RANGE
(EITHER AIN+ OR AIN- PIN)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-28

3.3.10 ADC Conversion Start Sources and Timing
The MAXQ7665/MAXQ7666 ADC supports three different conversion start sources: timers, ADC convert pin, and software writes. The
conversion start source provides the input trigger for the ADC to start acquisition and conversion. The ADC enable bit (ADCE) in the
analog power control register (APE) must be set so the ADC block is enabled for operation. If PGA > 1 is required, the PGA enable
(PGAE) bit and the PGA gain selection bits (PGG) must also be set. The ADC source select field (ADCS2:ADCS0) in the ADC control
register selects the ADC conversion start source, as shown in Table 3-8.

Table 3-8. ADC Conversion Start Source Selection

All three conversion start sources support single-edge or dual-edge modes of operation, which are determined by the ADCDUL bit.
When ADCDUL is set to 1, the ADC operates in dual-edge mode. The rising edge of the selected conversion start source causes the
ADC to power up and begin acquisition; the falling edge causes it to sample and perform a conversion. The ADC dual-edge mode is
valid only with PGA gain > 1. If ADCDUL is set to 1, make sure the PGA gain (selected by the PGG2:PGG0 bits in the APE register) is
greater than 1. The ADC dual-edge mode allows user control of the power-up and acquisition period. An ADC power-up delay is
required only if ADC is in auto shutdown from a prior conversion, otherwise, there is no ADC power-up delay. When ADCDUL is 0, the
ADC operates in single-edge mode. The rising edge of the selected conversion start source controls the entire conversion, i.e., power-
up, acquisition, and conversion. There is no restriction on the PGA gain selection when ADCDUL = 0. Table 3-9 summarizes ADC oper-
ation in dual- and single-edge modes.

ADC SOURCE SELECT
(ADCS2:ADCS0)

ADC CONVERSION START
SOURCE DESCRIPTION

000 Timer 0

001 Timer 1

010 Timer 2

• Timer output is internally connected to ADC to act as the ADC conversion trigger
 control.
• Configure timer for 8-bit or 16-bit PWM output operation.

011 Reserved, functions as 010 —

100 ADC Conversion Pin This configures the P0.4/ADCCNV pin as ADC conversion trigger control input pin.

101 ADC Conversion Pin with
Inverted Data

This configures the P0.4/ADCCNV pin as ADC conversion trigger control input pin.
ADCCNV pin input is inverted and used as ADC conversion trigger control.

110 Continuous Conversion
Writing 110 to ADCS triggers conversion. Once started, for PGA =1, ADC continuously
performs a conversion every 16 ADC clock cycles. For PGA > 1, ADC continuously
performs a conversion every 56 ADC clock cycles.

111 Start/Busy Bit Write to the start/busy bit triggers conversion.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-29

ADC DUAL-
MODE

(ADCDUL)

ADC CONVERSION
SOURCE

(ADCS2:ADCS0)

ADC CONVERSION
TRIGGER

ADC CONVERSION DESCRIPTION

000 (Timer 0)
001 (Timer 1)
010 (Timer 2)

100 (ADCCNV)

Rising Edge of Conversion Source
• Sets T/H into track mode.
• Track duration is under user control.
• If ADC is in auto shutdown, a minimum of 10 ADC clock cycles power-up delay is
 required in addition to 80 cycles PGA settling delay (PGA gain > 1), and 3 cycles
 acquisition delay.
 • If ADC is not in auto shutdown, a minimum of 40 ADC clock cycles PGA settling
 delay (PGA gain > 1) and 3 cycles acquisition delay is required.
Falling Edge of ADCNV
• Sets T/H into hold mode.
• Then SAR conversion executes (13 ADC clock cycles).

101
(Inverted ADCCNV)

Falling Edge of ADCNV
• Sets T/H into track mode.
• Track duration is under user control.
• If ADC is in auto shutdown, a minimum of 10 ADC clock cycles power-up delay is
 required in addition to 80 cycles PGA settling delay (PGA gain > 1), and 3 cycles
 acquisition delay.
• If ADC is not in auto shutdown, a minimum of 40 ADC clock cycles PGA settling
 delay (PGA gain > 1) and 3 cycles acquisition delay is required.
Rising Edge of ADCNV
• Sets T/H into hold mode.
• Then SAR conversion executes (13 ADC clock cycles).

110
(Continuous)

Write 110 to ADCS

Write 110 to ADCS
• Sets T/H into track mode.
• ADC control logic provides the required track duration.
• T/H placed in hold after 43 ADC clock cycles (PGA gain > 1).
• Then SAR conversion executes (13 ADC clock cycles).
Conversion continuously repeated every 56 ADC clock cycles.

1
(Dual-Edge

Mode)
(Note: This mode
is valid only with
PGA gain > 1.)

111
(Start/Busy Bit)

Start/Busy Bit:
Write 1 followed by a

write 0

Write 1 to Start/Busy Bit
• Sets T/H into track mode.
• Track duration is under user control.
• If ADC is in auto shutdown, a minimum of 10 ADC clock cycles power-up delay is
 required in addition to 80 cycles PGA settling delay (PGA gain > 1), and 3 cycles
 acquisition delay.
• If ADC is not in auto shutdown, a minimum of 40 ADC clock cycles PGA settling
 delay (PGA gain > 1) and 3 cycles acquisition delay is required.
Write 0 to Start/Busy Bit
• Sets T/H into hold mode.
• Then SAR conversion executes (13 ADC clock cycles).

Table 3-9. ADC Dual- and Single-Edge Modes

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-30

ADC DUAL-
MODE

(ADCDUL)

ADC CONVERSION
SOURCE

(ADCS2:ADCS0)

ADC CONVERSION
TRIGGER

ADC CONVERSION DESCRIPTION

000 (Timer 0)
001 (Timer 1)
010 (Timer 2)

100 (ADCCNV)

Rising Edge of Conversion Source
• Sets T/H into track mode.
• ADC control logic provides the required track duration composed of power-up
 delay (10 cycles), acquisition delay (3 cycles for PGA =1), and settling delay (40
 cycles for PGA>1).
• If ADC is in auto shutdown, T/H placed in hold after 13 clock cycles if PGA =1
 and after 93 clock cycles if PGA > 1.
• If ADC is not in auto shutdown, T/H placed in hold after 3 clock cycles if PGA =1
 and after 43 cycles if PGA > 1.
• Then SAR conversion executes (13 ADC clock cycles).

101
(Inverted ADCCNV)

Falling Edge of ADCNV
• Sets T/H into track mode.
• ADC control logic provides the required track duration composed of power-up
 delay (10 cycles), acquisition delay (3 cycles for PGA =1), and settling delay (40
 cycles for PGA>1).
• If ADC is in auto shutdown, T/H placed in hold after 13 clock cycles if PGA =1
 and after 93 clock cycles if PGA > 1.
• If ADC is not in auto shutdown, T/H placed in hold after 3 clock cycles if PGA =1
 and after 43 cycles if PGA > 1.
 • Then SAR conversion executes (13 ADC clock cycles).

110
(Continuous)

Write 110 to ADCS

Write 110 to ADCS
• Sets T/H into track mode.
• ADC control logic provides the required track duration.
• T/H placed in hold after 3 clock cycles if PGA =1 and after 43 clock cycles if PGA
 > 1.
• Then SAR conversion executes (13 ADC clock cycles).
Conversion continuously repeated every16 or 56 ADC clock cycles.

0
(Single-Edge

Mode)

111
(Start/Busy bit)

Write 1 to Start/
Busy Bit

Write 1 to Start/Busy Bit
• Sets T/H into track mode.
• ADC control logic provides the required track duration composed of power-up
 delay (10 cycles), acquisition delay (3 cycles for PGA =1), and settling delay (40
 cycles for PGA > 1).
• If ADC is in auto shutdown, T/H placed in hold after 13 clock cycles if PGA =1
 and after 93 clock cycles if PGA > 1.
• If ADC is not in auto shutdown, T/H placed in hold after 3 clock cycles if PGA =1
 and after 43 cycles if PGA > 1.
• Then SAR conversion executes (13 ADC clock cycles).

Table 3-9. ADC Dual- and Single-Edge Modes (continued)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-31

Figure 3-10 shows single-edge-controlled ADC conversion timing when the ADC is in auto shutdown state and the PGA is bypassed.
The power-up and acquisition is triggered by the rising edge of the ADC conversion start source signal ADC_CNVST. ADC_CNVST is
an internal signal generated from a combination of all the three conversion start sources previously described.

In single-edged conversions, the ADC control logic provides the necessary power-up, acquisition, and conversion delay.

a) If ADC is in auto shutdown state, it takes 27 ADC clock cycles before the 12-bit result is available when PGA gain = 1. For PGA
gain > 1, it takes an additional 80 cycles for a total of 107 ADC clock cycles before the 12-bit output result is available.

b) If ADC is not in auto shutdown state, it takes 17 ADC clock cycles before the 12-bit result is available when PGA gain = 1. For
PGA gain > 1, it takes a total of 57 ADC clock cycles before the 12-bit result is available.

Figure 3-11 shows single-edge-controlled ADC conversion when the ADC is not in auto shutdown state and the PGA is bypassed.

Figure 3-10. Single-Edge ADC Conversion Timing; ADC Previously Off and PGA Bypassed

11727 13

ADCBY

ADCDATA

ADCCLK

ADC_CNVST

DATA (n-1) DATA (n)

ACQUISITION (n)

POWER-UP CONVERSION (n)

Figure 3-11. Single-Edge ADC Conversion Timing; ADC Previously On and PGA Bypassed

ADCBY

117 13

ADCDATA

ADCCLK

ADC_CNVST

DATA (n-1) DATA (n)

ACQUISITION (n)
CONVERSION (n)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-32

In dual-edged conversions, it is up to the user to provide the required power-up and acquisition delay as explained in Table 3-9.

a) If ADC is in auto shutdown state, a minimum of 13 ADC clock cycles power-up and acquisition delay is required, in addition
to 80 cycles PGA settling delay (PGA gain > 1) and 13 cycles ADC conversion delay for a total of at least 107 ADC clock cycles
before the 12-bit result is available.

b) If ADC is not in auto shutdown state, a minimum of 3 ADC clock cycles acquisition delay is required, in addition to 40 cycles
PGA settling delay (PGA gain > 1) and 13 cycles ADC conversion delay for a total of at least 57 ADC clock cycles before the
12-bit result is available.

Figure 3-12 shows dual-edge-controlled ADC conversion when the ADC is in auto shutdown state and the PGA is > 1.

In dual-edge conversion, the power-up and acquisition is triggered by the rising edge of the ADC conversion start source signal
ADC_CNVST. At the falling edge, the ADC starts conversion and a 12-bit result is written to the ADC result register in 13 ADC clock
cycles. The advantage of dual-edge mode is, depending on the analog input signal’s source impedance, the user can provide addi-
tional acquisition time if required. Also, in dual-edge mode the user can determine the exact sample instant. This can be very useful
in applications where a signal must be sampled precisely every so many microseconds, for example.

3.3.11 ADC Interrupts
The MAXQ7665/MAXQ7666 ADC can generate an interrupt under the following conditions:

• ADC Data Ready

• ADC Overrun
The ADC data ready interrupt is generated when the conversion on a channel is complete and a 12-bit result is written into the ADC
data register. The ADC data ready (ADCRY) flag in the analog status register (ASR) is also set when a conversion is complete. The
ADCIE bit in the analog interrupt register (AIE) must be set for the interrupt to be generated. Otherwise, only the ADCRY status flag is
set and the interrupt is not generated. The ADCRY flag is cleared when the ADC data register (ADCD) is read.

The ADC overrun interrupt is generated when an ADC result overrun occurs. The ADC result overrun occurs if the ADC data register
is overwritten with a new result before the previous result is read. The ADC overrun (ADCOV) flag in the ASR is set when an overrun
occurs. An interrupt is generated only if the AORIE bit in the AIE register is set, otherwise, only the status flag is set. The ADCOV flag
is cleared when the analog status register (ASR) is read.

The ADC data ready and ADC overrun interrupts are globally enabled/disabled by the IM5 bit (in the IMR register) and the IGE bit (in
the IC register).

Figure 3-12. Dual-Edge ADC Conversion Timing; ADC Previously Off and PGA > 1

ADCBY

ADCDATA

ADCCLK

ADC_CNVST

DATA (n-1) DATA (n)

113

CONVERSION (n)

POWER-UP AND ACQUISITION
(UNDER USER CONTROL;

MINIMUM: 93 CYCLES IF ADCASD = 1; 43 CYCLES IF ADCASD = 0)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-33

3.3.12 Using the ADC
The flow chart in Figure 3-13 highlights all the steps required for initializing and using the ADC.

Figure 3-13. Flow Chart for Initializing and Using the ADC

SELECT IN ADC CONTROL REGISTER
ACNT:
A) DIFFERENTIAL CONVERSION.
B) SELECT UNIPOLAR OR BIPOLAR MODE.
C) SET ADCASD IF ADC AUTO
SHUTDOWN IS REQUIRED.

SELECT IN ACNT REGISTER (CONT’d.):
D) ADC CONVERSION START SOURCE:
TIMERS 0–2, ADCCONV PIN, SW WRITE.
E) SINGLE OR DUAL EDGE: FOR ADC
LOGIC-CONTROLLED ACQUISITION
TIME, SELECT SINGLE EDGE (0); FOR
USER-CONTROLLER ACQUISITION
TIME, SELECT DUAL EDGE (1) MODE
(PGA GAIN > 1).
F) ADC INPUT CHANNEL.

START ADC CONVERSION:
DEPENDING ON ADC CONVERSION
START SOURCE SET TIMER ENABLE
(PIN IS ALREADY I/P FROM BELOW,
LEFT) OR ADC START/BUSY BIT IN
ACNT TO TRIGGER CONVERSION.
NOTE: FOR CONTINUOUS MODE,
SELECTING 110 IN ADCS FIELD
TRIGGERS CONVERSION.

IF POLLED CONVERSION, WAIT FOR
ADCRY BIT IN ADC STATUS REGISTER
TO BE SET BEFORE READING THE ADC
DATA REGISTER. OTHERWISE, READ
ADC DATA AFTER ADC DATA READY
INTERRUPT.

READ AND SAVE 12-BIT ADC RESULT
(CODE12) FROM ADC DATA REGISTER.
THE DIFFERENTIAL ANALOG INPUT
VOLTAGE AS A FUNCTION OF REFADC,
PGA GAIN FACTOR (PGA_GF), AND THE
DIGITAL OUTPUT CODE (CODE
DETERMINED WITH THE EQUATION
GIVEN IN SECTION 3.3.5.

SELECT ADC CLOCK DIVIDE RATIO IN THE
OSCC REGISTER.

ENABLE ADC: SET ADCE IN ANALOG
POWER ENABLE REGISTER. ENABLE PGA,
IF REQUIRED, AND SET PGG FOR GAIN > 1.
IF PGA IS ENABLED, GIVE 5μs POWER-
UP/WARMUP TIME BEFORE CONVERSION.

IF CONVERSION START SOURCE IS
GOING TO BE ONE OF THE TIMERS,
CONFIGURE TIMER IN 16-BIT PWM OR 8-
BIT PWM OUTPUT MODE. NOTE: TIMER
OUTPUT IS INTERNALLY SELECTED AS
THE ADC START TRIGGER CONTROL.

IF CONVERSION START SOURCE IS FROM
EXTERNAL ADCCONV PIN, ENSURE PIN IS
CONFIGURED AS INPUT.

TO GET ADC DATA READY INTERRUPT
AFTER A CONVERSION, SET ADCIE BIT IN
ANALOG INTERRUPT ENABLE REGISTER.
ALSO, ENABLE GLOBAL INTERRUPT
CONTROL BITS IM5 IN IMR AND IGE IN IC
PERIPHERAL REGISTER.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-34

3.4 Temperature Sensor
The MAXQ7665/MAXQ7666 support an internal temperature sensor for local die temperature measurement and a remote temperature
sensor drive to measure outside temperature. The internal temperature sensor performs local die temperature measurements with an
internal diode-connected transistor. In the remote temperature sensor drive configuration, the device provides the proper bias neces-
sary to measure outside temperature with up to two external diode-connected transistor sensors. Figure 3-14 shows a simplified func-
tional block diagram of the MAXQ7665/MAXQ7666 temperature sensor.

The MAXQ7665/MAXQ7666 perform temperature measurement by measuring the voltage across a diode-connected transistor (inter-
nal or remote) at two different current levels. The following equation illustrates the algorithm used for temperature calculations:

Temperature = (VHIGH - VLOW) x (q/k) / (n x ln[IHIGH / ILOW])

Where:

VHIGH = sensor-diode voltage with high current flowing (IHIGH)

VLOW = sensor-diode voltage with low current flowing (ILOW)

q = charge of electron = 1.602 x 10-19 coulombs

k = Boltzman constant = 1.38 x 10-23 J/K

n = ideality factor (slightly greater than 1)

The temperature measurement process is fully automated in the MAXQ7665/MAXQ7666 ROM utility routine "tempConv." All the required
setup and temperature measurement algorithm steps for both internal and external temperature measurements are handled in the utili-
ty routine and it returns the local or remote temperature result. See the utility ROM section (Sections 15 and 16) for details of the routine.

Figure 3-14. MAXQ7665/MAXQ7666 Temperature Sensor Block Diagram

AIN15

AIN4 DEMUX
ADCMX2

ADCMX2
2N3904

RESISTORS
OPTIONAL

ADCMX3

ADCMX1

ADCMX1

ADCMX4

AGND

01234
ADCMX

12-BIT ADC
500ksps

AGND

AIN3

AIN1

AIN0

AIN2

ADCDIF

MAXQ7665/
MAXQ7666

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-35

3.4.1 Temperature Sensor Signals
The MAXQ7665/MAXQ7666 temperature sensor uses four (one external diode can be connected between AIN0/AIN1, and a second
diode between AIN2/AIN3) external signals in remote temperature sensor drive configuration as explained in Table 3-10.

Table 3-10. Temperature Sensor Signals

The MAXQ7665/MAXQ7666 temperature sensor block works with the on-chip SAR ADC. Therefore, ensure the ADC is enabled (utility
ROM routine handles this) with the required external reference and supply. The temperature sensor has been calibrated for operation
with a +5V ADC reference level. It is possible to use other reference levels, but with diminished accuracy.

3.4.2 Using the Temperature Sensor
The following is an overview of the setup required for using the temperature sensor (internal or remote). The full details are available
as part of the utility ROM routine.

1) Temperature sensor and ADC must be enabled in the analog power enable register (APE).

2) Set up ADC configuration as follows in the ADC control register (ACNT).

ADCCS: conversion start from ADC start bit (111)

ADCDUL: single edge (0)

ADCBIP: unipolar conversion (0)

ADCDIF: single-ended or differential input (only for remote configuration)

3) Configure ADCMX4:ADCMX0 bits in the ACNT register as follows to enable/control temperature measurement.

ADCMX4: This bit must be set to configure ADC input channel for temperature measurement.

ADCMX3: Set this bit to configure temperature sensor drive current to high value. Clear this bit to configure temperature sensor
drive current to low value.

ADCMX2 and ADCMX1: These bits determine if internal or external temperature sense mode is selected. (See table below.)

ADCMX0: This bit puts the temperature sensor in auto zero state when it is set to logic 1. The autozeroing is used to cancel
internal offset effects.

Note: The above setup is not required if the temperature conversion ROM utility routine is used. All the required setup and tem-
perature measurement algorithm steps are handled in the utility routine and it returns the local or remote temperature result. The
temperature conversion utility ROM routine automatically adds the 12-bit signed offset stored in temperature offset register to
the final temperature result. See the utility ROM section (Sections 15 and 16) for details of the routine.

PIN NUMBER
SIGNAL

48-PIN 56-PIN
FUNCTION

AIN3 13 15

AIN2 14 16

AIN1 15 17

AIN0 16 18

ADC Analog Input/Remote Temperature Sensor. Analog input pins AIN2 and AIN0 are shared with the remote
temperature sensor drive line. If the remote temperature sensor drive circuit is not selected, the pin can be used
as a differential input to the multiplexer. In differential input configuration, AIN2 is referenced to AIN3 while AIN0
is referenced to AIN1. When selected, the remote temperature sensor drive circuit supplies suitable current levels
for biasing an external diode-connected transistor to monitor temperature away from the microcontroller. The
remote temperature measurement can be made either in single-ended or differential configuration (differential
measurements are likely to be more accurate). Note, in differential configuration, AIN3 is used as the return path
for AIN2, and AIN1 is used as the return path for AIN0.

ADCMX2 ADCMX1 FUNCTION

0 0 Internal diode-connected transistor based temperature measurement

0 1 Remote diode-connected transistor based temperature measurement on AIN0

1 0 Remote diode-connected transistor based temperature measurement on AIN2

1 1 Reserved

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-36

Figure 3-15 shows the nominal transfer function for temperature conversions. Output coding is two’s complement with 1 LSB =
+0.125°C.

3.4.3 Internal Temperature Sensor
The MAXQ7665/MAXQ7666 perform local die temperature measurements with an internal diode-connected transistor. The diode bias
current is changed from 68µA to 4µA (4.096V reference; for 5V use 74.7µA and 4µA) to produce a temperature-dependent bias volt-
age difference. The on-chip ADC is used to measure the voltage generated at different drives. The ADC conversion result at 4µA is
subtracted from the first at 68µA to calculate a digital value that is proportional to absolute temperature. The final result output is the
previously mentioned digital code minus an offset to adjust from Kelvin to Celsius.

The reference voltage used for the temperature measurements is derived from the external ADC reference source to ensure that 1 LSB
corresponds to 1/8th of a degree. The internal temperature sensor does not use any analog input channel.

The temperature measurement process is fully automated in the MAXQ7665/MAXQ7666 ROM utility routine "tempConv." All the required
setup and temperature measurement algorithm steps are handled in the utility routine and it returns the local or remote temperature
result. See the utility ROM section (Sections 15 and 16) for details of the routine.

3.4.4 Remote Temperature Sensor Driver
The MAXQ7665/MAXQ7666 temperature sensor supports remote temperature sensor driver on two input channels. The device sup-
ports both singled-ended and differential temperature measurements. Remote temperature sensor in differential mode uses analog
input channel pairs AIN2/AIN3 and AIN0/AIN1. In single-ended mode, only channels AIN2 and AIN0 are used. The superior common-
mode rejection and lower noise of the differential mode reduces measurement errors and provides higher accuracy, while single-ended
measurements require a lower number of connections, resulting in a simpler implementation.

Figure 3-15. Temperature Transfer Function

800

801

FFE

001

000

FFF

7FE

7FF

-256 0 +255.875

OU
TP

UT
 C

OD
E

(h
ex

)

TEMPERATURE (°C)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-37

3.4.4.1 Differential Temperature Measurement
For differential temperature measurements, connect the anode of a diode-connected transistor to the even input channel and the cath-
ode to the odd input channel of an input pair AIN0/AIN1 or AIN2/AIN3. Run the two sensor connection lines parallel to each other with
minimum spacing. This improves temperature measurement accuracy by minimizing the differential noise between the two lines, since
they have equal exposure to most sources of noise. For further improved noise rejection, shield the two sensor connections by running
them between ground planes, when available.

Configure the MAXQ7665/MAXQ7666 temperature sensor and ADC as explained in Section 3.4.2 for differential mode (ADCDIF = 1)
and enable the remote temperature measurement on an even channel AIN0 or AIN2 (ADCMX2 and ADCMX1 = 01 or 10).

3.4.4.2 Single-Ended Temperature Measurement
For single-ended temperature measurements, connect the anode of a diode-connected transistor to the even input channel AIN0 or
AIN2 and the cathode to the ground. Choose ground connections for sensors away from high-current return paths to avoid the intro-
duction of errors caused by voltage drops in the boards/system ground, which is the main drawback for single-ended measurements.
Practical options for better accuracy are the use of a star-configured subsystem ground or a signal ground plane; to isolate the anode
sensor connection trace away from board and system noise sources; or to shield it with ground lines and ground planes (when avail-
able) to prevent accuracy degradation in the temperature measurements caused by magnetic/electric noise induction.

Configure the MAXQ7665/MAXQ7666 temperature sensor and ADC as explained in Section 3.4.2 for single-ended mode (ADCDIF = 0)
and enable the remote temperature measurement on an even channel AIN0 or AIN2 (ADCMX2 and ADCMX1 = 01 or 10).

3.4.5 Remote Temperature Sensor Selection
Temperature-sensing accuracy depends on having a good quality, diode-connected, small-signal transistor as a sensor. Accuracy has
been experimentally verified for 2N3904-type devices. The transistor must be a small-signal type with low base resistance. See Table
3-11 for recommended devices.

Table 3-11. Remote Sensor Transistor Manufacturers

3.5 Digital-to-Analog Converter (DAC) Port
The MAXQ7665/MAXQ7666 have a true 12-bit voltage-output DAC with buffered outputs that supports a 15µs maximum settling time
at a 12-bit level. The DAC provides a gain of 1 relative to the external REFDAC reference voltage. The MAXQ7665/MAXQ7666 DAC
features include:

• 12-bit voltage-output DAC

• 8µs typical and 15µs maximum settling time

• Unity gain output buffer

• External reference

• Straight binary input

• Double-buffered data

• DAC load control from external pin or software write

MANUFACTURER MODEL NUMBER

Central Semiconductor (CMPT) CMPT3904

Fairchild Semiconductors (USA) MMBT3904

ON Semiconductor (USA) MMBT3904

Rohm Semiconductor (Japan) SST3904

Zetex (England) FMMT3904CT-ND

Diodes Inc. MMBT3904

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-38

Figure 3-16 shows a simplified functional block diagram of the MAXQ7665/MAXQ7666 DAC.

3.5.1 DAC Signals
The MAXQ7665/MAXQ7666 DAC external signals are explained in Table 3-12.

Table 3-12. DAC Signals

3.5.2 External Reference Input and Output Buffer
The MAXQ7665/MAXQ7666 DAC external reference input, REFDAC, accepts a voltage range extending from 0 to AVDD. The voltage
at REFDAC sets the full-scale output of the DAC. The output voltage is determined using the following equation:

DACOUT = (REFDAC x CODE12) / 212

Where:

CODE12 is the numeric value of the DAC’s straight binary input code

DACOUT is the output voltage on the external DACOUT pin

REFDAC is the reference voltage on the external REFDAC pin

The MAXQ7665/MAXQ7666 DAC output-buffer amplifier is unity-gain stable with rail-to-rail output voltage swings.

Figure 3-16. DAC Block Diagram

REFDAC

DACE

DAC OUTPUT
REGISTER

DAC INPUT
REGISTER

DAC LOAD
CONTROL

12-BIT DAC

PO.5/DACLOAD

DACOUT

DACLD
0 1 2

PIN NUMBER
SIGNAL

48-PIN 56-PIN
FUNCTION

REFDAC 7 7 Dedicated DAC Reference Input Pin. The REFDAC pin is used to supply an external precision voltage reference
to the internal DAC. The REFDAC can handle a voltage range from 0 to AVDD.

P0.5/DACLOAD 37 43
The DAC load is a shared pin with the digital I/O port 0 bit 5. As the DAC load input signal, it can trigger DAC
conversion by loading the DAC output register on a rising or falling edge. After power-up or a reset this pin
defaults to a digital I/O port pin with pullup enabled.

DACOUT 17 19 Dedicated DAC Output Pin. If the DAC is disabled, this pin is configured as a 100k pulldown resistor to
ground.

AVDD 44 52 Analog VDD Supply. For the MAXQ7665/MAXQ7666, the analog supply voltage is +5.0V.

AGND 5, 8 5, 8 Analog Ground

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-39

Table 3-13 illustrates the relationship between the straight binary input and the analog output voltage.

Table 3-13. DAC Input Code to Output Voltage (Gain = 1)

3.5.3 Loading DAC Data Register for Conversion
The MAXQ7665/MAXQ7666 DAC conversion is controlled by the DACLD bits in the DAC control register (DCNT). DACLD selects when
and from where the conversion data is sourced. The DAC conversion data is normally sourced from the 12-bit DAC output register
(DACO) except in square-wave mode when the 12-bit DAC input register also acts as a source. The DAC output signal (DACOUT) then
immediately tracks the conversion data source value. The DACLD bits functionality is explained in Table 3-14.

Table 3-14. DAC Load Control Selection

*Note that as the DAC settling time is up to 15µs, toggling DACLOAD at rates substantially faster than that may not allow to settle at either of the intended out-
put values.

BINARY DIGITAL
INPUT CODE

D11:D0

HEXADECIMAL
EQUIVALENT OF D11:D0

DECIMAL EQUIVALENT
OF D11:D0 (CODE12)

NOMINAL OUTPUT
ANALOG VOLTAGE (V)

NOMINAL OUTPUT
VOLTAGE (V)

(REFDAC = 4.096V)

1111 1111 1111 0xFFF 4095 REFDAC x (4095/4096) +4.095

1111 1111 1110 0xFFE 4094 REFDAC x (4094/4096) +4.094

1000 0000 0001 0x801 2049 REFDAC x (2049/4096) +2.049

1000 0000 0000 0x800 2048 REFDAC x (2048/4096) +2.048

0111 1111 1111 0x7FF 2047 REFDAC x (2047/4096) +2.047

0000 0000 0001 0x001 1 REFDAC x (1/4096) +0.001

0000 0000 0000 0x000 0 0 +0.000

DACLD2:DACLD0
DAC

CONVERSION
SOURCE

DAC CONVERSION
TRIGGER

DAC DATA TRANSFER AND CONTROL

000 DACO Register

DAC conversion data is sourced from DACO register under the control of the external
DACLOAD input signal. On the rising edge of the DACLOAD input, the DACO register
is loaded with the contents of DACI register and converted. The DAC output signal
(DACOUT) then immediately tracks the DACO value. Note that this selection enables
DACLOAD alternate function on the shared P0.5/DACLOAD pin.

001 DACO Register Load conversion
data to DACI

DAC conversion data is sourced from DACO register under the control of software
write to DACI register. The DACO register is loaded with the new contents of DACI
when the DACI register is written. The DAC output signal (DACOUT) then
immediately tracks the DACO value.

010 — — Reserved

011 — — Reserved, functions as 001 if set.

100 DACO Register

DAC conversion data is sourced from DACO register under the control of the external
DACLOAD input signal. On the falling edge of the DACLOAD input, the DACO
register is loaded with the contents of DACI register and converted. The DAC output
signal (DACOUT) then immediately tracks the DACO value. Note that this selection
enables DACLOAD alternate function on the shared P0.5/DACLOAD pin.

101 DACI and DACO
Registers

Square-Wave Mode. The data source for conversion is dependent upon edges
supplied by the DACLOAD input signal. A falling edge on DACLOAD after entering
square-wave mode will supply the data in DACI to the DAC. A rising edge on
DACLOAD after entering square-wave mode will supply the data in DACO to the
DAC. The DAC output signal (DACOUT) tracks the DACI value on a falling edge and
the DACO value on a rising edge.*

110 — — Reserved, functions as 000 if set.

111 — — Reserved, functions as 000 if set

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

3-40

3.5.4 DAC Power-Down
The DAC is disabled and fully powered down if the DACE bit in the APE register is cleared. Full power-down reduces analog supply
current (refer to the MAXQ7665/MAXQ7666 data sheet for exact current saving) and is ideal for infrequent data conversion. The DACE
bit is the master control for DAC operation and, unless set, no DAC conversion is possible. From full power-down state (DACE = 0),
the DAC may require up to 1µs to power-up and takes 15µs to settle the final value. This occurs in the worst case when no other ana-
log peripheral is enabled and the bias circuit has, therefore, automatically shut down.

Note: The DACI and DACO registers continue to work even if the DAC is powered down, so user could change the DAC output in
power-down mode and then power-up and settle to the new value.

3.5.5 Using the DAC
The following setup is required for using the MAXQ7665/MAXQ7666 DAC.

1) Set DACE bit in analog power enable (APE) register to enable the DAC.

2) If DAC data register loading is going to be controlled from external DACLOAD pin, make sure pin is configured as input in port
0 direction register (PD0).

3) Set up DACLD (DAC load) control bits in DAC control register (DCNT) from external DACLOAD pin or by software write.

4) Initialize DAC input register for load control from DACLOAD falling or rising edge signal.

5) Initialize both DAC input and output register for load control from DACLOAD square-wave signal.

6) For load control by software write, initializing the DAC input register triggers conversion.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-1

This section contains the following information:

4.1 Architecture .4-4

4.2 CAN Controller Registers .4-6

4.2.1 Dual Port Memory Space Registers .4-6

4.2.1.1 Dual Port Memory Space Registers for CAN 0 .4-7

4.2.2 CAN Control/Status/Mask Register Descriptions .4-9

4.2.3 CAN Message Center Register Descriptions .4-17

4.2.4 CAN Global Control and Status Register Descriptions .4-22

4.2.4.1 CAN 0 Control Register (C0C) .4-22

4.2.4.2 CAN 0 Status Register (C0S) .4-25

4.2.4.3 CAN 0 Interrupt Register (C0IR) .4-28

4.2.4.4 CAN 0 Transmit-Error Register (C0TE) .4-31

4.2.4.5 CAN 0 Receive-Error Register (C0RE) .4-32

4.2.4.6 CAN 0 Operation Control Register (COR) .4-32

4.2.4.7 CAN Data Pointer Register (C0DP) .4-33

4.2.4.8 CAN Data Buffer Register (C0DB) .4-34

4.2.4.9 CAN 0 Receive Message Stored Register (C0RMS) .4-35

4.2.4.10 CAN 0 Transmit Message Acknowledgement Register (C0TMA) 4-36

4.2.4.11 CAN 0 Message Center 1 to 15 Control Registers (C0M1C to C0M15C)4-37

4.3 CAN Operations .4-47

4.3.1 Frame Types .4-47

4.3.1.1 Data Frame .4-47

4.3.1.1.1 Start of Frame (SOF) .4-47

4.3.1.1.2 Arbitration Field .4-47

4.3.1.1.3 Control Field .4-48

4.3.1.1.4 Data Field .4-48

4.3.1.1.5 CRC Field .4-48

4.3.1.1.6 Acknowledge (ACK) Field .4-48

4.3.1.1.7 End of Frame .4-48

SECTION 4: CONTROLLER AREA NETWORK (CAN) MODULE

Maxim Integrated

4.3.1.1.8 Interframe Spacing (Intermission) .4-48

4.3.1.2 Remote Frame .4-50

4.3.1.3 Error Frame .4-51

4.3.1.4 Overload Frame .4-51

4.4 General CAN Protocol-Related Issues .4-52

4.4.1 Bit Stuffing .4-52

4.4.2 Simultaneous Transmissions .4-52

4.4.3 Transmit- and Receive-Error Counters .4-52

4.5 External Pins .4-52

4.6 Initializing the CAN Controller .4-53

4.7 CAN Interrupts .4-53

4.8 Arbitration/Masking Considerations .4-55

4.8.1 Message Center 15 .4-55

4.9 Transmitting and Receiving Messages .4-56

4.9.1 Transmitting Data Messages .4-56

4.9.2 Receiving Data Messages .4-56

4.9.3 Transmitting Remote Frame Requests .4-56

4.9.4 Receiving/Responding to Remote Frame Requests .4-57

4.10 Remote Frame Handling in Relation to the DTBYC Bits .4-59

4.11 Overwrite Enable/Disable Feature .4-60

4.12 Special Considerations for Message Center 15 .4-61

4.13 Using the Autobaud Feature .4-61

4.14 BUSON/BUSOFF Recovery and Error Counter Operations .4-63

4.15 Bit Timing .4-64

4.15.1 Threefold Bit Sampling .4-66

4.15.2 Bus Rate Timing Example .4-66

4.16 CAN Bus Activity .4-67

4.16.1 Issues with Stop Mode Entry While CAN is Active .4-67

MAXQ7665/MAXQ7666 User’s Guide

4-2Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-3

Figure 4-1. MAXQ7665/MAXQ7666 CAN 0 Controller Block Diagram .4-5

Figure 4-2. CAN Dual Port Memory Address Map .4-6

Figure 4-3. CAN2.0A (Standard) Format .4-47

Figure 4-4. CAN2.0B (Extended) Format .4-47

Figure 4-5. Control Field .4-48

Figure 4-6. CRC Field .4-49

Figure 4-7. Acknowledge Field .4-49

Figure 4-8. Intermission .4-49

Figure 4-9. Remote Frame .4-50

Figure 4-10. Error Frame .4-50

Figure 4-11. Overload Frame .4-50

Figure 4-12. CAN Interrupt Logic .4-54

Figure 4-13. CAN Autobaud Feature .4-62

Figure 4-14. Bit Timing .4-64

Figure 4-15. CAN Bus Activity .4-67

LIST OF FIGURES

Table 4-1. MAXQ7665/MAXQ7666 CAN Controller Pins .4-52

Table 4-2. Registers to Be Initialized for Proper CAN Module Operation 4-53

Table 4-3. Rules for Changes to Error Counters .4-63

Table 4-4. CAN Clock Divide Selection .4-65

Table 4-5. Bit Timing Setting Example for 8MHz Oscillator Frequency .4-66

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-4

SECTION 4: CONTROLLER AREA NETWORK (CAN) MODULE
The MAXQ7665/MAXQ7666 smart data-acquisition microcontrollers incorporate a single CAN controller (CAN 0), which provides oper-
ating modes that are fully compliant with the CAN2.0B specification. The CAN unit provides 15 message centers, each with capabili-
ty to use 11-bit standard or 29-bit extended acceptance identifiers. Except where explicitly noted, the MAXQ7665 and MAXQ7666 fea-
tures are identical.

The CAN controller features include the following:

• Full CAN implementation with compliance to CAN2.0A/B protocol standard

• Programmable bit rates from 10kbps to 1Mbps

• 15 Message Centers (14 Tx or Rx, 1 Rx only with FIFO)

• Standard 11-bit or extended 29-bit identification modes

• Support for DeviceNET™, SDS, and higher level CAN protocols

• Remote frame support

• SIESTA low-power mode

• Wakeup on CANRXD edge transition

• Programmable loopback mode

• Support for multiple prioritized interrupt sources: message center interrupts, status interrupts, and error interrupts

• 256 bytes internal dual port memory for information exchange between CAN controller and microcontroller

4.1 Architecture
The microcontroller interface to the CAN controller is broken into two groups of registers. To simplify the software associated with the
operation of the CAN controller, all the global CAN status and controls, as well as the individual message center control/status regis-
ters, are located in the directly accessible peripheral register map. The remaining registers associated with the data identification, iden-
tification masks, format, and data for each message center is located in 256 bytes dual port memory. The access to the dual port data
memory by the CAN controller is direct while the access to the dual port memory by the microcontroller is through the CAN 0 data
pointer (C0DP) and CAN 0 data buffer (C0DB) registers located in the peripheral register map.

The basic functions covered by the CAN controllers begin with the capability to use 11-bit standard or 29-bit extended acceptance
identifiers, as programmed by the microcontroller for each message center. The CAN unit provides 15 message centers, each having
a standard 8-byte data field. The first 14 message centers are programmable in either transmit or receive mode. Message center 15
is designed as a receive-only message center with a FIFO buffer to prevent the inadvertent loss of data when the microcontroller is
busy. This FIFO buffer is utilized when the microcontroller is not allowed time to retrieve the incoming message prior to the acceptance
of a second message into message center 15. Message center 15 also utilizes an independent set of mask registers and identifica-
tion registers, which are only applied once an incoming message has not been accepted by any of the first 14 message centers. A
second filter test is also supported for all message centers (1 to 15) to allow the CAN controller to use two separate 8-bit media masks
and media arbitration fields to verify the contents of the first two bytes of data of each incoming message, before accepting an incom-
ing message. This feature allows the CAN unit to directly support the use of higher CAN protocols, which make use of the first and/or
second byte of data as a part of the acceptance layer for storing incoming messages. Each message center can also be programmed
independently to perform testing of the incoming data with or without the use of the global masks.

Global controls and status registers in the CAN module allow the microcontroller to evaluate error messages, validate new data and
the location of such data, establish the bus timing for the CAN bus, establish the identification mask bits, and verify the source of indi-
vidual messages. Each message center register in dual-port memory is individually equipped with the necessary status and controls
to establish direction, interrupt generation, identification mode (standard or extended), data field size, data status, automatic remote
frame request and acknowledgment, and masked or nonmasked identification acceptance testing.

DeviceNET is a trademark of Open DeviceNet Vendor Association.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-5

The priority order associated with the CAN module transmitting or receiving a message is determined by the inverse of the number of
the message center, and is independent of the arbitration bits assigned to the message center. Thus, message center 2 has a higher
priority than message center 14. To avoid a priority inversion the CAN modules are configured to reload the transmit buffer with the
message of the highest priority (lowest message center number) whenever an arbitration is lost or an error condition occurs.

The MAXQ7665/MAXQ7666 CAN controller block diagram is shown in Figure 4-1.

Figure 4-1. MAXQ7665/MAXQ7666 CAN 0 Controller Block Diagram

CAN 0 CONTROLLER BLOCK DIAGRAM

DUAL PORT MEMORY CAN PROCESSOR

CAN 0 PERIPHERAL REGISTERS

MESSAGE CENTERS 1-15 BUS ACTIVITY WAKEUP

8-BIT
Rx

CRC
CHECK

BIT
DESTUFF

Rx
SHIFT

BIT
TIMING CANRXD

CANTXD
MESSAGE CENTER 2

ARBITRATION 0-3

FORMAT
DATA 0-7

MESSAGE CENTER 1

ARBITRATION 0-3

FORMAT
DATA 0-7

MESSAGE CENTER 15

CONTROL/STATUS/MASK REGISTERS

ARBITRATION 0-3

MEDIA ARBITRATION 0-1 EXT GLOBAL MASK 0-3

MEDIA ID MASK 0-1 STD GLOBAL MASK 0-1

BUS TIMING 0-1 MSG15 MASK 0-3

VIA C0DP/C0DB
MODULE/INDEX

FORMAT
DATA 0-7

MESSAGE CENTER 14

ARBITRATION 0-3

FORMAT
DATA 0-7

CAN 0 TRANSMIT MSG ACK

CAN 0 INTERRUPT REGISTER

CAN 0 STATUS REGISTER

CAN 0 RECEIVE MSG ACK

CAN 0 OPERATION CONTROL

CAN 0 CONTROL REGISTER

CAN 0 DATA POINTER

CAN 0 MESSAGE 1-15
CONTROL REGISTERS

CAN 0 DATA BUFFER

CAN 0 TRANSMIT ERROR
COUNTER

CAN 0 RECEIVE ERROR
COUNTER

CAN INTERRUPT
SOURCES

8-BIT
Tx

CRC
GENERATE

CAN
PROTOCOL

FSM

BIT
STUFF

Tx
SHIFT

TRANSPORT NETWORK

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-6

4.2 CAN Controller Registers

4.2.1 Dual Port Memory Space Registers
This section summarizes CAN 0 control/status/mask information and CAN 0 message center registers that are located in the dual-port
memory space. The CAN 0 control/status/mask information is organized in sixteen 8-bit registers. For the 15 CAN 0 message centers,
each message center contains sixteen 8-bit registers.

The dual port memory address for the CAN message centers is located from 00h to 7Fh as illustrated in the CAN dual port memory
address map (see Figure 4-2). Since the CPU memory access is in 2-byte words, two registers are accessed at one time. A register is
shown as the high-order byte (H) or the low-order byte (L) by the word address. The dual port memory control/status/mask registers
and message center registers and bits are summarized in the tables that follow.

All the dual port memory locations are accessed by the microcontroller through the CAN 0 data pointer (C0DP) and the CAN 0 data
buffer (C0DB) registers.

Figure 4-2. CAN Dual Port Memory Address Map

RESERVED

RESERVED

MESSAGE 1 ARBITRATION REG 0

MESSAGE 1 ARBITRATION REG 1

MESSAGE 1 ARBITRATION REG 2

MESSAGE 1 ARBITRATION REG 3

MESSAGE 1 FORMAT REGISTER

MESSAGE 1 DATA BYTE 0

MESSAGE 1 DATA BYTE 1

MESSAGE 1 DATA BYTE 2

MESSAGE 1 DATA BYTE 3

MESSAGE 1 DATA BYTE 4

MESSAGE 1 DATA BYTE 5

MESSAGE 1 DATA BYTE 6

MESSAGE 1 DATA BYTE 7

RESERVED

MEDIA ID MASK REGISTER 0

MEDIA ARBITRATION REGISTER 0

MEDIA ID MASK REGISTER 1

MEDIA ARBITRATION REGISTER 1

BUS TIMING REGISTER 0

BUS TIMING REGISTER 1

STANDARD GLOBAL MASK REG 0

STANDARD GLOBAL MASK REG 1

EXTENDED GLOBAL MASK REG 0

EXTENDED GLOBAL MASK REG 1

EXTENDED GLOBAL MASK REG 2

EXTENDED GLOBAL MASK REG 3

MESSAGE CENTER 15 MASK REG 0

MESSAGE CENTER 15 MASK REG 1

MESSAGE CENTER 15 MASK REG 2

MESSAGE CENTER 15 MASK REG 3

CONTROL/STATUS/MASK REG

MESSAGE CENTER 1

MESSAGE CENTER 2

MESSAGE CENTER 3

MESSAGE CENTER 4

MESSAGE CENTER 5

MESSAGE CENTER 6

MESSAGE CENTER 7

MESSAGE CENTER 8

MESSAGE CENTER 9

MESSAGE CENTER 10

MESSAGE CENTER 11

MESSAGE CENTER 12

MESSAGE CENTER 13

MESSAGE CENTER 14

MESSAGE CENTER 15

08h(L)

08h(H)

09h(L)

09h(H)

0Ah(L)

0Ah(H)

0Bh(L)

0Bh(H)

0Ch(L)

0Ch(H)

0Dh(L)

0Dh(H)

0Eh(L)

0Eh(H)

0Fh(L)

0Fh(H)

00-07h

08-0Fh

10-17h

18-1Fh

20-27h

28-2Fh

30-37h

38-3Fh

40-47h

48-4Fh

50-57h

58-5Fh

60-67h

68-6Fh

70-77h

78-7Fh

00h(L)

00h(H)

01h(L)

01h(H)

02h(L)

02h(H)

03h(L)

03h(H)

04h(L)

04h(H)

05h(L)

05h(H)

06h(L)

06h(H)

07h(L)

07h(H)

MESSAGE
CENTER 1

ADDRESS MAP
ADDRESS ADDRESSADDRESS

CONTROL/STATUS/MASK
REGISTER

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-7

4.2.1.1 Dual Port Memory Space Registers for CAN 0

CAN 0 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0 DUAL PORT ADDRESS

C0MID0 MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00 00h(L)

C0MA0 M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0 00h(H)

C0MID1 MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10 01h(L)

C0MA1 M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0 01h(H)

C0BT0 SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 02h(L)

C0BT1 SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10 02h(H)

C0SGM0 MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21 03h(L)

C0SGM1 MASK20 MASK19 MASK18 0 0 0 0 0 03h(H)

C0EGM0 MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21 04h(L)

C0EGM1 MASK20 MASK19 MASK18 MASK17 MASK16 MASK15 MASK14 MASK13 04h(H)

C0EGM2 MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5 05h(L)

C0EGM3 MASK4 MASK3 MASK2 MASK1 MASK0 0 0 0 05h(H)

C0M15M0 MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21 06h(L)

C0M15M1 MASK20 MASK19 MASK18 MASK17 MASK16 MASK15 MASK14 MASK13 06h(H)

C0M15M2 MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5 07h(L)

C0M15M3 MASK4 MASK3 MASK2 MASK1 MASK0 0 0 0 07h(H)

CAN 0 MESSAGE CENTER 1

REGISTER 7 6 5 4 3 2 1 0 DUAL PORT ADDRESS

— Reserved 08h(HL)

C0M1AR0 CAN 0 Message 1 Arbitration Register 0 09h(L)

C0M1AR1 CAN 0 Message 1 Arbitration Register 1 09h(H)

C0M1AR2 CAN 0 Message 1 Arbitration Register 2 0Ah(L)

C0M1AR3 CAN 0 Message 1 Arbitration Register 3 WTOE 0Ah(H)

C0M1F DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EXST MEME MDME 0Bh(L)

C0M1D0:7 CAN 0 Message 1 Data Bytes 0–7 0Bh(H)–0Fh(L)

— Reserved 0Fh(H)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-8

CAN 0 MESSAGE CENTERS 2–14

REGISTER 7 6 5 4 3 2 1 0 DUAL PORT ADDRESS

Message Center 2 Registers (Similar to Message Center 1) 10h–17h

Message Center 3 Registers (Similar to Message Center 1) 18h–1Fh

Message Center 4 Registers (Similar to Message Center 1) 20h–27h

Message Center 5 Registers (Similar to Message Center 1) 28h–2Fh

Message Center 6 Registers (Similar to Message Center 1) 30h–37h

Message Center 7 Registers (Similar to Message Center 1) 38h–3Fh

Message Center 8 Registers (Similar to Message Center 1) 40h–47h

Message Center 9 Registers (Similar to Message Center 1) 48h–4Fh

Message Center 10 Registers (Similar to Message Center 1) 50h–57h

Message Center 11 Registers (Similar to Message Center 1) 58h–5Fh

Message Center 12 Registers (Similar to Message Center 1) 60h–67h

Message Center 13 Registers (Similar to Message Center 1) 68h–6Fh

Message Center 14 Registers (Similar to Message Center 1) 70h–77h

CAN 0 MESSAGE CENTER 15

REGISTER 7 6 5 4 3 2 1 0 DUAL PORT ADDRESS

— Reserved 78h(HL)

C0M15AR0 CAN 0 Message 15 Arbitration Register 0 79h(L)

C0M15AR1 CAN 0 Message 15 Arbitration Register 1 79h(H)

C0M15AR2 CAN 0 Message 15 Arbitration Register 2 7Ah(L)

C0M15AR3 CAN 0 Message 15 Arbitration Register 3 WTOE 7Ah(H)

C0M15F DTBYC3 DTBYC2 DTBYC1 DTBYC0 0 EX/ST MEME MDME 7Bh(L)

C0M15D0:7 CAN 0 Message 15 Data Bytes 0–7 7Bh(H)–7Fh(L)

— Reserved 7Fh(H)

4.2.1.1 Dual Port Memory Space Registers for CAN 0 (continued)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-9

4.2.2 Control/Status/Mask Register Descriptions
The CAN control/status/mask registers are located at either the higher order (H) or the lower order (L) byte of the dual port address
location from 00h to 07h. Write access to these registers in dual port memory space is allowed only during a software initialization
(SWINT = 1). A write by the microcontroller to any of these registers when SWINT = 0 will not alter any of the data in these registers.
The CAN control/status/mask registers can be read at any time independent of the state of SWINT. All the CAN control/status/mask reg-
isters are cleared to 00h after system reset.

All the dual port memory locations are accessed by the microcontroller through the CAN 0 data pointer and CAN 0 data buffer regis-
ters located in the peripheral register map.

CAN 0 Media ID Mask Register 0 (C0MID0)

CAN 0 Media ID Mask Register 1 (C0MID1)

CAN 0 Media ID Mask Registers 0 and 1 (C0MID0 and C0MID1). These registers function as the mask when performing the media
identification test. These registers can only be modified during a software initialization (SWINT = 1). If MDME = 0, the media identifi-
cation test cannot be performed, and the contents of these registers is ignored. If MDME = 1, the CAN module performs an addition-
al qualifying test on data bytes 0 and 1 of the incoming message, regardless of the state of the EX/ST bit. Data byte 1 is compared
against CAN media byte arbitration register 1 using C0MID1 as a mask; data byte 0 is compared against CAN media byte arbitration
register 0 using C0MID0 as a mask. Any bit in the C0MID1, C0MID0 masks programmed to 0 will ignore the state of the correspond-
ing data byte bit when performing the test. Any bit in the C0MID1, C0MID0 masks programmed to 1 will force the state of the corre-
sponding data byte bit and CAN media byte arbitration registers 1 and 0 to match before considering the incoming message a match.
Programming either media ID mask register to 00h effectively disables the media ID test for that byte. As such, the C0MID1, C0MID0
masks act as a don’t care following a system reset.

Bit # 7 6 5 4 3 2 1 0

Name MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

00h(L)

Bit # 7 6 5 4 3 2 1 0

Name MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

01h(L)

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-10

CAN 0 Media Arbitration Register 0 (C0MA0)

CAN 0 Media Arbitration Register 1 (C0MA1)

CAN 0 Media Arbitration Registers 0 and 1 (C0MA0 and C0MA1). These registers function as the arbitration field when performing
the media identification test. If MDME = 0, the media identification test cannot be performed and the contents of these registers is
ignored. If MDME = 1, the CAN module performs an additional qualifying test on data bytes 0 and 1 of the incoming message, as men-
tioned in the description of the CAN media ID mask registers. These registers can only be modified during a software initialization
(SWINT = 1).

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Bit # 7 6 5 4 3 2 1 0

Name M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

00h(H)

Bit # 7 6 5 4 3 2 1 0

Name M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

01h(H)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-11

CAN 0 Bus Timing Register 0 (C0BT0)

Bits 7 and 6: CAN Synchronization Jump Width Select (SJW1 and SJW0). These bits specify the maximum number of time quan-
ta (tQU) cycles that a bit can be lengthened or shortened in one resynchronization to compensate for phase errors detected by the
CAN controller when receiving data. These bits can only be modified during a software initialization (SWINT = 1).

Bits 5 to 0: CAN Baud-Rate Prescaler (BPR5 to BPR0). These bits specify the lower six bits (BPR5–BRR0) of the 8-bit prescale value
(BPR7–BPR0). The 256 states defined by the binary combinations of the BPR7–BPR0 bits determine the value of the prescale, which
in turn defines the cycle time associated with one time quanta. These bits can only be modified during a software initialization (SWINT
= 1). The BPR7, BPR6 bits are located in the COR peripheral register.

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Bit # 7 6 5 4 3 2 1 0

Name SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

02h(L)

SJW1 SJW0 SYNCRHONIZATION JUMP WIDTH

0 0 1 tQU (1)

0 1 2 tQU (2)

1 0 3 tQU (3)

1 1 4 tQU (4)

BPR7,
BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 BAUD-RATE PRESCALE

VALUE (BRPV)

00 0 0 0 0 0 0 1

00 0 0 0 0 0 1 2

. .

. .

11 1 1 1 1 1 0 255

11 1 1 1 1 1 1 256

Note: Number in parentheses is the SJW value used in bit timing calculations.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-12

CAN 0 Bus Timing Register 1 (C0BT1)

Bit 7: CAN Sampling Rate (SMP). The SMP bit determines the number of samples to be taken during each receive bit time.
Programming SMP = 0 takes only one sample during each bit time. Programming SMP = 1 directs the CAN logic to take three sam-
ples during each bit time, and to use a majority voting circuit to determine the final bit value. When SMP is set to 1, two additional tQU
clock cycles are be added to time segment 1. SMP should not be set to 1 when the baud-rate prescale value (BRPV) is less than 4.
This bit can only be modified during a software initialization (SWINT = 1).

Bits 6, 5, 4: CAN Time Segment 2 Select (TSEG26, TSEG25, TSEG24). The eight states defined by the TSEG26, TSEG25, and
TSEG24 bits determine the number of clock cycles in the phase segment 2 portion of the nominal bit time, which occurs after the sam-
ple time. These bits can only be modified during a software initialization (SWINT = 1).

Bits 3 to 0: CAN Time Segment 1 Select (TSEG13 to TSEG10). The 16 states defined by the TSEG13–TSEG10 bits determine the
number of clock cycles in the phase segment 1 portion of the nominal bit time, which occurs before the sample time. These bits can
only be modified during a software initialization (SWINT = 1).

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Bit # 7 6 5 4 3 2 1 0

Name SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

02h(H)

TSEG26 TSEG25 TSEG24 TIME SEGMENT 2 LENGTH

0 0 0 Invalid

0 0 1 2 tQU (2)

0 1 0 3 tQU (3)

.

1 1 0 7 tQU (7)

1 1 1 8 tQU (8)

Note: Number in parentheses is the TS2_LEN value used in bit timing calculations.

TSEG13 TSEG12 TSEG11 TSEG10 TIME SEGMENT 2 LENGTH

0 0 0 0 Invalid

0 0 0 1 2 tQU (2)

0 1 1 0 3 tQU (3)

.

1 1 1 0 15 tQU (15)

1 1 1 1 16 tQU (16)

Note: Number in parentheses is the TS1_LEN value used in bit timing calculations.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-13

CAN 0 Standard Global Mask Register 0 (C0SGM0)

CAN 0 Standard Global Mask Register 1 (C0SGM1)

CAN Standard Global Mask Registers 0 and 1 (C0SGM0 and C0SGM1). These registers function as the mask when performing the
11-bit global identification test on incoming messages for message centers 1–14. If message identification masking is disabled (MEME
= 0), the incoming message ID field must match the corresponding message center arbitration value exactly, effectively ignoring the
contents of these registers. These registers are only used when performing the message identification test for message centers con-
figured as standard receivers (EX/ST = 0) having message ID masking enabled (MEME = 1). Thus, the contents are ignored by mes-
sage centers configured to receive messages with extended identifiers (EX/ST = 1). These registers can only be modified during a soft-
ware initialization (SWINT = 1).

When MEME = 1, any mask bit in the C0SGM1, C0SGM0 mask programmed to 0 creates a don’t care condition when the respective
bit in the incoming message ID field is compared with the corresponding arbitration bits in message centers 1–14. Any bit in these
masks programmed to a 1 forces the respective bit in the incoming message ID field to match identically with the corresponding arbi-
tration bits in message centers 1–14 before said message is loaded into message centers 1–14.

The five least significant bits in the C0SGM1 register are not used and do not perform any comparison of these bit locations. A read
of these bits will return 0, writes are ignored.

CAN 0 Extended Global Mask Register 0 (C0EGM0)

Bit # 7 6 5 4 3 2 1 0

Name MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

03h(L)

Bit # 7 6 5 4 3 2 1 0

Name MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

04h(L)

Bit # 7 6 5 4 3 2 1 0

Name MASK20 MASK19 MASK18 — — — — —

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

03h(H)

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-14

CAN 0 Extended Global Mask Register 1 (C0EGM1)

CAN 0 Extended Global Mask Register 2 (C0EGM2)

CAN 0 Extended Global Mask Register 3 (C0EGM3)

CAN 0 Extended Global Mask Registers 0 to 3 (C0EGM0 to COEGM3). These registers function as the mask when performing the
extended global identification test (EX/ST = 1) when message ID masking is enabled (MEME = 1) for message centers 1–14. When
EX/ST = 0 or MEME = 0 for a given message center, the contents of this register are ignored. These registers can only be modified
during a software initialization (SWINT = 1).

When EX/ST = 1, the 29 bits of the message ID are compared against the 29 bits of the CAN message center arbitration registers,
using the 29 bits of the CAN extended global mask registers as a mask. Any bit in the extended global mask registers set to 0 ignores
the state of the corresponding bit in the incoming message ID field when performing the test. Any bit in the extended global mask reg-
isters set to 1 forces the state of the corresponding bit in the incoming message ID field and CAN message center arbitration regis-
ters 0–3 to match before considering the incoming message a match.

The three least significant bits in the C0EGM3 are not used and do not perform any comparison of these bit locations. A read of these
bits always returns 0, and writes to these bits are ignored.

Programming all mask registers to 00h effectively disables the global ID test for that message, accepting all messages. As such, the
global mask registers act as a don’t care following a system reset.

Bit # 7 6 5 4 3 2 1 0

Name MASK20 MASK19 MASK18 MASK17 MASK16 MASK15 MASK14 MASK13

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

04h(H)

Bit # 7 6 5 4 3 2 1 0

Name MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

05h(L)

Bit # 7 6 5 4 3 2 1 0

Name MASK4 MASK3 MASK2 MASK1 MASK0 — — —

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

05h(H)

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-15

CAN 0 Message Center 15 Mask Register 0 (C0M15M0)

CAN 0 Message Center 15 Mask Register 1 (C0M15M1)

CAN 0 Message Center 15 Mask Register 2 (C0M15M2)

Bit # 7 6 5 4 3 2 1 0

Name MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

06h(L)

Bit # 7 6 5 4 3 2 1 0

Name MASK20 MASK19 MASK18 MASK17 MASK16 MASK15 MASK14 MASK13

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

06h(H)

Bit # 7 6 5 4 3 2 1 0

Name MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

07h(L)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-16

CAN 0 Message Center 15 Mask Register 3 (C0M15M3)

CAN Message Center 15 Mask Registers 0 to 3 (C0M15M0 to C0M15M3). These registers function as the mask for the standard
(EX/ST = 0) or extended (EX/ST = 1) global identification test (EX/ST = 1) when message ID masking has been enabled (MEME = 1)
for message center 15. These registers can only be modified during a software initialization (SWINT = 1).

When EX/ST = 1, the 29 bits of the message ID are compared against the 29 bits of the CAN message center 15 arbitration registers,
using the 29 bits of the CAN message center 15 mask registers as a mask. When EX/ST = 0, the 11 bits of the message ID are com-
pared against the most significant 11 bits of the CAN message center 15 arbitration registers, using the most significant 11 bits of the
CAN message center 15 mask registers as a mask. Any bit in the CAN 0 message center 15 mask registers set to 0 will ignore the
state of the corresponding bit in the incoming message ID field when performing the test. Any bit in the CAN message center 15 mask
registers set to 1 forces the state of the corresponding bit in the incoming message ID field and CAN message center arbitration reg-
isters 0–3 to match before considering the incoming message a match.

The three least significant bits in the C0M15M3 register are not used and will not perform any comparison of these bit locations. A read
of these bits always returns 0, and writes to these bits are ignored.

Programming all mask registers to 00h effectively disables the message center 15 ID test, accepting all messages. As such the mes-
sage center 15 mask registers act as a don’t care following a system reset.

Bit # 7 6 5 4 3 2 1 0

Name MASK4 MASK3 MASK2 MASK1 MASK0 — — —

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Dual Port
Address

07h(H)

r = read, w = write (allowed only when SWINT = 1 via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-17

4.2.3 CAN Message Center Register Descriptions
The CAN message center registers are located at either the higher order (H) or the lower order (L) byte of the dual port address loca-
tions from 08h to 7Fh. The microcontroller has read/write access to these locations at any time independent of the state of SWINT. All
message centers (y = 1–15) are identical, with the exception of 15, which has some minor differences noted in the register descrip-
tions. To simplify the discussion, only one set of registers is shown, with the generic notation y to denote a message center (y = 1–15).
All the CAN message center register values are indeterminate after a system reset.

All dual port memory locations are accessed by the microcontroller through the CAN 0 data pointer (C0DP) and the CAN 0 data buffer
(C0DB) registers.

CAN 0 Message Center y Arbitration Register 0 (C0MyAR0)

CAN 0 Message Center y Arbitration Register 1 (C0MyAR1)

CAN 0 Message Center y Arbitration Register 2 (C0MyAR2)

Bit # 7 6 5 4 3 2 1 0

Name ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address

(8y+1)h(L)

Bit # 7 6 5 4 3 2 1 0

Name ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address

(8y+1)h(H)

Bit # 7 6 5 4 3 2 1 0

Name ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address

(8y+2)h(L)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-18

CAN 0 Message Center y Arbitration Register 3 (C0MyAR3)

CAN 0 Message Center y Arbitration Registers 0 to 3 (C0MyAR0 to C0MyAR3). These bits form the arbitration value/identification
number for the message center y. When the message center is configured in a transmit mode, these registers are the source of the 29-
bit ID message field (when EX/ST = 1) or the 11-bit ID message field (when EX/ST = 0). When EX/ST = 1, the 29 message ID bits cor-
respond to ID28–ID0 as shown above. When EX/ST = 0, the message ID bits 10–0 correspond to ID28–ID18 in C0MyAR0 and
C0MyAR1.

When configured in a receive mode, these registers serve as the arbitration value for message center y, against which incoming mes-
sages are compared to ascertain if they are valid for that message center. When EX/ST = 1, all 29 bits of the arbitration are used, but
when EX/ST = 0, only the most significant 11 bits are used.

Note that when a message is successfully loaded, the entire message is loaded to the message center. So, if message ID masking
was enabled (MEME = 1), it is possible to overwrite the arbitration register bits that were defined as don’t cares for incoming message
acceptance.

Bits 2, 1 (C0MyAR3 Only): Reserved. These bits are not used in arbitration. These bits can be modified by the application software.
A read of these bits will always return 0.

Bit 0 (C0MyAR3 Only): Writeover Enable (WTOE). This bit controls the ability of a new message to overwrite an existing message in
the corresponding message center in receive mode. The DTUP and EXTRQ bits for the message center in question must also be con-
sidered to determine the effect of this bit as shown below. The WTOE bit can only be programmed when the SWINT bit is set.

Bit # 7 6 5 4 3 2 1 0

Name ID4 ID3 ID2 ID1 ID0 — — WTOE

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address

(8y+2)h(L)

WTOE DTUP EXTRQ RESULT WHEN NEW MESSAGE IS DETECTED

0 0 0 There is currently no unread message or pending external frame request in the message center, so the matching
message is written to appropriate message center (1–15).

0 1 x

The message center (1–15) has an unread message or pending external frame request. The incoming matching
message is ignored and the message center remains unchanged. The CAN module proceeds to the next lower
priority message center to evaluate the incoming message ID and arbitration bits and related masking
operations. (No overwrite.)

0 x 1

The message center (1–15) has an unread message or pending external frame request. The incoming matching
message is ignored and the message center remains unchanged. The CAN module proceeds to the next lower
priority message center to evaluate the incoming message ID and arbitration bits and related masking
operations. (No overwrite.)

1 0 x There is currently no unread message or pending external frame request in the message center, so the matching
message is written to appropriate message center (1–15).

1 1 x The new matching message is stored, overwriting the previously stored message. The ROW bit is set to indicate
the overwrite operation.

X = Don’t care
r = read, w = write (via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-19

Special Notes for Message Center 15: The ROW bit in message center 15 is associated with an overwrite of the shadow buffer for
message center 15. The EXTRQ and DTUP bits are also shadow buffered to allow the buffered message and the message center 15
value to take on different relationships. The EXTRQ and DTUP values read by software are the current message center 15 values, rather
than those of the shadow buffer, as is the case with the ROW bit. The shadow buffer is automatically loaded into message center 15
when both the DTUP bit and EXTRQ bit are cleared. If either DTUP = 1 or EXTRQ = 1 when clearing the other, any message in the
shadow buffer will not be transferred to the message 15 registers, and any incoming messages for message 15 will be stored in the
shadow buffer if WTOE = 1, or will be lost if WTOE = 0.

Special Notes Concerning Remote Frames: For remote frames, which can be received by transmit message centers (1–14) in case
of a matching identifier, WTOE and EXTRQ are evaluated. If [(WTOE = 1) or (WTOE = 0 and EXTRQ = 1)], the respective transmit mes-
sage center (1–14) arbitration bits can be overwritten.

CAN 0 Message Center y Format Register (C0MyF)

Bits 7 to 4: Data Byte Count (DTBYC3 to DTBYC0). These bits indicate the number of bytes within the data field of the message.
When performing a transmit, software sets the DTBYC bits to establish the number of bytes that are to be transmitted. Any value above
8 acts as if 8 had been programmed. When receiving a message, the DTBYC bits indicate the (binary) number of bytes of data in the
incoming message (i.e., 0000b = 0 data bytes and 1000b = 8 data bytes).

Bit 3: Transmit/Receive Select (T/R). This bit is programmed by the application software to indicate if the message is to be transmit-
ted (T/R = 1) or received (T/R = 0). This bit can only be modified when MSRDY = 0. This bit does not exist for message center 15 and
always returns 0 when read from message center 15.

Bit 2: Extended or Standard Identifier (EX/ST). This bit determines whether the respective message is to use the extended 29-bit iden-
tification format (EX/ST = 1) or the standard 11-bit Identification format (EX/ST = 0). Message centers programmed for one format will only
receive/send extended messages in that format and will ignore the alternate format. This bit can only be modified when MSRDY = 0.

Bit 1: Message Identification Mask Enable (MEME). The MEME bit enables (MEME = 1) or disables (MEME = 0) the use of the mes-
sage identification masking process, associated with the testing of the identification field in the incoming message. This bit can only
be modified when MSRDY = 0.

0 = The mask registers are ignored when evaluating the identification bits of the incoming message, and the identification bits of
the incoming message and the message center arbitration bits must match exactly to allow receipt of the incoming message. This
is equivalent to programming the mask with all zeros. An exact match is also required before a remote data request is allowed.

1 = The mask registers are enabled, comparing only those bits message identification and arbitration bits that correspond to a 1
in the mask register. Since the entire message is loaded on a successful ID match, note that it is possible to overwrite the corre-
sponding arbitration register bits that were defined as don’t cares (0) in the standard or extended global ID mask.

Bit 0: Media Identification Mask Enable (MDME). The MDME bit enables (MDME = 1) or disables (MDME = 0) the use of the first 2
bytes of the data field as a message qualifier. This bit can only be modified when MSRDY = 0.

0 = The first 2 bytes of the data field are ignored and not compared.

1 = The first 2 data bytes are masked by the respective media mask ID register and then compared with the media arbitration reg-
ister 0 and 1 bytes. Only those bits in the first 2 data bytes and the arbitration registers corresponding to a 1 in the mask register
are compared. When MDME = 1, the test is also performed before a remote request of data from a remote node is accepted.

Bit # 7 6 5 4 3 2 1 0

Name DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address

(8y+3)h(L)

X = Don’t care
r = read, w = write (via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-20

CAN 0 Message Center y Data Byte 0 (C0MyD0)

CAN 0 Message Center y Data Byte 1 (C0MyD1)

CAN 0 Message Center y Data Byte 2 (C0MyD2)

CAN 0 Message Center y Data Byte 3 (C0MyD3)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+3)h(H)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+4)h(L)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+4)h(H)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+5)h(L)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-21

CAN 0 Message Center y Data Byte 4 (C0MyD4)

CAN 0 Message Center y Data Byte 5 (C0MyD5)

CAN 0 Message Center y Data Byte 6 (C0MyD6)

CAN 0 Message Center y Data Byte 7 (C0MyD7)

CAN 0 Message Center y Data Bytes 0 to 7 (C0MyD0 to C0MyD7). These bytes hold data to be transmitted or received data.

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+5)h(H)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+6)h(L)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+6)h(H)

Bit # 7 6 5 4 3 2 1 0

Name

Reset X X X X X X X X

Access rw rw rw rw rw rw rw rw

Dual Port
Address (8y+7)h(L)

X = Don’t care
r = read, w = write (via C0DP/C0DB)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-22

4.2.4 CAN Global Control and Status Register Descriptions
All the global CAN controls and status, as well as the individual message center control/status registers, are located in the peripheral
register map. These registers are located in Module 4, indexes 0h–9h, 11h–1Fh.

Note: All the registers located in the peripheral register map are directly accessible by the microcontroller using the module/index
address.

4.2.4.1 CAN 0 Control Register (C0C)

Register Description: CAN 0 Control Register
Register Name: C0C
Register Address: Module 04h, Index 00h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bit 7: CAN 0 Error Interrupt Enable (ERIE). Programming the ERIE bit to 1 enables the CAN 0 status bus status (BSS) or error count
greater than 96 bit (EC96) to issue an interrupt to the microcontroller, if the C0IE bit in the COR peripheral register is also set. When
ERIE is cleared to 0, the error interrupt is disabled.

Bit 6: CAN 0 Status Interrupt Enable (STIE). Programming the STIE bit to 1 allows the CAN 0 status error bits (ER0:ER2), transmit
status bit (TXS), receive status bit (RXS), or the wake-up status bit (WKS) to issue an interrupt to the microcontroller if the C0IE bit in
the COR peripheral register is also set. When STIE is cleared to 0, the status interrupt is disabled.

Bit 5: CAN 0 Power-Down Enable (PDE). Programming the PDE bit to 1 places the CAN 0 controller into a fully static power-down mode
after completion of the last reception, transmission, or after the arbitration was lost or an error condition occurred. Note that the term
"after arbitration lost" denotes the fact that the arbitration was lost and the reception following this lost arbitration is completed. Recall
that the CAN processor immediately becomes a receiver after it has lost its arbitration on the CAN bus. Programming PDE = 0 disables
the power-down mode. The PDE mode forces all the CAN 0 logic to a static state. The PDE mode can only be removed by either soft-
ware reprogramming the PDE bit or through a system reset. A read of PDE establishes when the power-down mode has been enabled
or removed as per the PDE bit. In all cases, the CAN controller begins operation after 11 recessive bits (a power-up sequence) on the
CAN bus per the configuration settings for bit timing, which were programmed prior to entering the power-down mode. Since WKS
reflects when the CAN has entered the low-power state as per the SIESTA and/or PDE bit states, a read of the PDE bit establishes when
the PDE bit is actually allowed to enable the low-power state. If the low-power state was previously enabled by setting the SIESTA bit, a
read of PDE reflects the actual PDE bit value and not the low-power mode. If the low-power mode has not been previously enabled and
the PDE bit is set to 1 by software, a read of PDE returns a 0, until such time the PDE bit actually enables the low-power mode following
an active transmit or receive operation. When the PDE and SIESTA bit are not used together, a read of the PDE bit, by default, also reflects
the actual state of the low-power mode. Setting PDE does not alter any CAN block controls or error status relationships.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ERIE STIE PDE SIESTA CRST AUTOB ERCS SWINT

Reset 0 0 0 0 1 0 0 1

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-23

Bit 4: Low-Power Siesta Mode (SIESTA). Setting the SIESTA bit to 1 places the CAN 0 controller into a low-power static state after
completion of the last reception, transmission, or after the arbitration was lost or an error condition occurred. Note that the term "after
arbitration lost" denotes the fact the arbitration was lost and the reception following this lost arbitration is completed. Recall that the
CAN processor immediately becomes a receiver after it has lost its arbitration on the CAN bus. Programming SIESTA = 0 disables the
low-power mode. The state of when the SIESTA mode is actually enabled or removed, as per the SIESTA bit programmed value, is
reflected in the read of the SIESTA bit. The SIESTA mode is removed when the CAN 0 controller detects CAN 0 bus activity, by repro-
gramming the SIESTA bit to 0, or by setting either CRST or SWINT to 1. When the SIESTA bit is cleared by either a microcontroller write
or activity on the CAN 0 bus, the CAN controller begins operation after 11 recessive bits on the CAN bus (after a power-up sequence)
using the configuration settings that were programmed prior to entering the power-down mode. Changing the SIESTA bit from 0 to 1
does not disrupt a currently active receive or transmit, but allows the completion of CAN 0 bus activity prior to entering into the static
state. If the CAN 0 logic issues an interrupt as a result of an active CAN 0 receive or transmit while SIESTA is being set, the SIESTA bit
is cleared and the CAN 0 logic does not enter the low-power mode. Since WKS reflects when the CAN has entered the low-power state
as per the SIESTA and/or PDE bit states, a read of the SIESTA bit establishes when the SIESTA bit is actually allowed to enable the low-
power state. If the low-power state was previously enabled by setting the PDE bit, a read of SIESTA reflects the actual SIESTA bit value
and not the low-power mode. If the low-power mode has not been previously enabled and the SIESTA bit is set to 1 by software, a read
of SIESTA returns a 0 until such time that the SIESTA bit actually enables the low-power mode following an active transmit or receive
operation. When the PDE and SIESTA bit are not used together, a read of the SIESTA bit, by default, also reflects the actual state of the
low-power mode. Setting SIESTA does not alter any CAN block controls or error status relationships. Note that the PDE and SIESTA bits
act independently of each other. Setting both bits leaves the CAN processor in a low-power state until both bits have been cleared by
their respective mechanisms.

Bit 3: CAN 0 Reset (CRST). When CRST is set to 1 and after completion of the last reception, transmission, or after arbitration was lost
or an error condition occurred, all CAN registers located in the peripheral register memory map, with the exception of the CAN 0 con-
trol register, are cleared to 00h. The CAN 0 control register is set to 09h. Note that the term "after arbitration lost" denotes the fact that
the arbitration was lost and the reception following this lost arbitration is completed. Recall that the CAN processor immediately becomes
a receiver after it has lost its arbitration on the CAN bus. In accordance with waiting until after the completion of the last reception, trans-
mission, or after arbitration was lost or an error condition occurred, a read of the CRST bit, when previously programmed to 1, reads as
a 0 until such time that the CRST = 1 state is actually allowed to place the CAN processor into the reset state. As such, a read of the
CRST bit verifies when the CAN reset has been engaged or removed. CAN registers located in the dual port memory map are left in the
last state prior to setting CRST. Setting CRST also clears both the receive- and transmit-error counters in the CAN controllers and sets
the SWINT bit to 1. CRST must be cleared by software to remove the CAN reset and allow the CAN 0 processor to be initialized. When
the CAN processor is not in a BUSOFF mode (BSS = 0) and the CAN processor exits either the software initialization mode (SWINT pro-
grammed from 1 to 0) or when the CAN reset is removed (CRST bit is cleared from 1 to 0 and the SWINT bit is cleared from 1 to 0), the
CAN processor performs a power-up sequence of 11 consecutive recessive bits before the CAN controller enters into normal operation.
If the CAN reset is removed and SWINT is left in the software initialization state, the microcontroller is allowed to immediately start pro-
gramming the CAN registers and dual port data memory prior to the completion of the power-up sequence. Exiting the software initial-
ization mode (SWINT ≥ 0) requires a power-up sequence of 11 consecutive recessive bits before the CAN controller enters into normal
operation. Clearing CRST to 0 from a previous 0 state does not alter CAN processor operation.

Bit 2: Autobaud (AUTOB). When AUTOB is set to 1, an internal loop back is enabled to AND the data from the external CAN bus with
the transmitted data of the CAN 0 processor. The ANDed data is then connected to the internal input of the CAN 0 processor. At the
same time, the transmitted data is disabled from reaching the external CANTXD pin. The CANTXD pin is placed into a recessive state
when AUTOB = 1. The purpose of the internal loopback and the disabled CANTXD pin is to allow the CAN processor to establish the
proper CAN bus timing without disrupting the normal data flow between other nodes on the CAN bus. Disabling the CANTXD pin and
setting the CANTXD pin to a recessive state prevents the CAN processor from driving nonsynchronized data onto the CAN bus (cre-
ating CAN bus errors to other nodes) when being programmed with various frequencies to synchronize the processor with the CAN
bus. With AUTOB = 1, the microcontroller autobaud algorithm makes use of the CAN 0 status register RXS and error status bits to deter-
mine when a message is successfully received (when AUTOB =1, a successful receive, does not require a store). Each successive
baud rate attempt is preceded by the microcontroller clearing the transmit- and receive-error counters by means of a write of 00 to the
transmit-error peripheral register and a read of the CAN 0 status register to clear the previous status change interrupt. Note that a write
to the transmit-error peripheral register automatically resets the CAN fault confinement state machine to an initial (error active) state if
the error counters are cleared to 00h. If, however, the error counters are programmed to a value greater than 128, the CAN processor
is in an error-passive state. Appropriate flags are set when the error counter is written with any value. A write of the status register is
also used to remove the previous error value in the ER2:ER0 bits. Clearing the error counters also clears the EC96 bit, if set. When BSS
= 1, the CAN processor locks out the ability for the microcontroller to write to the error counters by virtue of the fact that the SWINT bit
is also forced to a 0 state during the period that the CAN processor performs a bus recovery and power-up sequence. Once the CAN

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-24

processor has removed itself from the BUSOFF condition, it also clears BSS = 0, sets SWINT = 1, and clears both the transmit- and
receive-error counters to 00h.

The following two situations are examples of how the autobaud function works on the CAN processor. In the first case, consider three
nodes, A, B and C, with nodes A and B operating in the normal CAN operational mode (nonautobaud) and node C (a MAXQ7665/
MAXQ7666 CAN processor) is attempting to establish a proper baud rate using the autobaud features. If node A transmits a message,
node B acknowledges this message, and node C also receives the acknowledged message if it has the same baud rate. If node C
does not have the same baud rate as nodes A and B, node C detects the mismatch via the respective error count. Node C then pro-
ceeds to adapt its baud rate and attempt to receive the following message.

In the second case, consider a system with only two nodes on the CAN bus. Consider node A in the autobaud mode and the second
node on the bus in the normal CAN operational mode. Node B transmits a message and does not receive an acknowledgment, since
there is no third node on the bus that is also properly synchronized with the bus and in the normal CAN operational mode. Once node
B enters into an error-passive mode (after 16 repeated messages), it begins to send passive error flags. Note that when node B is oper-
ating in an error-passive mode, it does not send any dominant errors flags to the bus. Once node A has established the proper baud
rate, it receives the correct message. The internal autobaud loopback path also allows the passive acknowledgment error sent by node
B to be ANDed with the dominant internally transmitted acknowledgment bit from node A. As such, node A sees no errors, which estab-
lishes the fact that it is properly synchronized with the bus. Node A now exits out of the autobaud mode (AUTOB = 0) and enters into
the normal CAN operational mode (with full transmit capability to the CAN bus). In this mode, node A then acknowledges the next mes-
sage from node B.

Bit 1: Error Count Select (ERCS). The ERCS bit establishes in which level the error counters set or clear the EX96/128 bit in the CAN
0 status register. When ERCS = 0, the EC96/128 flag operates in an EC96 mode. In this mode, the EC96/128 bit sets to 1 whenever
the error count of either the transmit- or receive-error counters reach a level of 96 or greater. When ERCS = 1, the EC96/128 flag oper-
ates in an EC128 mode. In the EC128 mode, the EC96/128 flag is set to 1 whenever the error count of either the transmit- or receive-
error counters reach a level of 128 or greater.

Bit 0: Software Initialization (SWINT). (Unrestricted read/write if BSS = 0 and read-only if BSS = 1.) The SWINT bit establishes the
initialization state for CAN 0, which disables CAN 0 Bus activity to allow the processor to modify the dual port CAN control/status/mask
registers assigned to the message centers without corrupting messages. When SWINT is set to 1 and after completion of the last recep-
tion, transmission, or after arbitration was lost or an error condition occurred, all CAN 0 bus activity is disabled, allowing the proces-
sor to initialize any or all of the CAN 0 dual port memory. Note that the term "after arbitration lost" denotes the fact the arbitration was
lost and the reception following this lost arbitration is completed. Recall that the CAN processor immediately becomes a receiver after
it has lost its arbitration on the CAN bus. A read of the SWINT bit verifies when the CAN processor software initialization mode has been
engaged or removed. Although the transmit- and receive-error counters are not cleared when the SWINT bit is set, the CAN 0 trans-
mit- and receive-error counters can be altered by software through the use of the CAN 0 transmit-error peripheral register, as long
SWINT = 1. Setting SWINT to 1 also clears the SIESTA bit independently of what is stored to the SIESTA bit location during or prior to
the write of the C0C register. Clearing SWINT = 0 also disables the microcontroller from writing to the first 16 bytes of the CAN dual
port memory. These 16 locations make up the CAN 0 control/status/mask registers. When SWINT = 0, the microcontroller is allowed to
write to any of the MOVX dual port message center register sites. All dual port registers are readable at any time, independent of the
SWINT bit. Also note that the SWINT bit does not alter the read or write access to any of the CAN 0 peripheral registers or dual port
CAN message center registers. SWINT is programmed to 0 when the processor has completed the dual port control/status/mask ini-
tialization and CAN 0 bus activity has started. Software write access to the error counters is disabled when SWINT is cleared to 0. A
BUSOFF condition is caused by a high number of errors on the CAN bus. When a BUSOFF condition occurs, the CAN processor clears
the SWINT bit to 0 and immediately starts a bus recover and power-up sequence. During this time, the microcontroller is limited to only
reading this bit. All microcontroller write access to SWINT is disabled when BSS = 1.

If the SWINT bit is set by a system reset, programming the CRST bit or setting the SWINT bit without the prior detection of a BUSOFF
condition can cause an adverse condition. Clearing SWINT by software allows the CAN processor to synchronize itself to the CAN bus
after the CAN processor executes a power-up sequence (11 recessive bits). The power-up sequence requires the CAN processor to
detect 11 consecutive recessive bits. (In CAN protocol, this is termed a power-up sequence.) When SWINT = 0 by a BUSOFF condi-
tion, BUSOFF forces the CAN processor to initiate a standard BUSOFF recovery sequence (128 x 11 recessive bits). This is followed
by entering into a reset state, requiring a power-up sequence (11 recessive bits), after which the CAN processor enters into the idle
state (normal operation, BSS = 0) and sets the SWINT bit to 1. This bit is not intended for use in changing data within the message
centers after the CAN processor is placed into operation. Changes to the arbitration or data fields in the message centers should be
done through the use of the MSRDY bit in the respective message (1–15) control registers. The SWINT bit is locked into the SWINT =
1 state until the bus timing registers are programmed to valid states. (The invalid states are 00h. See the CAN bus timing registers in
the CAN control/status/mask registers section.)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-25

4.2.4.2 CAN 0 Status Register (C0S)

Register Description: CAN 0 Status Register
Register Name: C0S
Register Address: Module 04h, Index 01h

The bits BSS, EC96, WKS, ER2, ER1, and ER0 in the CAN 0 status register are read-only by the microcontroller. The CAN processor
sets or clears these flags (and interrupt sources) as defined by the system aspects associated with each bit. A CAN status register
read clears the internal status-change interrupt flag. Unlike RXS and TXS, however, the individual mechanisms that set the ER2, ER0,
BSS, EC96, and WKS bits do not reoccur without first being removed by the CAN processor. As a result, a new (0 ≥ 1) change by BSS,
EC96, or (1 ≥ 0) change by WKS is required to set a new internal status-change interrupt flag through these bits. In a similar fashion,
a read of the CAN status register (which automatically sets ER2:ER0 to 111), followed by a new transmit or receive error, is required to
set a new internal status-change interrupt flag. If any one of these bits changes state from a previous 0 to 1 (other than WKS, which
changes from 1 to 0) and STIE is set to 1with no other interrupt pending, the INTIN vector in CAN interrupt register is set to 01h. If TXS
or RXS are set to 1 and a second message is successfully transmitted or received, and STIE is set to 1 while no other interrupt is pend-
ing, the INTIN vector in the CAN interrupt register is also set to 01h. If ER2:ER0 changes from either a 000 or 111, binary state to any
state other than 000 or 111, the INTIN vector in CAN interrupt register is also set to 01h. This issues a status-change interrupt request
if at least one of the conditions is valid and no other interrupt is pending.

Bits 15 to 8: Reserved. Read 0, write ignored.

Bit 7: CAN 0 Bus Status (BSS). (Read-only.) The BSS bit reflects the current status of the CAN 0 bus. When BSS = 1, the CAN 0 bus
is disabled (BUSOFF) and is not capable of receiving or transmitting messages. This condition is the result of the transmit-error counter
reaching a count of 256. When the CAN processor detects an error count of 256, the CAN processor automatically sets BSS = 1 and
clears SWINT = 0. BSS is cleared to 0 to enable CAN 0 bus activity when the CAN processor completes both the BUSOFF recovery
(128 x 11 consecutive recessive bits) and the power-up sequence (11 consecutive recessive bits). Once the CAN processor has com-
pleted this relationship, it sets SWINT = 1 and enters into the software initialization state. Once the microcontroller has cleared SWINT
to 0, the CAN processor is enabled to transmit and receive messages. BSS is set to 1 whenever the transmit-error counter for CAN 0
reaches the 256 limit. When BSS = 0, the CAN 0 bus is enabled to receive or transmit messages. A change in the state of BSS from a
previous 0 to 1 generates an interrupt if the ERIE, C0IE, IM4, and IGE* peripheral register bits are set. All microcontroller writes to the
SWINT bit are disabled when BSS = 1. Both the transmit- and receive-error counters are cleared to 00h when the BUSOFF condition
is cleared by the CAN module and BSS is cleared to 0.

Bit 6: CAN 0 Error Count Greater Than 96/128 Status (EC96/128). (Read-only.) The EC96/128 bit operates in one of two modes.
These two modes are determined by the state of the C0C.1 bit in the CAN 0 control register. Following a system or CAN reset, the
C0C.1 bit is cleared to 0, which in turn enables the EC96 mode.

C0C.1 = 0, EC96/128 = EC96. In this mode, when EC96/128 = 1 the interrupt flag indicates that either the CAN 0 transmit-error
counter or the CAN 0 receive-error counter has reached an error count of 96, which represents an exceptionally high number of
errors. EC96/128 = 0 indicates that the current transmit-error counter and receive-error counter both have an error count of less
than 96. A change in the state of EC96/128 from a previous 0 to 1 generates an interrupt if the ERIE, C0IE, IM4, and IGE* periph-
eral register bits are set. When C0C.1 is programmed to 1, the EC96/128 bit is reconfigured into an EC128 bit flag mode.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name BSS EC96/128 WKS RXS TXS ER2 ER1 ER0

Reset 0 0 0 0 0 0 0 0

Access r r r rw rw rw r r

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-26

C0C.1 = 1, EC96/128 = EC128. In this mode, when EC96/128 = 1 the interrupt flag indicates that either the CAN 0 transmit-error
counter or the CAN 0 receive-error counter has reached an error count of 128, which represents an exceptionally high number
of errors. EC96/128 = 0 indicates that the current transmit-error counter and receive error-counter both have an error count of less
than 128. A change in the state of EC96/128 from either a previous 0 to 1 or from a previous 1 to 0 generates an interrupt if
the ERIE, C0IE, IM4, and IGE* peripheral register bits are set.

Bit 5: CAN 0 Wake-Up Status (WKS). (Read-only). WKS = 0 indicates that CAN 0 is not in a low-power mode. WKS = 1 indicates that
CAN 0 is in a low-power mode, based on the setting of either the SIESTA bit or the power-down mode bit to 1. Clearing both the SIES-
TA bit and power-down enable (PDE) bit forces the WKS bit to 0. A change in the state of WKS from a previous 1 to 0 generates an
interrupt if the STIE, C0IE, IM4, and IGE* peripheral register bits are set.

Bit 4: Receive Status (RXS). The RXS bit functions in two different modes. When the AUTOB bit is set to 1, RXS = 1 indicates that a
message has been successfully received by CAN 0 since the last read of the CAN 0 status register. Note that this does not mean that
the incoming message was or was not stored in a message center, but that the message did not have any errors associated with it
during the reception. Messages that are successfully received but are not stored do not pass the arbitration filtering tests required by
the internal message centers. When the AUTOB bit is cleared to 0, RXS = 1 indicates that a message has been both successfully
received and stored in one of the message centers by CAN 0 since the last read of the CAN 0 status register.

RXS = 0 indicates that no message has been successfully received since the last read of the CAN 0 status register. RXS is only set by the
CAN 0 logic and is not cleared by the CAN controller but is only cleared by the microcontroller software, the CRST bit, or a system reset.

When the RXS bit (0 > 1) provides the interrupt source for an interrupt, the microcontroller is required to read the CAN status register
to clear the internal status-change interrupt flag. (This flag is seen externally by the presence of the 01 state in the CAN interrupt reg-
ister.) Once this flag is cleared, the 01 state in the CAN interrupt register is replaced with either the 00 state for no interrupts pending,
or a lower priority interrupt code related to one of the message centers. If a second successful reception is detected prior to or after
the clearing of the RXS bit in the status register, a second status-change interrupt flag is set to allow a second interrupt to be issued.
Each new successful reception generates an interrupt request independent of the previous state of the RXS bit, as long as the CAN
status register has been read to clear the previous status-change interrupt flag. Note that if the microcontroller sets the RXS bit from a
previous low, it generates an artificial status change interrupt (STIE = 1).

Thus, if RXS is previously set to 0 and a reception was successful, RXS is set to 1 and an interrupt can be asserted if enabled. If the
microcontroller writes a 1 to RXS when RXS was previously 0, RXS is set to 1 and an interrupt can be asserted if enabled. If RXS is pre-
viously set to 1 and a reception was successful, RXS remains set to 1 and an interrupt can be asserted if enabled. If the microcon-
troller writes a 1 to RXS when RXS was previously 1, RXS remains 1 and no interrupt is asserted.

Bit 3: Transmit Status (TXS). TXS = 1 indicates that a message has been successfully transmitted by CAN 0 (error free and acknowl-
edged) since the last read of the CAN 0 status register. TXS = 0 indicates that no message has been successfully transmitted since
the last read of the CAN 0 status register. TXS is only set by the CAN 0 logic and is not cleared by the CAN controller, but is only cleared
by the microcontroller software, the CRST bit, or a system reset.

When the TXS bit (0 > 1) provides the interrupt source for an interrupt, the microcontroller is required to read the CAN status register
to clear the internal status-change interrupt flag. (This flag is seen externally by the presence of the 01 state in the CAN interrupt reg-
ister). Once this flag is cleared, the 01 state in the CAN interrupt register is replaced with either the 00 state for no interrupts pending
or a lower priority interrupt code related to one of the message centers. If a second successful transmission is detected prior to or after
the clearing of the TXS bit in the status register, a second status-change interrupt flag is set to allow a second interrupt to be issued.
Each new successful transmission generates an interrupt request independent of the previous state of the TXS bit, as long as the CAN
status register has been read to clear the previous status-change interrupt flag. Note that if the microcontroller sets the TXS bit from a
previous low, it generates an artificial status change interrupt (STIE = 1).

Thus, if TXS is previously set to 0 and a reception was successful, TXS is set to 1 and an interrupt can be asserted if enabled. If the
microcontroller writes a 1 to TXS when TXS was previously 0, TXS is set to 1 and an interrupt can be asserted if enabled. If TXS is pre-
viously set to 1 and a reception was successful, TXS remains set to 1 and an interrupt can be asserted if enabled. If the microcontroller
writes a 1 to TXS when TXS was previously 1, TXS remains 1 and no interrupt is asserted.

*IM4 enables interrupt requests from Module 4 and is part of the IMR (Module 8, index 6) register. IGE is interrupt global enable and is part of the IC (Module
8, index 5) register.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-27

Bits 2, 1, 0: CAN 0 Bus Error Status 2, 1, 0 (ER2, ER1, ER0). The ER2:ER0 bits indicate the first type of error that is encountered
within a CAN 0 bus frame. The following states outline the specific error type. The eighth state (111 binary) is automatically pro-
grammed into ER2:ER0, following a read of the CAN 0 status register to establish if there has been a change in an error condition when
doing a future read of the CAN 0 status register. The status data (ER2:ER0) read by the processor must be analyzed or stored in a sep-
arate SRAM location, since the ER2:ER0 bits are automatically set to the 111 state following a read. The 111 state remains in the reg-
ister until a new frame is either transmitted or received, at which time the ER2:ER0 data is undated in relation to the associated trans-
mit or receive message. The ER2:ER0 bits are read-only. Any attempted write to these bits does not affect the bits or the interrupt rela-
tionship associated with their value.

The interrupt error represented by the ER2:ER0 bus-error bits is updated following each reception or transmission. Since the stored
error from one reception or transmission can be reproduced in the next attempted reception or transmission, a new interrupt is gener-
ated whenever a new error condition is detected. This occurs during a reception or transmission, as long as the previous error condi-
tion was removed by a read of the CAN 0 status register.

Thus, if ER2:ER0 is set to 000 or 111 and an error condition occurs, this error condition is stored in the ER2:ER0 bits. An interrupt
request is made to the microcontroller whenever the ER2:ER0 values change from either a 000 or 111 binary state to any state other
than 000 or 111. If a second error occurs prior to the microcontroller performing a read of the CAN status register, the second error is
not stored and the first error condition continues to reside in the ER2:ER0 bits. Once the CAN status register is read by the microcon-
troller, the error status bits are set to 111. If another error occurs after the microcontroller read of the CAN status register, the ER2:ER0
bits are updated with the new error condition.

If two errors come up at the same time, only the one with the higher priority (as given in the following table) is shown. Priority 1 is the
highest and 6 is the lowest. The format error is higher than the bit 1 error, since the format error is always a bit 1 error, but a bit 1 error
is not necessarily a format error. The error value displayed is selected according to relevance, if the two errors occur at the same time.
This is based on which error is the main error and which one is an accompanying error.

The following are descriptions of the different error types.

Bit Stuff Error: The CAN controller detects more than five consecutive bits of an identical state are received in an incoming message.

Format Error: A received message has the wrong format.

Transmit Not Acknowledged Error: A data frame was sent and the requested node did not acknowledged the message.

Bit 1 Error: The CAN attempted to transmit a message and when a recessive bit was transmitted, the CAN bus was found to have a
dominant bit level. This error is not generated when the bit is a part of the arbitration field (identifier and remote retransmission request).

Bit 0 Error: The CAN attempted to transmit a message and when a dominant bit was transmitted, the CAN bus was found to have a
recessive bit level. This error is not generated when the bit is a part of the arbitration field. The bit 0 error is set each time a recessive
bit is received during the period that the CAN processor is recovering from a BUSOFF recovery period.

CRC Error: The calculated CRC of a received message does not match the CRC embedded in the message.

ER2 ER1 ER0 PRIORITY ERROR CONDITIONS

0 0 0 N/A No Error in Last Frame

0 0 1 2 Bit Stuff Error

0 1 0 5 Format Error

0 1 1 4 Transmit Not Acknowledged Error

1 0 0 6 (lowest) Bit 1 Error

1 0 1 1 (highest) Bit 0 Error

1 1 0 3 CRC Error

1 1 1 N/A No Change Since Last C0S Read

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-28

4.2.4.3 CAN 0 Interrupt Register (C0IR)

Register Description: CAN 0 Interrupt Register
Register Name: C0IR
Register Address: Module 04h, Index 02h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bits 7 to 0: CAN 0 Interrupt Indicator 7 to 0 (INTIN7 to INTIN0). The C0IR register provides an indication as to the status of the inter-
rupt sources in the CAN 0 processor. The contents of C0IR indicate that no interrupt is pending (00h), if an interrupt is due to a change
in the CAN 0 status register (01h), or if an interrupt has been generated from the successful reception or transmission of one of the 15
message centers (02h–10h). The C0IR register is cleared to 00h following a reset.

The following table shows the values of the INTIN7:INTIN0 bits for each interrupt source along with the respective priority of each.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name INTIN7 INTIN6 INTIN5 INTIN4 INTIN3 INTIN2 INTIN1 INTIN0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

INTERRUPT SOURCE INTIN7:INTIN0 HEX VALUE INTERRUPT PRIORITY

No Pending Interrupt 00 N/A

CAN 0 Status Register 01 Highest = 1

Message 15 02 2

Message 1 03 3

Message 2 04 4

Message 3 05 5

Message 4 06 6

Message 5 07 7

Message 6 08 8

Message 7 09 9

Message 8 0A 10

Message 9 0B 11

Message 10 0C 12

Message 11 0D 13

Message 12 0E 14

Message 13 0F 15

Message 14 10 Lowest = 16

r = read

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-29

The INTIN vector value does not change when a new interrupt source becomes active and the previous one has not yet been acknowl-
edged and removed (i.e., microcontroller read of CAN 0 status register or microcontroller clear of the appropriate INTRQ bit in the
respective CAN 0 message control register), regardless of the fact that the new interrupt has a higher priority or not.

If two properly enabled interrupt sources become active at the same time, the interrupt of highest priority is indicated. For example, if
a message center completes a successful transmission or reception and both STIE and ERI, ETI are set, the interrupt indicated by the
INTIN7:INTIN0 vector is that of the status-change interrupt (i.e., INTIN7 = 01h and not the message center interrupt; i.e., INTIN7:INTIN0
= MCV.

RXS and TXS are always activated when a transmission or reception is successfully completed. These bits are reset by the microcon-
troller writing 0 to them. Reading the CAN 0 status register only removes the INTIN7:INTIN0 = 01h vector, but does not clear these bits.
These bits (RXS and TXS) can be set by either the CAN processor or microcontroller, but are never reset by the CAN controller.

The CAN 0 interrupt is active when an active interrupt source is indicated in the interrupt vector INTIN7:INTIN0. Changes in the
INTIN7:INTIN0 value from a previous 00h state indicate the interrupt source first detected by the CAN processor following the nonac-
tive-interrupt state. The INTIN7:INTIN0 interrupt values displayed in C0IR remain in place until the respective interrupt source is
removed, independent of other higher (or lower) priority interrupts that become active prior to clearing the currently displayed interrupt
source. The CAN 0 interrupt to the microcontroller is not active when INTIN7:INTIN0 = 00h. In all the other cases, the interrupt line is
asserted and the INTIN7:INTIN0 vector must be read to determine the current interrupt source.

When the current (INTIN7:INTIN0) interrupt source is cleared, INTIN7:INTIN0 is changed to reflect the next active interrupt with the
highest priority. The status-change interrupt is asserted if there has been a change in the CAN 0 status register (if enabled by the
appropriate ERIE and/or STIE bit) and the CAN status interrupt state is set. A message center interrupt is indicated if the INTRQ bit in
the respective CAN message control register is set.

The priority of the next interrupt displayed is fixed. For example, consider the case when the current INTIN7:INTIN0 value is that of a
message center interrupt. The current INTIN7:INTIN0 interrupt source is cleared (INTRQ = 0), and the status-change interrupt and
another message center interrupt are both active. The next interrupt indicated by INTIN7:INTIN0 would be the status-change interrupt
that has a higher priority than that of the message center interrupt.

When the current INTIN7:INTIN0 interrupt indicated is a status interrupt and the status register is read, the INTIN7:INTIN0 vector is
changed to the next lowest INTIN7:INTIN0 value (which is the next highest priority) of the corresponding message center whose INTRQ
bit is set to 1. During this time the interrupt line to the microcontroller remains active. The microcontroller either does an RETI and is
then forced back into the same interrupt routine via the active interrupt line, or it remains in the interrupt routine until the microcontroller
has cleared all active interrupt sources (INTIN7:INTIN0 = 00h).

An active message center interrupt is cleared by writing 0 to the INTRQ bit in the respective CAN message control register. The inter-
rupt line to the microcontroller goes to an inactive state and the INTIN7:INTIN0 vector resets to 00h if there are no other interrupts active
and enabled.

Example Case:

t<i>: moment in time
STIE = 1, ERI = 1, ETI = 1
t1: INTRQ[1] = 1, RXS = 1 [INTIN = 1, interrupt line = active]
t2: INTRQ[15] = 1, TXS = 1 [INTIN = 1, interrupt line = active]
t3: ERR[2:0] = 3’b101 [INTIN = 1, interrupt line = active]
t4: Begin processing interrupts by micro [INTIN = 1, interrupt line = active]
t5: TXS = 1 ≥ 0 [INTIN = 1, interrupt line = active]
t6: RXS = 1 ≥ 0 [INTIN = 1, interrupt line = active]
t7: ERR[2:0] = 101 ≥ 111 [INTIN = 2, interrupt line = active]
t8: INTRQ[15] = 1 ≥ 0 [INTIN = 3, interrupt line = active]
t9: INTRQ[1] = 1 ≥ 0 [INTIN = 0, interrupt line = inactive]

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-30

To properly reflect the value of each interrupt source in the C0IR register, each source must be enabled via the respective interrupt
enable. These include ERIE and/or STIE enable in the case of status-change-related interrupt (01) sources, and either the ETI or ERI
enable for each message center interrupt (02h–10h) source. The status values of the interrupt sources in C0IR do not, however, require
setting either the EA or C0IE bits in the IE and EIE peripheral registers.

There are two methods for verifying message center interrupts. One method uses the ETI/ERI interrupt enables within each CAN mes-
sage control register, and the other method uses the STIE interrupt enable in the CAN status register.

STIE = 1: When a transmission or a reception by the corresponding message center was successfully completed, the status
change interrupt and the RXS/TXS bit are asserted. To understand how each bit in the status register acts as an interrupt source,
review the bit descriptions of each bit in the status register. Note that a successful receive in relation to the RXS bit is dependent
on the AUTOB bit (AUTOB = 1 is successful receive only and AUTOB = 0 is successful receive and store). This is not the case
with the following ERI relationship, in which a receive is considered a successful receive only if the data was stored in the respec-
tive message center. The STIE interrupt method requires the microcontroller to poll each message center to establish the respec-
tive interrupt source following each status change interrupt.

ETI = 1 and/or ERI = 1: When a successful transmission or a successful reception and store by the corresponding message cen-
ter are completed, the interrupt is asserted according to its priority. This method relies on the hardwired priority of the message
centers. Minimal microcontroller intervention is required.

Terms used in the following descriptions:

Value A: Value that was indicated before and is not zero.

MCV (Message Center’s Value): Interrupt indicator value that corresponds to the message center that received or transmitted a mes-
sage, i.e., 02 for MC15, 03 for MC1, etc.

1a. STIE = 1 Only (Polling Method: ETI = ERI 0) with No Prior Interrupt Active

It is important to note that additional changes in bits 4–0 (RXS, TXS) of the CAN 0 status register can be detected even if these bits
have not been cleared by the microcontroller. The only requirement for the second status-change interrupt is for the microcontroller to
read the CAN 0 status register to clear the previous interrupt. Multiple changes in the CAN 0 status register, which are read from the
CAN 0 status register and occur without the microcontroller clearing the status-change interrupt, appear as one interrupt. The WKS bit
is a read-only bit and is not altered by a write from the microcontroller. The ER2:ER0 bits are automatically set to 111 following a read
of the CAN status register.

Although not related to a successful transmission or reception, ERIE =1 also enables a similar interrupt relationship when bits 6 or 7
are changed in the CAN status register, with ERIE = 1.

1b. ERIE = 1 with No Prior Interrupt Active

CASE STIE CHANGE DETECTED IN BITS 5:0
OF C0S PERIPHERAL REGISTER INTIN VECTOR INTRQ CAN 0 INT

A 0 No Value A or 0 Not affected Inactive

B 0 Yes Value A or 0 Not affected Inactive

C 1 No Value A or 0 Not affected Inactive

D 1 Yes Value A or 0 > 1 Not affected Active

CASE ERIE CHANGE DETECTED IN BIT 7 OR 6
OF C0S PERIPHERAL REGISTER INTIN VECTOR INTRQ CAN 0 INT

A 0 No Value A or 0 Not affected Inactive

B 0 Yes Value A or 0 Not affected Inactive

C 1 No Value A or 0 Not affected Inactive

D 1 Yes Value A or 0 > 1 Not affected Active

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-31

2. ERI = 1 and/or ETI = 1 Only (STIE = 0: Hardwired Method) with No Prior Interrupt Active

4.2.4.4 CAN 0 Transmit-Error Register (C0TE)

Register Description: CAN 0 Transmit-Error Register
Register Name: C0TE
Register Address: Module 04h, Index 03h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bits 7 to 0: CAN 0 Transmit-Error Register 7 to 0 (C0TE.7 to C0TE.0). This register indicates the number of accumulated CAN 0
transmit errors. The CAN 0 module responds in different ways to varying number of errors as shown in the following table. This regis-
ter can only be modified by software when SWINT = 1 and BUSOFF = 0. All software writes to this register simultaneously load the
same value into the CAN 0 transmit error register and the CAN 0 receive error register. Writing 00h to this register also clears the CAN
0 error-count-exceeded bit, CECE (C0S.6). This register is cleared following all hardware resets and software resets enabled by the
CRST bit in the CAN 0 control register.

CASE ERIE RECEPTION
SUCCESSFUL? INTIN VECTOR INTRQ CAN 0 INT

A 0 No Value A or 0 0 Inactive

B 0 Yes Value A or 0 0 Inactive

C 1 No Value A or 0 0 Inactive

D 1 Yes Value A or
(MCV > INTIN) 1 Active

C0TE VALUE CAN 0 STATE

Value < 96 Error Active Mode, CAN 0 Bus On (BUSOFF = 0)

128 > Value ≥ 96 Error Active Mode, CAN 0 Bus On (BUSOFF = 0),
Warning Level

255 ≥ Value ≥ 128 Error Passive Mode, CAN 0 Bus On (BUSOFF = 0)

Value > 255 CAN 0 Bus Off (BUSOFF = 1)

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r* r* r* r* r* r* r* r*

Bit # 7 6 5 4 3 2 1 0

Name C0TE.7 C0TE.6 C0TE.5 C0TE.4 C0TE.3 C0TE.2 C0TE.1 C0TE.0

Reset 0 0 0 0 0 0 0 0

Access r* r* r* r* r* r* r* r*

r = read, * = write only when SWINT = 1 and BUSOFF = 0

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-32

4.2.4.5 CAN 0 Receive-Error Register (C0RE)
Register Description: CAN 0 Receive-Error Register
Register Name: C0RE
Register Address: Module 04h, Index 04h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bits 7 to 0: CAN 0 Receive-Error Register 7 to 0 (C0RE.7 to C0RE.0). This register provides a means of reading the CAN 0 receive-
error counter. New values can be loaded into the receive-error counter through the CAN 0 transmit-error register. C0RE is cleared to
00h following all hardware resets and software resets enabled by the CRST bit in the CAN 0 control register.

4.2.4.6 CAN 0 Operation Control Register (COR)

Register Description: CAN 0 Operation Control Register
Register Name: COR
Register Address: Module 04h, Index 05h

Bits 15 to 8, 2: Reserved. Read 0, write ignored.

Bit 7: CAN 0 Bus Activity Status (CAN0BA). The CAN0BA signal is a latched status bit that is set if a CAN bus activity is detected.
This bit is cleared by a reset or software once set.*

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name CAN0BA INCDEC AID C0BPR7 C0BPR6 — C0BIE C0IE

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name C0RE.7 C0RE.6 C0RE.5 C0RE.4 C0RE.3 C0RE.2 C0RE.1 C0RE.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

*A change in the state of CAN0BA from a previous 0 to 1 generates an interrupt if the C0BIE, IM4, and IGE peripheral register bits are set.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-33

Bit 6: Increment/Decrement Select (INCDEC). This bit determines the C0DP’s auto-increment/decrement function when AID bit is set
to logic 1. When INCDEC is set to logic 0, the contents of C0DP are decremented by 1 after a read/write access to the C0DB register.
When INCDEC is 1, the contents of the C0DP are incremented by 1 after a read/write access to the C0DB register.

Bit 5: Automatic Increment/Decrement Enable (AID). This bit enables automatic increment or decrement of the CAN data pointer
(C0DP) after the CAN data buffer (C0DB) has been accessed. The actual increment/decrement function is dependent on the setting
of the INCDEC bit. When AID is set to logic 1, the contents of the C0DP are incremented (or decremented) by 1 after a read/write
access to the C0DB register. When AID is cleared to 0, a read/write access to the C0DB register has no effect on the contents of the
C0BP register.

Bits 4 and 3: CAN 0 Baud-Rate Prescale Bits 7 and 6 (C0BPR7 and C0BPR6). The C0BPR7 and C0BPR6 bits establish the two
high-order bits associated with the 8-bit baud-rate prescaler in the CAN 0 controller. Note that the C0BPR7 and C0BPR6 bits cannot
be written when the SWINT bit in the CAN 0 control register is cleared to 0. The remaining CAN baud-rate prescale bits are in the CAN
0 bus timing register (C0BT0).

Bit 1: CAN 0 Bus Activity Interrupt Enable (C0BIE). When this bit is set to logic 1, detecting a CAN bus activity initiates an interrupt.
When this bit is set to logic 0, the interrupt capability caused by CAN bus activity is disabled.

Bit 0: CAN 0 Interrupt Enable (C0IE). When this bit is set to logic 1, a change of CAN status register initiates an interrupt if the cor-
responding ERIE or STIE bit in the CAN control register is also set. When this bit is set to logic 0, the interrupt capability caused by
change of CAN status register is disabled.

4.2.4.7 CAN 0 Data Pointer Register (C0DP)

Register Description: CAN 0 Data Pointer Register
Register Name: C0DP
Register Address: Module 04h, Index 06h

Bits 15 to 0: CAN 0 Data Pointer Register Bits 15 to 0 (C0DP.15 to C0DP.0). This register is used as a pointer for direct memory
access to the dual port memory. Only the lower seven bits are significant; the other high-order bits are tied to 0. To access the dual port
memory, a valid address in the range of 00h to 7Fh must be presented in this register. The contents of this register can be automatical-
ly incremented or decremented after a read/write access to the C0DB register by setting the AID and INCDEC bit in the COR register.

Note that the dual port memory is synchronous memory and its read pointer must be activated before a memory read. A write to C0DP
or a read from C0DB automatically activates the C0DP as a read pointer and remains in effect until the C0DP is used as a write point-
er. In this case, C0DP must be reactivated by a write of C0DP before reading data from C0DB, or it must be reactivated by a back-to-
back read from C0DB if the auto-increment/decrement function is disabled. Valid data is presented by the second read operation. If it
is suspected that the data at the memory location addressing by the C0DP has been changed, the C0DP must be reactivated to ensure
the new data has been pushed to the C0DB register.

Bit # 15 14 13 12 11 10 9 8

Name C0DP.15 C0DP.14 C0DP.35 C0DP.12 C0DP.11 C0DP.10 C0DP.9 C0DP.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name C0DP.7 C0DP.6 C0DP.5 C0DP.4 C0DP.3 C0DP.2 C0DP.1 C0DP.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-34

4.2.4.8 CAN 0 Data Buffer Register (C0DB)

Register Description: CAN 0 Data Buffer Register
Register Name: C0DB
Register Address: Module 04h, Index 07h

Bits 15 to 0: CAN 0 Data Buffer Register Bits 1 to 15 (C0DB.15 to C0DB.0). This register location refers to both the input and out-
put buffers of the dual port memory, depending on write or read operation. Writing to this register location triggers a write operation
that transfers the source data to the dual port memory as addressed by the C0DP register at the end of the cycle. Reading from this
register location transfers data from the dual port memory to the destination, as selected by the C0DP register at the end of the cycle.
Read/write access to this register location also triggers increment/decrement function to the C0DP if the AID bit is set to logic 1. The
auto-increment/decrement operation is initiated immediately after the completion of the memory access cycle.

Note that the dual port memory is synchronous memory and its read pointer must be activated before a memory read. A write to C0DP
or a read from C0DB automatically activate the C0DP as a read pointer and will remain in effect until the C0DP is used as a write point-
er. In this case, C0DP must be reactivated by a write of C0DP before reading data from C0DB, or be reactivated by a back-to-back
read from C0DB if the auto-increment/decrement function is disabled. Valid data is presented by the second read operation. If it is sus-
pected that the data at the memory location addressed by the C0DP has been changed, the C0DP must be reactivated to ensure the
new data has been pushed to the C0DB register.

Note that, while using the auto-increment/decrement feature for C0DB reads and writes, the RAM is preread in order to get the data
out to the transport network in one cycle. If it is suspected that the data at the memory location specified by C0DP has changed, then
C0DP must be rewritten (i.e., prime the pump). If C0DP is not rewritten, the data returned to C0DB can be incorrect. Sample pseudo
code follows:

Set COR peripheral register to value 0x60; #enable auto increment
Set C0DP peripheral register to value 0x0B; #pre-read dual port memory location 0x0B
Read C0DB peripheral register value; #read from location 0x0B, pre-read 0x0C
Read C0DB peripheral register value; #read from location 0x0C, pre-read 0x0D
##MESSAGE RECEIVED IN MC1, OVERWRITING 0x0D##

Read C0DB peripheral register value; #read from location 0x0D, data is incorrect!!

Solution: Rewrite C0DP after MC1 is updated as shown below.

...
Read C0DB peripheral register value; #read from location 0x0C, pre-read 0x0D
##MESSAGE RECEIVED IN MC1, OVERWRITING 0x0D##
Set C0DP peripheral register to value 0x0D; #set C0DP, pre-read 0x0D (priming the pump)
Read C0DB register value; #read from location 0x0D, data is correct!!

Bit # 15 14 13 12 11 10 9 8

Name C0DB.15 C0DB.14 C0DB.35 C0DB.12 C0DB.11 C0DB.10 C0DB.9 C0DB.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name C0DB.7 C0DB.6 C0DB.5 C0DB.4 C0DB.3 C0DB.2 C0DB.1 C0DB.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: The contents of the buffer are 0000h on all forms of reset.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-35

4.2.4.9 CAN 0 Receive Message Stored Register (C0RMS)

Register Description: CAN 0 Receive Message Stored Register
Register Name: C0RMS
Register Address: Module 04h, Index 08h

Bit 15: Reserved. Read 0, write ignored.

Bits 14 to 0: CAN 0 Message Center 15 to 1 Receive and Store (C0RMS.15 to C0RMS.1). The C0RMS bits indicate which message
center (1 to 15) has successfully received and stored the last incoming message. The contents of the C0RMS register is updated each
time a new message is successfully received and stored. The contents of the C0RMS register are automatically cleared following each
read of C0RMS by the microcontroller. A bit value of 1 indicates that the assigned message center has successfully received and
stored new data since the last read of the C0RMS register. A bit value of 0 indicates no new messages have been successfully received
and stored since the last read of the C0RMS register. No interrupts are asserted because of the C0RMS settings. This register works
fully independent of the status bits in the CAN status register and the INTIN7:INTIN0 vector in the CAN interrupt register and inde-
pendent of the INTRQ bit in the CAN message control registers.

Bit # 15 14 13 12 11 10 9 8

Name — C0RMS.15 C0RMS.14 C0RMS.13 C0RMS.12 C0RMS.11 C0RMS.10 C0RMS.9

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name C0RMS.8 C0RMS.7 C0RMS.6 C0RMS.5 C0RMS.4 C0RMS.3 C0RMS.2 C0RMS.1

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset, including the reset established by the CRST bit.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-36

4.2.4.10 CAN 0 Transmit Message Acknowledgement Register (C0TMA)

Register Description: CAN 0 Transmit Message Acknowledgement Register
Register Name: C0TMA
Register Address: Module 04h, Index 09h

Bit 15: Reserved. Read 0, write ignored.

Bits 14 to 0: Message Center 15 to 1 Transmit (C0TMA.15 to C0TMA.0). The C0TMA bits indicate which message center (1 to 15)
has been successfully transmitted. The contents of the C0TMA register are updated each time a new message is successfully trans-
mitted. The contents of the C0TMA0 register are automatically cleared following each read of C0TMA by the microcontroller. A bit value
of 1 indicates that the assigned message center has been successfully transmitted since the last read of the C0TMA register. A bit
value of 0 indicates no new message has been successfully transmitted since the last read of the C0TMA register. The corresponding
C0TMA bits are assigned to the following message centers. No interrupts are asserted because of the C0TMA settings. This register
works fully independent of the status bits in the CAN status register and the INTIN7:INTINT0 vector in the CAN interrupt register, and
independent of the INTRQ bit in the CAN message control registers.

Bit # 15 14 13 12 11 10 9 8

Name — C0TMA.15 C0TMA.14 C0TMA.13 C0TMA.12 C0TMA.11 C0TMA.10 C0TMA.9

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name C0TMA.8 C0TMA.7 C0TMA.6 C0TMA.5 C0TMA.4 C0TMA.3 C0TMA.2 C0TMA.1

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset, including the reset established by the CRST bit.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-37

4.2.4.11 CAN 0 Message Center 1 to 15 Control Registers (C0M1C to C0M15C)

Register Description: CAN 0 Message Center 1 Control Register
Register Name: C0M1C
Register Address: Module 04h, Index 11h

Bits 15 to 8: Reserved. Read 0, write ignored.

Read/Write Access: MSRDY, ETI, ERI, and INTRQ are unrestricted read/write bits. EXTRQ is read/clear-only. When T/R = 0, ROW is
read-only; when T/R = 1, TIH is unrestricted read/write. MTRQ is unrestricted read and can only be set to 1 when written to by the micro-
controller or by the CAN controller in case of a remote frame reception in a transmit message center. A write of 0 to MTRQ leaves the
MTRQ bit unchanged. DTUP is unrestricted read. When T/R = 0, DTUP can only be cleared to 0 when written by the microcontroller. A
write of 1 to DTUP with T/R = 0 leaves the DTUP bit unchanged. DTUP is unrestricted read/write when T/R = 1.

Bit 7: CAN 0 Message Center 1 Ready (MSRDY). (Unrestricted read/write.) MSRDY is programmed by the microcontroller to notify
the CAN 0 logic when the associated message is ready for communication on the CAN 0 bus. When MSRDY = 0, the CAN 0 proces-
sor does not access this message center for either transmissions or to receive data or remote frame requests. MSRDY = 1 indicates
the message is ready for communication, and MSDRY = 0 indicates that the associated message is either not configured for use or is
not required at the present time. This bit is used by the microcontroller to prevent the CAN 0 logic from accessing a message while the
microcontroller is updating message attributes. These include identifiers (arbitration registers 0–3), data byte registers 0–7, data byte
count (DTBYC3, DTBYC0), direction control (T/R), the extended or standard mode bit (EX/ST), and the mask enables (MEME and
MDME) associated with this message center. MSRDY is cleared to 0 following a microcontroller hardware reset or a reset generated
by the CRST bit in the CAN 0 control register, and must also remain in a cleared mode until all the CAN 0 initialization has been com-
pleted. Individual message MSRDY controls can be changed after initialization to reconfigure specific messages, without interrupting
the communication of other messages on the CAN 0 bus.

Bit 6: CAN 0 Message Center 1 Enable Transmit Interrupt (ETI). (Unrestricted read/write.) When ETI is cleared to 0, a successful
transmission does not set INTRQ and, as such, does not generate an interrupt. Setting ETI to 1 enables a successful CAN 0 trans-
mission to set the INTRQ bit, which in turn issues an interrupt to the microcontroller. Note that the CAN processor ignores the ETI bit
located in message center 15, since message center 15 is a receive-only message center.

Bit 5: CAN 0 Message Center 1 Enable Receive Interrupt (ERI). (Unrestricted read/write.) When ERI is cleared to 0, a successful
reception does not set INTRQ and, as such, does not generate an interrupt. When ERI is set to 1, the INTRQ bit only sets when the
CAN processor successfully receives and stores the incoming message into one of the message centers. Setting INTRQ, in turn, issues
an interrupt request to the microcontroller.

Bit 4: Interrupt Request (INTRQ). (Unrestricted read/write.) INTRQ is automatically set to 1 by the CAN 0 logic when the ERI is set
and the CAN 0 logic completes a successful reception and store. The INTRQ bit is also set to 1 when the ETI is set and the CAN 0
logic completes a successful transmission. The INTRQ interrupt request must be also enabled via the IGE global mask in the IC periph-
eral register and the IM4 mask in the IMR peripheral register, if the interrupt is to be acknowledged by the microcontroller interrupt
logic. An active message center interrupt is cleared by writing a 0 to the INTRQ bit in the respective CAN message control register.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-38

Bit 3: External Transmit Request (EXTRQ). (Read/clear only.) When EXTRQ is cleared to 0, there are no pending requests by exter-
nal CAN nodes for this message. When EXTRQ is set to 1, a request has been made for this message by an external CAN node, but
the service request has not been completed by the CAN 0 controller at the time of the read of EXTRQ. Following the completion of a
requested transmission by a message center programmed for transmission (T/R = 1), the EXTRQ bit is cleared by the CAN 0 controller.
A remote request is only answered by a message center programmed for transmission (T/R = 1) when DTUP = 1 and TIH = 0 (i.e.,
when new data was loaded and is not being currently modified by the microcontroller). Note that a message center programmed for
a receive mode (T/R = 0) also detects a remote frame request and sets the EXTRQ bit in a similar manner, but does not automatically
transmit a data frame and, as such, does not automatically clear the EXTRQ bit.

Bit 2: Microcontroller Transmit Request (MTRQ). MTRQ is unrestricted read and can only be set to 1 when written to by the micro-
controller. A write of 0 to MTRQ leaves the MTRQ bit unchanged. MTRQ can only be cleared as a result of a successful transmission
by the respective message center, or when the CRST bit is set or the CAN processor experiences a system reset from the reset sources
outlined in the functional description in the reset option and reset timing section of this user’s guide.

The MTRQ is a read, limited-write bit, and is designed to allow the microcontroller to request a message to be transmitted. MTRQ is
programmed to 1 when the microcontroller is requesting the respective message to be transmitted. MTRQ remains set until such time
that the message transmission is successfully completed, at which time the CAN 0 controller clears the MTRQ bit. Setting MTRQ with
T/R = 1 (directional = transmit) results in the sending of a data frame for the transmitted message, and setting MTRQ with T/R = 0
(directional = receive) results in the sending of a remote frame request. When the associated message is programmed for transmit (T/R
= 1), the MTRQ bit is also set by the CAN 0 controller at the same time that the EXTRQ bit is set by a message request from an exter-
nal node. MTRQ is cleared by the CAN 0 controller at the same time as the EXTRQ bit, once a successful transmission of the message
is completed. Note that the MTRQ bit located in message center 15 is ignored by the CAN processor, since message center 15 is a
receive-only message center.

Bit 1: Receive Overwrite/Transmit Inhibit (ROW/TIH). The ROW and TIH bits share the same bit 1 location in the CAN 0 message
control register. The ROW function is only supported when the associated message is programmed via the T/R = 0 bit in the message
format register to function in the receive mode. Similarly, the TIH function is only supported when the associated message is pro-
grammed via the T/R = 1 bit in the message format register to function in the transmit mode.

Receive Overwrite (ROW). (T/R = 0, read-only.) The CAN 0 controller automatically sets the ROW bit to 1 if a new message
is received and stored while the DTUP bit was still set. When set, ROW indicates that the previous message was potentially
lost and may not have been read, since the microcontroller had not cleared the DTUP bit prior to the new load. When ROW
= 0, no new message has been received and stored while DTUP was set to 1 since this bit was last cleared. Note that the
ROW bit is not set when the WTOE bit is cleared to 0, since all overwrites are disabled. Thus, if the incoming message match-
es the respective message center and DTUP = 1 in the respective message center, the combination of WTOE = 0 and DTUP
= 1 forces the CAN processor to ignore the respective message center when the CAN is processing the incoming data.

The CAN processor clears ROW when the microcontroller clears the DTUP bit associated with the same message center. It
must be pointed out that the ROW bit for message center 15 is related to the overwrite of the buffer associated with message
center 15, as opposed to the actual message center 15. ROW reflects the actual message center relationships for message
centers 1–14. The ROW bit for the message center 15 shadow buffer is cleared once the shadow buffer is loaded into mes-
sage center 15, and the shadow buffer is cleared to allow a new message to be loaded. The shadow buffer is automatically
loaded into message center 15 when the microcontroller clears the DTUP and EXTRQ bits in message center 15.

Transmit Inhibit (TIH). (T/R = 1, unrestricted read/write.) The TIH bit allows the microcontroller to disable the transmission of
the message when the data contents of the message are being updated. TIH = 1 directs the CAN 0 controller not to transmit
the associated message. TIH = 0 enables the CAN 0 controller to transmit the message. If TIH = 1, EXTRQ is set to 1 when
a remote frame request is received by the message. Following the remote frame request and after the microcontroller has
established the proper data to be sent, the microcontroller clears the TIH bit to 0, allowing the CAN processor to send the
data requested by the previous remote frame request. Note that the TIH bit located in message center 15 is ignored by the
CAN processor, since message center 15 is a receive-only message center.

If the message center being set up with WTOE = 1 was previously a transmit message center, ensure that the TIH bit is cleared
to 0. (TIH can only be written while T/R is set to 1.) If TIH is set to 1 and that message center is changed to receive with WTOE
= 1, the ROW bit always reads back 1, even though a receive overwrite condition may not have occurred.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-39

Bit 0: Data Updated (DTUP). (Unrestricted read.) When T/R = 0, DTUP can only be cleared to 0 when written by the microcontroller.
A write of 1 to DTUP with T/R = 0 leaves the DTUP bit unchanged. A write of 1 to DTUP with T/R = 1 leaves the MTRQ bit unchanged.
DTUP is unrestricted read/write when T/R = 1.

The DTUP bit has a dual function depending on whether a message is configured for transmit or receive via the T/R bit in the CAN 0
message format register. The DTUP bit is set to 1 by either the microcontroller (when in transmit) or by the CAN 0 controller (when in
receive) to signify that new data has been loaded into the data portion of the message.

Transmission Mode (T/R = 1). The microcontroller sets TIH = 1 and clears DTUP = 0 prior to doing an update of the asso-
ciated message center. This prevents the CAN processor from transmitting the data while the microcontroller is updating it.
Once the microcontroller has finished configuring the message center, the microcontroller clears TIH = 0 and sets MSRDY
=1, MTRQ = 1, and DTUP = 1 to enable the CAN processor to transmit the data.

The CAN processor does not clear the DTUP after the transmission, but the microcontroller can determine that the transmis-
sion has been completed by checking the MTRQ bit, which is cleared (MTRQ = 0) after the transmission has been success-
fully completed.

Receive Mode (T/R = 0). The CAN processor sets the DTUP bit when it has completed a successful reception and storage
of the incoming message to the respective message center. The CAN processor does not clear the DTUP after the micro-
controller has read the associated data. This function is left to the microcontroller.

When operating in the receive mode (T/R = 0), the DTUP = 1 signal notifies the microcontroller that the respective message
center has new data to be read by the microcontroller. The DTUP bit is used in two different ways when doing the read of the
message center, as determined by the WTOE bit in the CAN 0 message 1 arbitration register 3 (C0M1AR3).

When WTOE = 1 and the CAN processor is allowed to perform overwrites of respective message centers, the microcontroller
uses the DTUP bit to establish the validity of each message read. Clearing DTUP = 0 before a read of a receive message
center and then reading the DTUP bit after finishing the message center read, the microcontroller can determine if new data
was loaded (DTUP = 1) or not (DTUP = 0) into the message center during the microcontroller read of the message center.

If DTUP = 1, then there was new data stored to the message center while the microcontroller was performing the message
center read. This status condition requires the microcontroller to again clear the DTUP bit and perform a second read of the
message center to verify that the data it reads is completely updated.

If DTUP = 0, the message center data read by the microcontroller had not been updated while it was being read by the micro-
controller, and the data is complete.

When WTOE = 0 and the CAN processor is not allowed to perform overwrites of respective message centers, the microcon-
troller only needs to clear DTUP = 0 after performing the read of the message center. The CAN processor is not allowed to
write into a message center where the DTUP = 1 state exists.

The DTUP bit is never cleared by the CAN processor, but is set as per the above discussion. The only mechanism used to
clear the DTUP bit is by the microcontroller or a system reset or the setting of the CRST bit.

When T/R = 1, all message center transmissions are automatically disabled until both DTUP = 1 and TIH = 0. This mecha-
nism prevents the CAN from sending incomplete data.

Remote frame transmissions are not affected by the TIH bit in the receive mode (T/R = 0), since this function does not exist in
this mode. In a similar fashion, the state of the DTUP bit does not inhibit remote frame request transmissions in the receive
mode. The only gating item for remote frame transmissions in the receive mode (T/R = 0) is the setting of both the MSRDY = 1
and MTRQ = 1 bits.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-40

Note: The CAN 0 message center 2 to 15 control register bits are identical to those found in the CAN 0 message center 1 con-
trol register. Refer to these descriptions for the following registers.

Register Description: CAN 0 Message Center 2 Control Register
Register Name: C0M2C
Register Address: Module 04h, Index 12h

Register Description: CAN 0 Message Center 3 Control Register
Register Name: C0M3C
Register Address: Module 04h, Index 13h

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-41

Register Description: CAN 0 Message Center 4 Control Register
Register Name: C0M4C
Register Address: Module 04h, Index 14h

Register Description: CAN 0 Message Center 5 Control Register
Register Name: C0M5C
Register Address: Module 04h, Index 15h

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-42

Register Description: CAN 0 Message Center 6 Control Register
Register Name: C0M6C
Register Address: Module 04h, Index 16h

Register Description: CAN 0 Message Center 7 Control Register
Register Name: C0M7C
Register Address: Module 04h, Index 17h

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-43

Register Description: CAN 0 Message Center 8 Control Register
Register Name: C0M8C
Register Address: Module 04h, Index 18h

Register Description: CAN 0 Message Center 9 Control Register
Register Name: C0M9C
Register Address: Module 04h, Index 19h

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-44

Register Description: CAN 0 Message Center 10 Control Register
Register Name: C0M10C
Register Address: Module 04h, Index 1Ah

Register Description: CAN 0 Message Center 11 Control Register
Register Name: C0M11C
Register Address: Module 04h, Index 1Bh

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-45

Register Description: CAN 0 Message Center 12 Control Register
Register Name: C0M12C
Register Address: Module 04h, Index 1Ch

Register Description: CAN 0 Message Center 13 Control Register
Register Name: C0M13C
Register Address: Module 04h, Index 1Dh

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-46

Register Description: CAN 0 Message Center 14 Control Register
Register Name: C0M14C
Register Address: Module 04h, Index 1Eh

Register Description: CAN 0 Message Center 15 Control Register
Register Name: C0M15C
Register Address: Module 04h, Index 1Fh

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rc r* r* r*

r = read, w = write, c = clear only, * = see description

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-47

4.3 CAN Operations
The CAN2.0B protocol specifies two different message formats: the standard 11-bit (CAN2.0A) and the extended 29-bit (CAN2.0B),
and four different frame types for CAN bus communications. The standard format, as shown in Figure 4-3, makes use of an 11-bit iden-
tifier. The extended format, as shown in Figure 4-4, makes use of a 29-bit identifier.

4.3.1 Frame Types
The four different frame types for CAN bus communications are data frame, remote frame, error frame, and overload frame.

4.3.1.1 Data Frame
The data frame is formulated to carry data from a transmitter to a receiver. Figure 4-3 and Figure 4-4 show examples of data frames in
the standard and extended formats. The data frame is composed of seven fields that include the start of frame, arbitration field, con-
trol field, data field, CRC field, acknowledge field, and an end of frame. A description of these fields follows.

4.3.1.1.1 Start of Frame (SOF)

(Standard and extended format.) The start of frame (SOF) is a dominant bit that signals the start of a data or remote frame. The dom-
inant bit forces a hard synchronization, initiating the CAN controller receive mode.

4.3.1.1.2 Arbitration Field

(Standard and extended format.) The arbitration field contains the identifier of the message and a dominant remote request (RTR) bit.
The identifier is composed of one field in the standard 11-bit format or two fields in the extended 29-bit format. Two additional bits, the
substitution remote request (SRR) bit and the identifier extension (IDE) bit, separate the two fields in the extended format.

• Remote Request (RTR) Bit: (Standard and extended format.) The remote request (RTR) bit is a dominant bit in data frames
and a recessive bit in remote frames.

• Substitution Remote Request (SRR) Bit: (Extended format.) The substitution remote request (SRR) bit is a recessive bit and
is substituted for the RTR bit when using the extended format.

• Identifier Extension (IDE) Bit: (Extended format.) The identifier extension (IDE) bit is a dominant bit in the standard format and
a recessive bit in the extended format. The IDE bit is located in the control field in the standard format and is located in the arbi-
tration field in the extended format.

Figure 4-3. CAN2.0A (Standard) Format

7
BITS

3
BITS

S
O
F

R
T
R

I
D
E

r
o

11-BIT IDENTIFIER 0 TO 8 BYTES 15-BIT CRCDLC

ARBITRATION FIELD CONTROL FIELD DATA FIELD CRC FIELD
ACK

FIELD INTER
BUS
IDLE

END OF
FRAME

Figure 4-4. CAN2.0B (Extended) Format

7
BITS

3
BITS

S
O
F

R
T
R

S
R
R

I
D
E

r
1

r
011-BIT IDENTIFIER 18-BIT IDENTIFIER 0 TO 8 BYTES 15-BIT CRCDLC

ARBITRATION FIELD CONTROL FIELD DATA FIELD CRC FIELD
ACK

FIELD INTER
BUS
IDLE

END OF
FRAME

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-48

4.3.1.1.3 Control Field

(Standard and extended format.) The control field is composed of six bits in two fields. The first field is made up of two reserved bits
that are transmitted as dominant bits (Figure 4-5). The second field contains four bits that comprise the data length code (DLC). The
DLC determines the number of data bytes in the data field of the data frame, and is programmed through the use of the CAN message
format registers, located in each of the 15 message centers.

4.3.1.1.4 Data Field

(Standard and extended format.) The data field is composed of 0 to 8 bytes in a data frame and 0 bytes in a remote frame. The num-
ber of data bytes associated with a message center is programmed through the use of the CAN message format registers, located in
each of the 15 message centers. The data field contents are saved to the respective message center if the identifier test is success-
ful, no errors are detected through the last bit of the end of frame, and an error frame does not immediately follow the data or remote
frame. The data field is transmitted least significant byte first, with the most significant bit of each byte transmitted first.

4.3.1.1.5 CRC Field

(Standard and extended format.) The CRC field is composed of a 15-bit code that is the computed cyclic redundancy check (after
destuffing bits) from the start of frame, through the arbitration, control, and data fields (when present), and a CRC delimiter (Figure 4-6).
The CRC calculation is limited to a 127-bit maximum code word (a shortened BCH code) with a CRC sequence length of 15 bits.

4.3.1.1.6 Acknowledge (ACK) Field

(Standard and extended format). The ACK field is composed of two bits (Figure 4-7). The transmitting node sends two recessive bits
in the ACK field. The receiving nodes that have received the message and found the CRC sequence to be correct reply by driving the
ACK slot with a dominant bit. The ACK delimiter is always a recessive bit.

4.3.1.1.7 End of Frame

(Standard and extended format). The end of frame for both the data and remote frame is established by the transmitter sending seven
recessive bits.

4.3.1.1.8 Interframe Spacing (Intermission)

(Standard and extended format). Data frames and remote frames are separated from preceding frames by three recessive bits termed
the intermission (Figure 4-8). During the intermission, the only allowed signaling to the bus is by an overload condition. No node is
allowed to start a message transmission of a data or remote frame during this period. If no node becomes active following the inter-
frame space, an indeterminate number of recessive bit times transpires in the bus-idle condition until the next transmission of a new
data or remote frame by a node.

Figure 4-5. Control Field

IDE/r1 r0 DLC3 DLC2 DLC1 DLC0

RESERVED BITS DATA LENGTH CODE

ARBITRATION
FIELD CONTROL FIELD

DATA FIELD OR
CONTROL FIELD

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-49

Figure 4-6. CRC Field

CRC FIELD

CRC SEQUENCE
CRC

DELIMITER

ACK FIELD
DATA FIELD OR
CONTROL FIELD

Figure 4-7. Acknowledge Field

ACK
SLOT

END OF FRAMECRC FIELD ACK FIELD

ACK
DELIMITER

Figure 4-8. Intermission

FRAMEFRAME INTERFRAME SPACE

BUS IDLEINTERMISSON

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-50

4.3.1.2 Remote Frame
(Standard and extended format.) The remote frame is transmitted by a CAN controller to request the transmission of the data frame
with the same identifier (Figure 4-9). The remote frame is composed of seven fields, which include start of frame, arbitration field, con-
trol field, data field, CRC field, acknowledge field, and end of frame.

The remote frame is used when a CAN processor wishes to request data from another node. Sending a remote frame initiates a trans-
mission of data from a source node with the same identifier (masked groups included). The primary bit pattern difference between a
data frame and a remote frame is the RTR bit. In the remote frame, the RTR bit is sent as a recessive bit; in the data frame, the RTR bit
is sent as a dominant bit. Additionally, the remote frame does not contain a data field, independent of the programmed values in the
DTBYC3:DTBYC0 bits in the respective CAN message format register.

Figure 4-9. Remote Frame

S
O
F

ARBITRATION FIELD

REMOTE FRAME

ACK
 FIELD

INTERFRAME SPACE
OR OVERLOAD FRAME

END OF
FRAMECONTROL FIELD CRC FIELD

INTERFRAME
SPACE

Figure 4-10. Error Frame

SUPERPOSITION OF ERROR FLAGS FROM OTHER NODES

ERROR FLAG
ERROR

DELIMITER

ERROR FRAME
INTERFRAME SPACE

OR OVERLOAD FRAME DATA FRAME

Figure 4-11. Overload Frame

OVERLOAD FRAME

SUPERPOSITION OF OVERLOAD FLAGS FROM OTHER NODES

END OF FRAME OR
ERROR DELIMITER OR
OVERLOAD DELIMITER

OVERLOAD FLAG

OVERLOAD
DELIMITER

INTERFRAME SPACE
OR OVERLOAD FRAME

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-51

4.3.1.3 Error Frame
The error frame is transmitted by a CAN controller when the CAN processor detects a bus error. The error frame is composed of two
different fields: the superposition of the error flags from different nodes and the error delimiter.

The error frame is composed of six dominant bits that violate the CAN specification bit stuffing rule. If either of the CAN processors
detects an error condition, that CAN processor transmits an error frame. When this happens, all nodes on the bus detect the bit stuff
error condition and transmit their own error frame. The superpositioning of all these error frames leads to a total error frame length
between 6 and 12 bits, depending on the response time and number of nodes in the system. Any messages (data or remote frame)
received by the CAN processors (successful or not) that are followed by an error frame are discarded. After the transmission of an error
flag, each CAN processor sends an error delimiter (eight recessive bits) and monitors the bus until it detects the change from the dom-
inant to recessive bit level. The CAN modules issue an error frame each time an error frame is detected. Following a series of error
frames, the CAN modules enter into an error passive mode. In the error passive mode, the CAN processors transmit six recessive bits
and wait until six equal bits of the same polarity have been detected. At this point, the CAN processor begins the next internal receive
or transmission operation.

4.3.1.4 Overload Frame
The overload frame provides an extra delay between data or remote frames. The overload frame is composed of two different fields:
the overload flag and the overload delimiter.

There are three conditions that lead to the transmission of an overload flag:

1) The internal conditions of a CAN receiver require a delay before the next data or remote frame is sent. The MAXQ7665/
MAXQ7666 CAN controller is designed to prevent this condition for data rates at or below the 1Mbps data rate.

2) The CAN processor detects a dominant bit at the first and second bit position of the intermission.

3) If the CAN processor detects a dominant bit at the 8th bit of an error delimiter or overload delimiter, it starts transmitting an
overload frame.

The error counters are not incremented as a result of number 3. The CAN processor only starts an overload frame at the first bit of an
expected Intermission if initiated by condition 1. Conditions 2 and 3 result in the CAN processor transmitting an overload frame, starting
one bit after detecting the dominant bit. The overload flag consists of six dominant bits that correspond to an error flag. Because the
overload frame is only transmitted at the first bit time of the interframe space, it is possible for the CAN processor to discriminate between
an error frame and an overload frame. The overload flag destroys the intermission field. When such a condition is detected, the CAN
processor detects the overload condition and begins transmitting an overload frame. After the transmission of an overload frame, the
CAN processors monitor the bus for a dominant to recessive level change. The CAN processor then begins the transmission of six addi-
tional recessive bits, for a total of seven recessive bits on the bus. The overload delimiter consists of eight recessive bits.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-52

4.4 General CAN Protocol-Related Issues

4.4.1 Bit Stuffing
The CAN processor performs a function termed bit stuffing in accordance with the CAN2.0 protocol. The bit stuffing is a mechanism
that is done on both the transmitting and receiving end of the transmission. When the CAN processor detects (in transmit or receive
mode) five consecutive bits of identical polarity, the CAN processor inserts (when transmitting) or removes (when receiving) a compli-
ment bit from the data stream. The bit stuffing is only used within the start of frame, arbitration field, control field, data field, and CRC
sequence. All other fields are unaffected. The bit stuffing in the CAN specification provides the required changes in the bus to allow
all nodes in the system to maintain synchronization.

4.4.2 Simultaneous Transmissions
The CAN processor monitors its own transmission and performs test on the outgoing data through the receive inputs. This is done to
verify that the message being sent is not in conflict with another node on the bus that may also be transmitting at the same time. If the
CAN processor detects that a transmitted recessive bit has been overwritten to the bus by a dominant bit from another node, the CAN
processor stops the transmission and waits until the next available time slot to try and retransmit the data or remote frame. This allows
the node with the higher priority to dominate the bus, without the possibility of a collision that would destroy data. The assignment of
unique identifiers to each message center within the CAN processor also establishes the natural priority of each message center with-
in the CAN processor, as well as when the message center is transmitted to the bus. Since the MSB of the identifier is transmitted first,
the message with the highest value quickly establishes the priority of which CAN unit is allowed to continue to use the bus during a
simultaneous transmission time segment. To eliminate possible problems with identical identifier, it is best that all nodes on the system
use unique identifiers. The issue of simultaneous transmission of a data frame and a remote frame with the same identifier is handled
through the use of the RTR bit. The RTR bit establishes the data frame as the higher priority to guarantee that the previously request-
ed data frame takes precedence over the newer remote frame request.

4.4.3 Transmit- and Receive-Error Counters
The CAN processor contains an 8-bit transmit-error counter and a second 8-bit receive-error counter. The CAN processor monitors both
its own transmissions as well as those of other nodes. Whenever an error condition is detected, the appropriate error counter is incre-
mented by a given value associated with the type of error detected. The MAXQ7665/MAXQ7666 CAN controller meets all the standard
error-logging conditions outlined in the CAN2.0B specification (Part B, Sept. 1991) under the heading of Fault Confinement. Both trans-
mit- and receive-error counters can be read by the microcontroller at any time. During software initialization (SWINT = 1), the error coun-
ters can be written to establish a common value in both registers via a write capability supplied through the CAN transmit-error periph-
eral register.

4.5 External Pins
The CAN controller uses two external signals, CANRXD and CANTXD, that are on dedicated pins. CANRXD is receive data, a digital
input that connects to a CAN transceiver output. CANTXD is transmit data, a digital output that connects to a CAN transceiver input.
The CANRXD and CANTXD signals are CAN2.0B-interface compliant with the logic level 0 (low voltage) representing a dominant state,
and logic level 1 (high voltage) representing a recessive state. The MAXQ7665/MAXQ7666 CAN controller pins are summarized in
Table 4-1.

PINCAN EXTERNAL
SIGNAL 48-PIN 56-PIN

DESCRIPTION

CANRXD 20 22 CAN Bus Receiver Input

CANTXD 21 24 CAN Bus Transmitter Output

Table 4-1. MAXQ7665/MAXQ7666 CAN Controller Pins

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-53

4.6 Initializing the CAN Controller
Software initialization of the CAN controller begins with the setting of the software initialization bit (SWINT) in the CAN 0 control periph-
eral register. When SWINT = 1, the CAN module is disabled and the CAN transmit output (CANTXD) is placed in a recessive state.
This, in turn, allows the microcontroller to write information into the CAN MOVX SRAM control/status/mask registers without the possi-
bility of corrupting data transmissions or receptions in progress. Setting SWINT does not clear the receive- and transmit-error counters,
but allows the microcontroller to write a common value to both error counters through the CAN 0 transmit-error peripheral register. See
the description of the SWINT bit for specifics of the software initialization process.

All CAN registers located in the peripheral register map, with the exception of the CAN 0 control register, are cleared to 00h following
a system reset. The CAN 0 control register is set to 09h following a system reset. CAN registers located in the dual port memory map
are indeterminate following a system reset. A system reset also clears both the receive- and transmit-error counters in the CAN con-
troller, takes the CAN processor offline, and sets the SWINT bit in the CAN 0 control register.

Following a reset, the CAN-related registers in Table 4-2 must be initialized for proper operation of the CAN module. These registers
are in addition to specific registers associated with mask, format, or specific message centers.

Table 4-2. Registers to Be Initialized for Proper CAN Module Operation

4.7 CAN Interrupts
The CAN processor is assigned an interrupt that is individually enabled via the C0IE bit in the EIE register and globally enabled/dis-
abled by the IM4 bit in the IMR register and the IGE bit in the IC peripheral register. A CAN 0 interrupt can be generated by either a
receive/transmit acknowledgment from one of the 15 message centers or by a change in the CAN 0 status register.

CAN 0 transmit/receive interrupt sources are derived from a successful transmit or receive of data within one of the 15 message cen-
ters as signaled by the INTRQ bit in the associated CAN 0 message (1–15) control register. Each message center (1–15) provides a
separate receive interrupt enable (ERI) and transmit interrupt enable (ETI) bits in the respective CAN 0 message (1–15) control regis-
ter to allow setting of the INTRQ bit in response to successful transmission or reception. The CAN 0 interrupt register (C0IR) can then
be used to determine which message center generated the interrupt request. Software must clear the respective INTRQ bit in the asso-
ciated CAN 0 message (1–15) control register to clear the interrupt source before leaving the interrupt routine.

The CAN 0 interrupt source can also be connected to a change in the CAN 0 status register. Each of the bits in the CAN 0 status reg-
ister represents a potential source for the interrupt. To simplify the application and testing of a device, these sources are broken into
two groups that, for interrupt purposes, are enabled separately by the ERIE and STIE bit of the CAN 0 control (C0C) register. This allows
the nonstandard errors typically associated with development to be grouped under the STIE enable. These include the successful
receive RXS, successful transmit TXS, wake status WKS, and general set of error conditions reported by ER2:ER0. Also note that since
the RXS and TXS bit are cleared by software, if a second message is received or transmitted before the RXS or TXS bits are cleared
and after a read of the CAN 0 status register, a second interrupt is generated. The remaining error sources comprise the BSS and
EC96/128 bits in the CAN 0 status register. These read-only bits are separately enabled via the ERIE bit in the CAN 0 control register.
A read of the CAN 0 status register is required to clear either of the two groups of error interrupts. It is possible that multiple changes
to the status register can occur before the register is read. In that case, the status register generates only one interrupt. Figure 4-12
provides a graphical illustration of the interrupt sources and their respective interrupt enables.

REGISTER SIGNIFICANCE

C0BT0, C0BT1
(Dual Port Address 02h(L), 02h(H))

These dual port control registers must be set to configure CAN 0 bus timing. The exact values are
dependent on the network configuration and environment.

COR (Module 4, Index 5) C0BPR7, C0BPR6 (COR.4, COR3) must be configured as part of the CAN 0 bus timing.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-54

Figure 4-12. CAN Interrupt Logic

UPDATE CAN 0
INTERRUPT
REGISTER

CA
N

0/
1

ST
AT

US
 R

EG
IS

TE
R

CAN 0
STATUS

REGISTER
READ

CAN 0
CONTROL
REGISTER

BS
S

EC
96

W
KS

TX
S

RX
S

ER
2

ER
1

ER
0

CAN
INTERRUPT

ERIE STIE

D Q1

C R

C0IE

IM4

IGE

CAN 0 MESSAGE 1
CONTROL REGISTER

SUCCESSFUL RECEIVE
MESSAGE CENTER 1

SUCCESSFUL TRANSMIT
MESSAGE CENTER 1

MESSAGE CENTER 1

MESSAGE CENTER 15

ETI ERI INTRQ

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-55

4.8 Arbitration/Masking Considerations
The CAN processor is designed to evaluate and determine if an incoming message is loaded into one of the 15 message centers.
Acceptance of a message is determined by comparing the message’s ID and/or data field against the corresponding arbitration infor-
mation defined for each message center. Messages that contain bit errors or which fail arbitration are discarded. The incoming mes-
sage is tested in order against each enabled message center (enabled by the MSRDY bit in the CAN message control register) from
1 to 15. The first message center to successfully pass the test receives the incoming message and ends the testing, and the message
is loaded into the respective message center.

The MAXQ7665/MAXQ7666 CAN module supports two types of arbitration: basic and media. Basic arbitration compares either the 29-
bit (EX/ST = 1) or 11-bit (EX/ST = 0) incoming message ID against the corresponding bits in the message center CAN arbitration reg-
isters (C0MxAR0:C0MxAR3). This depends upon whether the message center has been configured for 29- or 11-bit operation. An
optional masking feature can also be used with basic arbitration. The format register (C0MxF) for each message center contains a mes-
sage identification mask enable bit (MEME). If MEME is set, the CAN module factors in the standard global mask registers
(C0SGM0:C0SGM1) when EX/ST = 0 or the extended global mask registers (C0EGM0:C0EGM3) when EX/ST = 1 when deciding if there
is an ID match. A comparison between bits in the incoming message ID and arbitration register bits is only made for bit positions that
correspond to 1 in the appropriate mask register. Bits corresponding to 0 in the mask register are ignored, creating a don’t care con-
dition. Filling the mask register with all 0s while MEME = 1 causes the arbitration circuitry to automatically match all message IDs. Filling
the mask register with all 1s while MEME = 1 requires an exact match between the incoming message ID and the arbitration registers,
just as is the case when MEME = 0.

Media arbitration is an optional second arbitration performed if the media identification mask enable bit (MDME) is set in the C0MxF
message center register. Media arbitration compares the first and second byte of the data field in each incoming message against two
8-bit media arbitration bytes (stored at locations C0MA0, C0MA1). Each media arbitration byte has an associated media identification
mask: C0MID0 for C0MA0 and C0MID1 for C0MA1. Media byte comparison is made only for those bits corresponding to 1 in the media
identification mask registers. When MDME = 1, the first two data bytes of the incoming message must pass media byte arbitration as
defined by C0MA0:C0MA1 and C0MID0:C0MID1 before being loaded into the respective message center. Unlike the identification
mask enable (MEME), however, when MDME = 0 no testing is performed of the first two bytes of the incoming data field.

4.8.1 Message Center 15
Message center 15 supports an additional set of masks to supplement basic arbitration. While this message center performs basic
and media arbitration as per message centers 1–14, it also uses the C015M3:C015M0 mask registers to perform an additional level of
filtering during basic (i.e., not media) arbitration. When determining arbitration for message center 15, the contents of C015M3:C015M0
are logically ANDed with either C0EGM3:C0EGM0 (if EX/ST = 1 for message center 15) or C0SGM1:C0SGM0 (if EX/ST = 0 for mes-
sage center 15). This ANDed value is then used in place of C0EGM3:C0EGM0 or C0SGM1:C0SGM0 when performing basic arbitra-
tion as previously described. If the MDME bit is set, the incoming message must also pass the media arbitration test.

Message center 15 has a buffered FIFO arrangement to allow up to two received messages to be received without being lost prior to
the microcontroller reading of the first message. The first message received by message center 15 is stored in the normal dual port
memory location for message center 15, if the previous message has been already read by the microcontroller. If the first message has
not been read, then the incoming message is buffered internally until the first message is read, at which time the second message is
automatically loaded into the first (dual port) message 15 slot, allowing software to then read the second message. The CAN module
determines that the first message has been read (allowing the buffered message to be transferred) when software clears the DTUP
and EXTRQ bits. If a third message arrives before the second message has been copied into the dual port message 15 slot, then the
third message writes over the second buffered message. Software should clear the INTRQ bit as well as the DTUP and EXTRQ bits
after reading each message in the dual port message center 15. The WTOE bit associated with message center 15 has unique oper-
ating considerations, described in this section.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-56

4.9 Transmitting and Receiving Messages
All CAN data is sent and received through message centers. All CAN message centers are identical with the exception of message
center 15. Message center 15 has been designed as a receive-only center and is shadow buffered to help prevent the loss of incom-
ing messages when software is unable to read one message before the next one should be loaded. All message centers, with the
exception of message center 15, are capable of four different operations, which include the following.

• Transmitting a data message

• Receiving a data message

• Transmitting a remote frame request

• Receiving a remote frame request

4.9.1 Transmitting Data Messages
Starting with the lowest numbered message center (highest priority), the CAN module sequentially scans each message center until it
finds a message center that is properly enabled for transmission (T/R = 1, TIH = 0, DTUP = 1, MSRDY = 1, and MTRQ = 1). The con-
tents of the respective message center are then transferred to the transmit buffer, and the CAN module attempts to transmit the mes-
sage. If successful, the appropriate MTRQ bit is cleared to 0, indicating that the message was successfully sent. Following a successful
transmission, loss of arbitration, or an error condition, the CAN module again searches for a properly configured message center, start-
ing with the lowest numbered message center. This search relationship always allows the highest priority message center to be trans-
mitted, independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission.

4.9.2 Receiving Data Messages
Each incoming data message is compared sequentially with each receive enabled (T/R = 0) message center starting with the lowest
numbered message center (highest priority) and proceeding to the highest numbered message center. This testing continues until a
match is found (incorporating masking functions as required), at which time the incoming message is stored in the respective mes-
sage center. Higher numbered message centers that are not reviewed prior to the match are not evaluated during the current message
test. When the WTOE = 1, the CAN module can overwrite receive message centers that have DTUP = 1, which, in turn, set ROW = 1.
When WTOE = 0, incoming messages do not overwrite receive message centers that have DTUP = 1.

Message center 15 is a special receive-only, FIFO-buffered message center designed to receive messages not accepted by the other
message centers. The ROW bit in message center 15 is associated with the overwrite of the shadow buffer for message center 15. The
EXTRQ and DTUP bits are shadow buffered to allow the buffered message and the message center 15 values to take on different rela-
tionships. The EXTRQ and DTUP values read by the microcontroller are not those of the shadow buffer, as is the case with the ROW
bit, but are the current values associated with message center 15. The shadow buffer is automatically loaded into message center 15
when both the DTUP bit and the EXTRQ bit are cleared. If either DTUP or EXTRQ are left set when clearing the other, any message in
the shadow buffer is not transferred to the message 15 registers, and any incoming messages for message 15 are stored in the shad-
ow buffer (if WTOE = 1) or are lost (if WTOE = 0).

4.9.3 Transmitting Remote Frame Requests
Starting with the lowest numbered message center (highest priority), the CAN module sequentially scans each message center. When
it finds a message center properly enabled to transmit a remote frame (T/R = 0, MSRDY = 1, and MTRQ = 1), the contents of the
respective message center is then transferred to the transmit buffer and the CAN module attempts to transmit the message. If suc-
cessful, the appropriate MTRQ bit is cleared to 0, indicating that the message was successfully sent. Following a successful trans-
mission, loss of arbitration, or an error condition, the CAN module again searches for a properly configured message center, starting
with the lowest numbered message center. This search relationship always allows the highest priority message center to be transmit-
ted, independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission. The state of the TIH bit does
not effect the transmission of a remote frame request.

If the microcontroller wants to request data from another node, it first clears the respective MSRDY bit to 0 and then writes the identi-
fier and control bits in this message center, configures the message center as a receive message center (T/R = 0), and then sets the
MTRQ and MSRDY bits. After a successful transmission, the CAN module clears MTRQ = 0 and sets TXS = 1. In addition to the TXS
bit, if the ETI bit is set, the successful transmission also sets the corresponding INTRQ bit. Requesting data from another node is pos-
sible in message centers 1–14. As seen above, the CAN module sends a remote frame request and receives the data frame in any
other mailbox for which the answering incoming data frame passes the acceptance filtering of identifier and first two data bytes.
Therefore, only one mailbox is necessary to do a remote request. Remote frame requests are not supported during autobaud mode.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-57

4.9.4 Receiving/Responding to Remote Frame Requests
The remote frame request is handled like a data frame with data length zero and the EXTRQ and RXS bits are set. Each incoming
remote frame request (RFR) message is compared sequentially with each enabled (MSRDY = 1) message center starting with the low-
est numbered message center (highest priority) and proceeding to the highest numbered message center. Testing continues until a
match is found (incorporating masking functions as required), at which time the incoming RFR message is stored in the respective
message center, the DTBYC bits are updated to indicate the requested number of return bytes, and EXTRQ and MTRQ are both set
to 1. When the message is successfully received and stored, an interrupt of the corresponding message center is asserted, if enabled
by the ERI bit. The EXTRQ bit can be left set if the message center is reconfigured to perform a transmit (T/R = 1) and used in the stan-
dard reply of a remote frame operating with transmit message centers. EXTRQ can also be cleared by software if the current message
center is not being used to reply to the remote frame request. Higher numbered message centers (lower priority) that are not reviewed
prior to the match are not evaluated during the current message test. Depending on the state of the transmit/receive bit for that mes-
sage center, the CAN module performs one of two responses.

When a remote frame request is successfully received, the message centers enabled for transmission (T/R = 1) set the EXTRQ and
MTRQ bits in the corresponding message center to mark the message as a "to be sent" message. The CAN module attempts to auto-
matically transmit the requested message if the message center is fully enabled to do so (MSRDY = 1, TIH = 0, DTUP = 1). After the
transmission, the TXS bit in the status register is set, the EXTRQ and MTRQ bits are reset to 0, and a message center interrupt of the
corresponding message center is asserted, if enabled by the respective ETI bit. If the transmit inhibit bit is set (TIH = 1), the message
center receives the RFR, modifying the DTBYC and/or arbitration bits if necessary, but the return data is not transmitted until TIH = 0.

If software wants to modify the data in a message center configured for transmission of an answer to a remote request (EXTRQ set to
1), the microcontroller must set TIH = 1 and DTUP = 0. The microcontroller can then access the data byte registers 0–7, data byte
count (DTBYC3:DTBYC0), the extended or standard mode bit (EX/ST), and the mask enables (MEME and MDME) of the message cen-
ter to load the required settings. Following the setup, the software should reset TIH to 0 and set DTUP to a 1 bit to signal the CAN that
the access is finished. Until DTUP = 1 and TIH = 0, the transmission of this mailbox is not permitted. Thus, the CAN transmits the newest
data and resets EXTRQ = 0 after the transmission is complete. The message center must first be disabled to change the identifier or
the direction control (T/R).

Message centers enabled for reception (T/R = 0) do not automatically transmit the requested data. The remote frame request does,
however, continue to store the requested number of return bytes in DTBYC and set EXTRQ = 1. No data bytes are received or stored
from a remote frame request. The message center can then be configured by software to function as transmitter (T/R = 1) and trans-
mit the requested data, or the microcontroller can configure another message center in a transmit mode (T/R = 1) to send the request-
ed data. Note that, when T/R = 0, the MTRQ bit is not set upon loading of a matching remote frame request.

When a remote frame is received, the CAN module can be configured to either automatically transmit data back to the remote node or
to allow the microcontroller to intervene and establish the conditions for the transmission of the return message. The following exam-
ples outline various options to respond to remote frame requests.

Case 1: Automatic Reply

CAN controller receives a remote frame request (RFR) and automatically transmits data without additional software intervention.

1) Software sets T/R = 1, MSRDY = 0, DTUP = 0, and TIH = 1.

2) Software loads data into respective message center.

3) Software sets MSRDY = 1, DTUP = 1, and TIH = 0 in same instruction. Note: Software does not change MTRQ = 0 from pre-
viously completed transmission.

4) CAN does not transmit data (MTRQ = 0), but waits for RFR.

5) CAN successfully receives RFR.

6) CAN forces MTRQ = 1 and EXTRQ = 1

7) CAN loads DTBYC from RFR and ID into arbitration registers.

8) CAN automatically transmits data in respective message center.

9) CAN clears EXTRQ = 0 and MTRQ = 0.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-58

Case 2: Software-Initiated Reply

(Using TIH as gating control.) CAN module wants to receive an RFR and wait for software to determine when and what is transmitted
in reference to RFR.

1) Software sets T/R = 1, MSRDY = 0, DTUP = 0, and TIH = 1.

2) Software loads data into respective message center.

3) Software sets MSRDY = 1, DTUP = 1, and TIH = 1 in same instruction. Note: Software does not change MTRQ = 0 from pre-
viously completed transmission.

4) CAN does not transmit data (MTRQ = 0), but waits for RFR.

5) CAN successfully receives RFR.

6) CAN forces MTRQ = 1 and EXTRQ = 1.

7) CAN loads DTBYC from RFR and ID into arbitration registers.

8) CAN waits for software to read message center and determine the fact that EXTRQ = 1.

9) Software may load data into message center (or it may already have the data established).

10) Software writes MSRDY = 1, DTUP = 1, and TIH = 0 in same instruction.

11) CAN automatically transmits data (as per RFR DTBYC) in respective message center.

12) CAN clears EXTRQ = 0 and MTRQ = 0.

Case 3: Software-Initiated Reply

(Reply through same message center, using TIH as gating control.) CAN module wants to receive an RFR in a receive-configured (T/R
= 0) message center. When the data is received, the message center is reconfigured to send data back to the remote request node.
This relationship is not possible for message center 15.

1) Software sets T/R = 0, MSRDY = 1, and DTUP = 0 and awaits either data frame or RFR. Note: Software does not change MTRQ
= 0 from previously completed transmission.

2) CAN successfully receives RFR.

3) CAN forces EXTRQ = 1 and DTUP = 1.

4) MTRQ cannot be written to 1 by the CAN when T/R = 0 and is left as MTRQ = 0.

5) CAN loads DTBYC from RFR and ID into arbitration registers.

6) CAN waits for software to read message center and determine the fact that EXTRQ = 1.

7) Software disables message center and converts message center into transmit message center.

a. Software clears MSRDY = 0 to disable message center. Software leaves EXTRQ = 1.

b. Software then forces message center to transmit mode, T/R = 1.

8) Software writes MSRDY = 0, DTUP = 0, and TIH = 1 in preparation to load data.

9) Software loads data into message center.

10) Software writes MSRDY = 1, MTRQ = 1, DTUP = 1, and TIH = 0 in same instruction. Note: Software leaves EXTRQ = 1.1

11) CAN automatically transmits data (as per RFR DTBYC) in respective message center.

12) CAN clears EXTRQ = 0 and MTRQ = 0.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-59

Case 4: Software-Initiated Reply

(Reply through different message center, using TIH as gating control.) CAN controller wants to receive an RFR in a message center
(denoted MC1) configured to receive data (T/R = 0) and to wait for software to select another message center (denoted MC2) to send
data back to remote request node.

1) Software sets T/R = 0, MSRDY = 1, and DTUP = 0 in MC1 and awaits either data frame or RFR. Note: Software does not change
MTRQ = 0 in MC1 from previously completed transmission.

2) CAN successfully receives RFR in MC1.

3) CAN forces EXTRQ = 1 and DTUP = 1 in MC1. MTRQ cannot be written to 1 by the CAN when T/R = 0 and is left as MTRQ =
0.

4) CAN loads DTBYC from RFR and ID into arbitration registers in MC1.

5) CAN waits for software to read message center and determine the fact that EXTRQ = 1.

6) Software disables MC1 to transfer information to MC2.

a. Software clears MSRDY = 0 to disable MC1. Software leaves EXTRQ = 1.

b. Software clears MSRDY = 0 in MC2.

7) Software forces MC2 to transmit mode T/R = 1.

8) Software loads ID and DTBYC values from MC1 into ID and DTBYC values in MC2.

9) Software writes MSRDY = 0, DTUP = 0, and TIH = 1 in MC2 in preparation to load data to MC2.

10) Software loads data into MC2.

11) Software writes MSRDY = 1, MTRQ = 1, EXTRQ = 0, DTUP = 1, and TIH = 0 in MC2 in same instruction. Note that CAN has not
set EXTRQ in MC2, and is not required to be set for transmission of data from MC2.

12) CAN automatically transmits data (as per RFR requested DTBYC) in MC2.

13) CAN clears MTRQ = 0 (leaving previous EXTRQ = 0 cleared).

14) Software sets T/R = 0, MSRDY = 1, EXTRQ = 0, and DTUP = 0 in MC1 and awaits either next RFR or data frame. Note that
MTRQ is still cleared in MC1, since MC1 has not been set to a transmit mode.

4.10 Remote Frame Handling in Relation to the DTBYC Bits
The DTBYC bits function slightly differently when remote frames are used. The data length code currently programmed in the message
center is overwritten by the data length code field of the incoming remote request frame, so that the requested number of data bytes
can be sent in response to the remote request. The following example demonstrates how the DTBYC bits are modified by a received
remote frame request.

1) Assume the microcontroller has programmed the following into a message center:

DTBYC = 5, data field = 75 AF 43 2E 12 78 90 00

(Note that only the first through fifth data bytes are recognized because DTBYC = 5.)

2) When the CAN module successfully receives a remote frame with the following data:

Identifier = ID, DTBYC = 2, RTR = 1

3) The incoming message overwrites the identifier and the data length code. The new data in the message center is: DTBYC = 2,
data field = 75 AF 43 2E 12 78 90 00

(Note that only the first and second data bytes are recognized because DTBYC is now 2.)

4) The outgoing response is a data frame containing the following information:

DTBYC = 2, data field = 75 AF

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-60

Important Information Concerning ID Changes When Awaiting Data from a Previous Remote Frame Request

The use of acceptance filtering (MEME = 1) in conjunction with remote frame requests can result in a modification of the message cen-
ter arbitration registers. Suppose, for example, that a message center is configured to transmit a remote frame request (MTRQ = 1,
EXTRQ = 0, T/R = 0, and MSRDY = 1). If arbitration masks are used, it is possible for a second frame request from an external node
to modify this requesting node’s arbitration register value prior to reception of the previously requested data. When a remote frame
request is received, the message ID is loaded into that message center’s arbitration registers. When message identification masking
is not used (MEME = 0), the message ID always matches the arbitration value, so the process is transparent. If masking is used, how-
ever, the message ID ANDed with the appropriate mask is loaded into that message center’s arbitration registers, resulting in a change
of the arbitration values for that message center. To prevent this situation, acceptance filtering should be disabled (MEME = 0) for any
message center configured for remote frame handling.

4.11 Overwrite Enable/Disable Feature
The writeover enable bit (WTOE) located in each message center (C0MxAR3) enables or disables the overwriting of unread messages
in message centers 1–15. Programming WTOE = 1 following a system reset or CRST bit-enabled reset allows newly received mes-
sages that pass arbitration to overwrite unread (i.e., message centers with DTUP = 1) messages. When an overwrite occurs, the receive
overwrite bit (ROW) in the respective CAN message control register is set. When WTOE = 0, message centers that have data waiting
to be read (indicated by DTUP = 1) or transmitted (EXTRQ = 1) are not overwritten by incoming data.

Special care must be taken when reading data from a message center with the overwrite feature enabled (WTOE = 1). Caution is nec-
essary because the WTOE bit, when set, allows an incoming message to overwrite the message center. If an overwrite occurs at the
same time that software is attempting to read several bytes from the message center (such as a multibyte data field), it is possible that
the read could return a mix of information from the old and overwriting messages. If the message center being set up with TWOE = 1
was previously a transmit message center, ensure that the TIH bit is cleared to 0 (TIH can only be written while T/R is set to 1). If TIH
is set to 1 and that message center is changed to receive with WTOE = 1, the ROW bit will always read back a 1, even though a receive
overwrite condition may not have occurred. To avoid this situation, software should clear the DTUP bit to 0 prior to reading the mes-
sage center, and then verify afterwards that the DTUP bit remained at 0. If DTUP remains cleared after the read, no overwrite occurred
and the returned data was correct. If DTUP = 1 after the read, then software again should clear DTUP = 0 and reread the message
center, since a possible overwrite has occurred. The original message will be lost (as planned since WTOE = 1), but a new message
should be available on the next read.

One important use of the WTOE bit is to allow the microcontroller to program multiple message centers with the same ID when oper-
ating in the receive mode, with WTOE = 0. This allows the CAN module to store multiple incoming messages in a series of message
centers, creating a large storage area for high-speed recovery of large amounts of data. The CPU is required to manage the use of
these message centers to keep track of the incoming data, but the use of multiple message centers and disabling of their overwrite
(WTOE = 0) function prevents the module from potentially losing data during a high-speed data transfer.

The following examples demonstrate the use of the WTOE and other bits when using multiple message centers with the same arbitra-
tion value. Case 2 illustrates the approach described above for configuring multiple message centers to capture a large amount of
data at a relatively high rate.

Case 1: WTOE = 1 (Overwrites Allowed)

1) Software configures message centers 1 and 2 with the same arbitration value (abbreviated AV).

2) Software configures message centers 1 and 2 to receive (T/R = 0) and to allow message overwrite (WTOE = 1).

3) The first message received that matches AV is stored in message center 1, DTUP = 1.

4) The second message that matches AV is stored in message center 1, DTUP = ROW = 1.

5) The third message that matches AV is stored in message center 1.

6) Etc.

Note that in this example, message center 2 never receives a message and that, if software does not read message center 1 before
the second message is received, the first message is lost.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-61

Case 2: WTOE = 0 (Overwrites Disabled)

1) Software configures message centers 1 and 2 with the same arbitration value (abbreviated AV).

2) Software configures message centers 1 and 2 to receive (T/R = 0) and to disable message overwrite (WTOE = 0).

3) The first message received that matches AV is stored in message center 1, DTUP = 1.

4) The second message received that matches AV is stored in message center 2, DTUP = 1.

5) Software reads message center 1 and then programs message center 1, DTUP = 0.

6) The third message received that matches AV is stored in message center 1, DTUP = 1.

7) Software reads message center 2 and then programs message center 2, DTUP = 0.

8) The fourth message received that matches AV is stored in message center 2, DTUP = 1.

9) Etc.

Note that in this example, message center 1 or 2 is never overwritten. The user must ensure that the proper number of message cen-
ters be allocated to the same arbitration value when using this arrangement. If software fails to read the allocated message group, an
incoming message can be lost without software realizing it (ROW is never set when WTOE = 0). To put a message center back into
operation, software must force DTUP = 0 and EXTRQ = 0. This indicates that software has read the message center.

4.12 Special Considerations for Message Center 15
Message center 15 incorporates a shadow message center used to buffer incoming messages, in addition to the standard message
center registers. When the message center is empty (DTUP = EXTRQ = 0), incoming messages are loaded directly into the message
center registers. When the message center has unread data (DTUP = 1) or a pending remote frame request (EXTRQ = 1), incoming
messages are loaded into the shadow message center. Unread contents of the shadow message center are automatically loaded into
the message center when it becomes empty (DTUP = 0). An overwrite condition is possible when both the message center 15 and
shadow message centers are full.

The response of message center 15 to the overwrite condition is dependent on the WTOE bit. When overwrite is enabled (WTOE = 1)
and there is unread data (DTUP = 1) or a pending remote frame request (EXTRQ = 1), successfully received messages are stored in
the shadow message center, overwriting existing data. If the shadow message center contained previously unread data at the time of
the overwrite, the message center 15 ROW bit is set. If the shadow message center was empty at the time, then the incoming mes-
sage is simply loaded into the shadow buffer and ROW is not set to 1. Note that the message center 15 ROW bit reflects only an over-
write of the shadow message center, not the message center registers (as with message centers 1–14).

When WTOE = 0, there is unread data (DTUP = 1), or a pending remote frame request (EXTRQ = 1) in message center 15, and there
is already a message stored in the shadow buffer, incoming messages are not stored in either the message center or shadow buffer.

4.13 Using the Autobaud Feature
It is sometimes necessary to connect a CAN node to a network with an unknown baud rate. The MAXQ7665/MAXQ7666’s autobaud
feature provides a simple way for the CAN module to determine the baud rate of the network and reconfigure the
MAXQ7665/MAXQ7666 to operate at that baud rate. Special hardware inside the CAN module allows it to interface to a fully function-
al CAN bus and perform the autobaud feature without disturbing other CAN nodes.

The theory behind the CAN autobaud feature is relatively simple. If a CAN module operating at a particular baud rate listens in on a
CAN bus operating at a different baud rate, it sees a random bit stream. Because the bit stream does not conform to the CAN2.0B pro-
tocol, a large number of bus errors (bit 0 error, bit 1 error, bit stuff error, etc.) are seen by the "listening" CAN. These errors increment
the CAN error-counter register. With only a moderate amount of CAN traffic, enough errors quickly accumulate to set the CAN error-
count-exceeded (EC96/128) bit in the CAN 0 status register (C0S; A4h). This can be used as an indicator that the
MAXQ7665/MAXQ7666 are not operating at the same baud rate as the CAN bus. The MAXQ7665/MAXQ7666 would then adjust their
baud rate and repeat the process.

If, after a period of time, only a small number of errors have accumulated (most likely due to normal transmission noise), the
MAXQ7665/MAXQ7666 are operating at the correct baud rate. The autobaud process is further simplified by the fact that most net-
works only operate at a small number of values. For example, DeviceNet operates at 125kbps, 250kbps, and 500kbps, so a device
attempting to autobaud to a DeviceNet network would only have to test three baud rates.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-62

The autobaud feature for the CAN module is enabled by setting the autobaud bit (C0C.2). Setting this bit activates a special loopback
circuit within the CAN module that logically ANDs incoming network data received on the Rx pin with the Tx pin of the CAN module.
While the autobaud bit is set, the CAN module disables its transmit output and places it in the recessive (high) state, so that error
frames generated by the autobauding CAN module do not disturb other devices on the network during the procedure. Figure 4-13 out-
lines the CAN autobaud feature.

The following user-defined software procedure can be used with the autobaud feature to determine the baud rate of the network.

1) Set CRST = 1 to disable bus activity. Setting this bit also sets the SWINT bit, enabling access to control/status registers, and
also clears the C0RE and C0TE registers.

2) Configure bus timing registers to set desired baud rate.

3) Set autobaud bit = 1.

4) Set SWINT = 0 to enable CAN module and begin listening for errors.

5) Delay approximately 500ms (allow enough time for > 128 errors to occur).

6) If CAN error-count-exceeded (EC96/128) bit is set, baud rate is incorrect. Select a new baud rate and repeat procedure. If
EC96/128 bit is not set, the MAXQ7665/MAXQ7666 CAN module is set to the correct baud rate.

Figure 4-13. CAN Autobaud Feature

RECEIVE

Rx
CAN

PROCESSOR

CAN 0 CONTROL REGISTER

ERIE STIE PDE CRSTSIESTA AUTOB ERC3 SWINT Tx

TRANSMIT

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-63

4.14 BUSON/BUSOFF Recovery and Error Counter Operation
The CAN module contains two peripheral registers that allow software to monitor and modify (under controlled conditions) the error
counts associated with the transmit- and receive-error counters in the CAN module. These registers can be read at any time. Writing
the CAN transmit-error counter registers updates both the transmit-error counter registers and the receive-error counter registers with
the same value. Details are given in the peripheral registers description. These counters are incremented or decremented according
to CAN specification version 2.0B, summarized in Table 4-3. The error counters are initialized by a CRST = 1 or a system reset to 00h.
The error counters remain unchanged when the CAN module enters and exits from a low-power mode through the SIESTA or PDE bit.

Changes to the error counters are performed according to the following rules. This level of detail is not necessary for the average CAN
user, and full information is provided in the CAN2.0B specification. More than one rule can apply to a given message.

Table 4-3. Rules for Changes to Error Counters

A node is error-active when the transmit- and receive-error counters are less than 128. When in an error-active state, an error condi-
tion causes the node to send an error frame on the bus. A node is error-passive when the transmit-error count equals or exceeds 128,
or when the receive-error count equals or exceeds 128. An error-passive node does not transmit an error frame on the bus. An error-
passive node becomes error-active again when both the transmit-error count and the receive-error count are less than or equal to 127.

A node is BUSOFF when the transmit-error count is greater than or equal to 256. A BUSOFF node becomes error-active (no longer
BUSOFF) when its error counters are both set to 0 and after 128 occurrences of 11 consecutive recessive bits have been monitored
on the bus.

After exceeding the error-passive limit (128), the receive-error counter is not increased any further. When a message is received cor-
rectly, the counter is set again to a value between 119 and 127 (compare with CAN2.0B specification). After reaching BUSOFF status,
the transmit-error counter is undefined while the receive-error counter is cleared and changes its function. The receive-error counter is
incremented after every 11 consecutive recessive bits on the bus. These 11 bits correspond to the gap between two messages on the
bus. If the receive-error counter reaches count = 128 following the BUSOFF recovery sequence, the CAN module changes automati-
cally back to the status of BUSON and then sets SWINT = 1. After setting SWINT, all internal flags of the CAN module are reset and
the error counters are cleared. A recovery from a BUSOFF condition does not alter any of the previously programmed dual port mem-
ory values or peripheral registers, apart from the transmit- and receive-error peripheral registers and the error conditions displayed in
CAN status register. The bus timing remains as previously programmed.

CONDITION EFFECT ON ERROR COUNTERS

Error detected by receiver, unless the detected error was a bit error during the sending of
an active error flag or an overload flag. Receive-error counter incremented by 1.

Receiver detects a dominant bit as the first bit after sending an error flag. Receive-error counter incremented by 8.

Transmitter sends an error flag. Note, however, that the transmit-error count does not
change if:
(1) The transmitter is error passive and detects an acknowledgement error because of not
detecting a dominant acknowledge, and does not detect a dominant bit while sending its
passive error flag.
(2) Or, if the transmitter sends an error flag because a stuff error occurred during arbitration,
and has been sent as recessive, but monitored as dominant.

Transmit-error counter incremented by 8.

Transmitter detects a bit error while sending an active error flag or an overload flag. Transmit-error counter incremented by 8.

Receiver detects a bit error while sending an active error flag or an overload flag. Receive-error counter incremented by 8.

Node detects the 14th consecutive dominant bit (in case of an active error flag or an
overload flag), or detects the 8th consecutive dominant bit following a passive error flag, or
after a sequence of additional eight consecutive dominant bits.

Transmit-error counter incremented by 8. Receive-error
counter incremented by 8.

Message is successfully transmitted (acknowledge received and no error until end of frame
is complete).

Transmit-error counter is decremented by 1 (unless it
was already 0).

A message has been successfully received (reception without error up to the acknowledge
slot and the successful sending of the acknowledge bit), and the receive-error count was
between 1 and 127.

Receive-error counter decremented by 1.

A message has been successfully received (reception without error up to the acknowledge
slot and the successful sending of the acknowledge bit), and the receive-error count was
greater than 127.

Receive-error counter is set to a value between 119
and 127.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-64

4.15 Bit Timing
Bit timing in the CAN2.0B specification is based on a unit called the nominal bit time. The nominal bit time is further subdivided into
four specific time periods.

1) The SYNC_SEG time segment is where an edge is expected when synchronizing to the CAN bus.

2) The PROP_SEG time segment is provided to compensate for the physical times associated with the CAN bus network.

3) The PHASE_SEG1 and PHASE_SEG2 time segments compensate for edge phase errors.

4) The PHASE_SEG1 and PHASE_SEG2 time segments can be lengthened or shorted through the use of the SJW1 and SJW0 bits
in the CAN 0 bus timing register zero.

The CAN bus bit data is evaluated at a specific sample point. A time quantum (tQU) is a unit of time derived from the division of the
microcontroller system clock by both the baud-rate prescaler (programmed by the BPR7:BPR0 bits of the CAN 0 operation control reg-
ister and CAN 0 bus timing register) and the system clock divider (programmed by the CD1:CD0 and PMME bits of the CKCN regis-
ter). Combining the PROP_SEG and PHASE_SEG1 time segments into one time period termed tTSEG1, and equating the SYNC_SEG
time segment to tSYNC_SEG and PHASE_SEG2 to tTSEG2, provides the basis for the time segments outlined in Figure 4-14 and in the
CAN bus timing peripheral register descriptions.

Figure 4-14. Bit Timing

1 BIT TIME

1 t QU
TIME QUANTA

1 t QU
TIME QUANTA

TRANSMIT

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

NOMINAL BIT TIME

tSYNC-SEG

tTSEG1

tTSEG2

SAMPLE
POINT

SAMPLE
POINT

2 tQU - 16 tQU 2 tQU - 8 tQU

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-65

The CAN 0 bus timing register 0 (C0BT0) contains the control bits for the PHASE_SEG1 and PHASE_SEG2 time segments as well as
the baud-rate prescaler (BPR5:BPR0) bits. CAN 0 bus timing register 1 (C0BT1) controls the sampling rate, the time segment two bits
that control the number of clock cycles assigned to the phase segment 2 portion, and the time segment one bits that determine the
number of clock cycles assigned to the phase segment 1 portion. The value of both of the bus timing registers is automatically loaded
into the CAN module following each software change of the SWINT bit from a 1 to a 0 by the microcontroller. The bit timing parame-
ters must be configured before starting operation of the CAN module. These registers can only be modified during a software initial-
ization (SWINT = 1), when the CAN module is NOT in a BUSOFF mode, and after the removal of a system reset or a CAN reset. To
avoid unpredictable behavior of the CAN module, the bus timing registers should never be written with all zeros. To prevent this, the
SWINT is forced to 0 when TSEG1 = TSEG2 = 00h.

The timing of the various time segments is determined by the following formulas. Most users never need to perform these calculations,
as other devices already attached to the network dictate the bus timing parameters.

where BRPV is the CAN baud-rate prescaler value found in the earlier description of the C0BT0 and COR registers, fOSC is the crys-
tal or external oscillator frequency of the microprocessor, and TS1_LEN and TS2_LEN are listed in the description of the
TSEG26:TSEG24 and TSEG13:TSEG10 bits in the CAN bus timing register 1 (C0BT1). SJW is listed in the description of the SJW1:SJW0
bits in the CAN bus timing register 0 (C0BT0). The CAN clock divide (CCD) value is a factor tied to the current microcontroller system
clock selection CKCN (see the peripheral register description) and can be referenced in the following table.

Table 4-4. CAN Clock Divide Selection

t
BRPV CCD

f
t t

t TS LEN t

t TS LEN t

t SJW t

t per bit
baud rate t

Only eger values are permitted

QU
OSC

SYNC SEG QU

TSEG QU

TSEG QU

SJW QU

QU
QU

= ×

= ×

= () ×

= () ×

= () ×

=
×

_

_

_

(int .)

1

1

1

1

1

2

CD1 CD0 PMME CCD

0 0 0 1

0 1 0 2

1 0 0 4

1 1 0 8

0 0 1 256

0 1 1 256

1 0 1 256

1 1 1 Reserved

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-66

The following restrictions apply to the above equations:

The nominal bit time applies when a synchronization edge falls within the tSYNC_SEG period. The maximum bit time occurs when the
synchronization edge falls outside of the tSYNC_SEG period, and the synchronization jump width time is added to perform the resyn-
chronization.

4.15.1 Threefold Bit Sampling
The MAXQ7665/MAXQ7666 support the ability to perform one or three samplings of each bit, based on the SMP bit (C0BT1.7). The
single sample mode (SMP = 0) is available in all settings and takes one sample during each bit time. The triple sampling mode
(SMP = 1) samples each bit three times for increased noise immunity. This mode can only be used when the baud-rate prescale value
(BPRV) is greater than 3.

4.15.2 Bus Rate Timing Example
Table 4-5 shows an example bit timing setting for an 8MHz oscillator frequency and some baud-rate selections. Because of the large
number of variables, there are many combinations not shown that can achieve a desired baud rate. There are a number of approach-
es to determining all the bit timing factors, but this uses the most common (i.e., the oscillator frequency and baud rate have already
been determined by system constraints).

Table 4-5. Bit Timing Setting Example for 8MHz Oscillator Frequency

To understand the table data, the following is an explanation of how the 8MHz oscillator frequency and a 125kbps CAN baud rate data
is derived.

Various combinations of BRPV are selected until one is located that meets the "tQU per bit" criteria, i.e., an integer value less than 25.
Selecting BRPV = 2, the previously described equations state that there should be 16 tQU per bit. That leaves 16-1 or 15 tQU remain-
ing for TS1_LEN and TS2_LEN, which are arbitrarily assigned as shown. Because BRPV < 3, the triple sampling feature (SMP = 1) can-
not be used.

no al bit time t t t

BRPV CCD TS LEN TS LEN

f
imum bit time t t t t

BRPV CCD TS LEN TS LEN SJW

f

CAN baud rate
f

BRPV CCD

SYNC SEG TSEG TSEG

OSC

SYNC SEG TSEG TSEG SJW

OSC

OSC

min

_ _

max

_ _

_

_

= + +

=
()() + () + ()[]

= + + +

=
()() + () + () + ()[]

=
()

1 2

1 2

1 1 2

1 1 2

(() + () + ()[]1 1 2TS LEN TS LEN_ _

t t

t t

t t

TS LEN

TS LEN

TS LEN TS LEN

TSEG TSEG

TSEG SJW

SJW TSEG

1 2

2

1
2 1 16

2 2 8

1 2 1 25

≥
≥

<
≤ ≤
≤ ≤

+ + ≤

_

_

(_ _)

fOSC CCD BRPV tQU BAUD RATE
tQU PER

BIT
TS1_LEN TS2_LEN SJW SMP = 1

PERMITTED?

1 1 125ns 1Mbps 8 4 3 2 No

1 1 125ns 500kbps 16 10 5 4 No

1 1 250ns 250kbps 16 10 5 4 No
8MHz

2 2 500ns 125kbps 16 10 5 4 No

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

4-67

4.16 CAN Bus Activity
The CAN bus activity (CAN0BA) status is active when a CAN bus activity is detected on the CAN input pin (Figure 4-15). This signal
is used as one of the switchback sources for PMM mode or a wake-up source for stop mode if its interrupt function is also enabled.
The status bit CAN0BA in the COR register can be used by software to determine the switchback or wake-up source.

4.16.1 Issues with Stop Mode Entry While CAN is Active
When bits PDE, CRST, and SWINT are all cleared to logic 0, this condition indicates the CAN processor is active, even though this does
not mean that the CAN is actively transmitting or receiving a message. However, if the microcontroller is trying to enter stop mode while
the CAN processor is active, this could be catastrophic to the CAN network if it is actually transmitting a message.

The issue is directly related to the possibility of holding the CAN bus in dominate state when the system clock is stopped in stop mode
while the CAN is transmitting a low value. Normally, if a CAN node is in a fault state, other nodes automatically send out error frames
until the problem node takes itself offline. In this case, the problem node cannot take itself offline because it has no way to receive the
error frame or to increment the error counts without the clock.

In order to confine error to the CAN processor when it is inadvertently entering stop mode, a hardware solution is implemented:

• The TXD output is forced high by hardware, and automatically takes the CAN processor offline.

• The SWINT bit is forced to logic 1 after the stop mode is exited and 11 consecutive recessive bits on the CAN bus have been
received. Setting the SWINT bit to logic 1 inactivates the CAN processor.

• Once the SWINT bit is set, the TXD pin is released by the hardware, returning the control of the CAN bus to the CAN proces-
sor.

• The logic state of the SWINT bit also signifies the user that an error may occur and the CAN processor has been forced offline.
To activate the CAN processor, the user can clear the SWINT bit.

The following are some side effects that may not be addressed by the hardware solution.

• There is neither an error associated with this condition in the CAN status register, nor an interrupt associated with this condi-
tion. The user software should be able to determine the SWINT has been changed from 0 to 1 by hardware.

• It is possible that if a transmitted message is interrupted, it may be lost and have to be retransmitted manually. It is also possi-
ble that the message will be retransmitted automatically when the software clears SWINT if the error count is below the thresh-
old.

• The CAN error counters may have incremented due to the broken-up message and holding the bus high.

To avoid issues with stop mode entry, the user software should poll the CRST, SWINT, and PDE bits in the CAN control peripheral reg-
ister before setting the STOP bit. At least one of these bits should be set to 1 before entering stop mode. If all three bits are cleared to
0 when stop mode is entered, the CAN is taken offline and deactivated.

Figure 4-15. CAN Bus Activity

ENABLE

NOISE
FILTERING

ADDRESS

PERIPHERAL REGISTER WRITE

RESET

CAN
RECEIVER

D

VDD

TO CAN PROCESSOR DATA INPUT

CANOBA (FOR SWITCHBACK
AND STOP-MODE REMOVAL)

C
R

Q

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-1

This section contains the following information:

5.1 Architecture .5-3

5.1.1 Oscillator/Clock Generation Module Pins .5-4

5.2 Oscillator/Clock Generation Registers .5-5

5.2.1 Analog Status Register (ASR) .5-5

5.2.2 Oscillator Control Register (OSCC) .5-6

5.2.3 System Clock Control Register (CKCN) .5-8

5.2.4 Watchdog Timer Control Register (WDCN) .5-10

5.2.5 Analog Interrupt Enable Register (AIE) .5-11

5.3 System Clock Generation .5-12

5.3.1 Internal 7.6MHz RC Oscillator .5-12

5.3.2 External Clock (Crystal/Resonator) .5-13

5.3.2.1 High-Frequency Oscillator Application Configuration .5-14

5.3.3 External Clock (Direct Input) .5-16

5.3.4 Internal System Clock Generation .5-16

5.3.5 External Crystal-Fail Detection and Automatic Switchover .5-17

5.4 Watchdog Timer .5-18

5.5 Power Management Mode .5-20

5.5.1 Divide-by-256 Mode (PMM) .5-20

5.5.2 Switchback Mode .5-21

5.5.3 Stop Mode .5-21

SECTION 5: OSCILLATOR/CLOCK GENERATION MODULE

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-2

Figure 5-1. Oscillator/Clock Generation Module Block Diagram .5-4

Figure 5-2. Oscillator Startup Flow .5-13

Figure 5-3. High-Frequency Crystal Oscillator Configuration .5-14

Figure 5-4. Selecting External Crystal/Resonator as System Clock .5-15

Figure 5-5. High-Frequency Oscillator Application Configuration .5-15

Figure 5-6. External Clock Source Configuration .5-16

Figure 5-7. External Crystal-Fail Detection .5-17

Figure 5-8. Watchdog Timer Block Diagram .5-18

LIST OF FIGURES

Table 5-1. MAXQ7665/MAXQ7666 Oscillator/Clock Generation Module Pins5-4

Table 5-2. Clock Generation and Selection Registers and Bits .5-12

Table 5-3. System Clock Rate Control Settings .5-16

Table 5-4. Interrupt and Reset Functions for Watchdog .5-19

Table 5-5. Watchdog Timeout Selections .5-19

Table 5-6. System Power Management .5-20

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-3

SECTION 5: OSCILLATOR/CLOCK GENERATION MODULE
The MAXQ7665/MAXQ7666 oscillator/clock generation module supplies the system clock for the microcontroller core and all the
peripheral modules. The MAXQ7665/MAXQ7666 are designed to operate up to 8MHz. Except where explicitly stated, the MAXQ7665
and MAXQ7666 have identical features.

The MAXQ7665/MAXQ7666 oscillator/clock generation module features include:

• Internal 7.6MHz RC oscillator

• Internal high-frequency oscillator, using an external crystal or resonator (up to 8MHz)

• External high-frequency clock signal (up to 8MHz)

• External crystal-fail detection and automatic switchover

• Power-up timer

• Power-saving management modes

• Watchdog timer

5.1 Architecture
Figure 5-1 shows a simplified functional block diagram of the MAXQ7665/MAXQ7666 oscillator/clock generation module. All function-
al modules in the MAXQ7665/MAXQ7666 are synchronized to a single system clock except the watchdog timer, which always oper-
ates using the internal, undivided 7.6MHz RC oscillator. The internal clock circuitry generates the system clock from one of three pos-
sible sources:

• Internal 7.6MHz RC oscillator

• Internal high-frequency oscillator, using an external crystal or resonator

• External high-frequency clock signal

These options provide the flexibility to select the clock source that best fits a particular application. The external crystal and clock are
mutually exclusive since they share a common pin. The internal 7.6MHz RC oscillator provides a low-cost system solution that elimi-
nates the need for a high-frequency crystal in some applications. The clock source selection is determined by the state of the XT bit
in the CKCN register. When XT = 0, the internal 7.6MHz RC oscillator is used for clock generation; when XT = 1, the clock source is
from external, either from an external clock or a crystal depending on the user system configuration. The internal 7.6MHz RC oscilla-
tor is selected as the default clock source on a power-on reset condition.

When the device is powered up, the power-on reset circuitry holds the device in reset to:

• Start up the internal 7.6MHz RC oscillator

• Reset the power-up counter, and

• Allow power-up delay of 65,536 internal 7.6MHz RC oscillator cycles (8.6ms typical) before releasing the reset and starting CPU
operation

The oscillator/clock generation module includes a clock divider (CD1:CD0 bits) to select the number of oscillator clock source cycles
per system clock. By default, one system clock is generated for every two oscillator cycles (divide by 2). Maximum performance is
achieved by changing this to one system clock for each oscillator cycle (divide by 1).

Maxim Integrated

5-4

MAXQ7665/MAXQ7666 User’s Guide

Figure 5-1. Oscillator/Clock Generation Module Block Diagram

POWER-ON RESET

DVDD

RESET

XIN/
HF-CLK

XOUT

STOP HFIC(1:0)

HIGH-
FREQ

CLOCK/
XTAL

HFOC(1:0) XT EXTHF HFE

RCE

XHFRY

STOP

RGMD

RC
OSC

STOP

CLOCK
DIVIDE SYSCLK

EWDI

WDIF

WTRF

WD1

WDT RESET

WATCHDOG
INTERRUPT FLAG
WATCHDOG
TIMER RESET
FLAG

WD0

WATCHDOG
TIMER

EWT RWT

ADCCLK

SWB PMME CD1

ADCD2

BPR6BPR7 BPR4BPR5 BPR2 BPR1 BPR0BPR3

ADCD1 ADCD0

CD0

ADC CLOCK
PRESCALE

CAN CLOCK
PRESCALE

ENABLE

MUX

XT EXTHF

POWER-
UP TIMER

(/216)

CAN CLOCK

5.1.1 Oscillator/Clock Generation Module Pins
Table 5-1 shows the MAXQ7665/MAXQ7666 oscillator/clock generation module signals.

Table 5-1. MAXQ7665/MAXQ7666 Oscillator/Clock Generation Module Pins

PIN
OSCILLATOR SIGNAL

48 56
DESCRIPTION

XIN 43 49
High-Frequency Crystal Input. Connect an external crystal or resonator between XIN and XOUT as
the high-frequency oscillator clock. Alternatively, XIN is the input for an external high-frequency
clock source when XOUT is floating. Leave XIN unconnected if an external clock source is not used.

XOUT 42 48
High-Frequency Crystal Output. Connect an external crystal or resonator between XIN and XOUT as
the high-frequency oscillator clock. Alternatively, float XOUT when an external, high frequency clock
source is connected to the XIN pin.

Maxim Integrated

5-5

MAXQ7665/MAXQ7666 User’s Guide

5.2 Oscillator/Clock Generation Registers
The MAXQ7665/MAXQ7666 oscillator/clock generation module registers are described here. All these registers are directly accessible
by the microcontroller through the module/index address.

5.2.1 Analog Status Register (ASR)
The ASR register contains the high-frequency oscillator ready and failure flags. This register is cleared to its default state when it is
read.

Register Description: Analog Status Register
Register Name: ASR
Register Address: Module 05h, Index 0Bh

Bit 15: I/O Voltage Brownout Comparator Level (VIOLVL). See Section 2 for more information on this bit.

Bit 14: Digital Voltage Brownout Comparator Level (DVLVL). See Section 2 for more information on this bit.

Bits 13, 12, 10 to 7, 3, and 0: Reserved. Read 0, write ignored.

Bit 11: High-Frequency Oscillator Ready (XHFRY). This flag is set to logic 1 when the high-frequency crystal oscillator warmup is
complete and ready for use. This bit is cleared after reading from the ASR register.

Bit 6: External High-Frequency Oscillator Failure Flag (HFFINT). This flag is set to logic 1 if the previously stable high-frequency
clock source (XHFRY = 1) is sourced as the system clock (XT = 1) and a failure is detected (XHFRY = 0). This condition causes a hard-
ware clock switchover by forcing the internal 7.6MHz RC oscillator enable (RCE = 1) and selecting it as the system clock (XT =0).

Bit 5: I/O Voltage Brownout Flag (VIOBI). See Section 2 for more information on this bit.

Bit 4: Digital Brownout Flag (DVBI). See Section 2 for more information on this bit.

Bit 2: ADC Overrun Flag (ADCOV). See Section 3 for more information on this bit.

Bit 1: ADC Data Ready Flag (ADCRY). See Section 3 for more information on this bit.

Bit # 15 14 13 12 11 10 9 8

Name VIOLVL DVLVL — — XHFRY — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFINT VIOBI DVBI — ADCOV* ADCRY —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: Reading the ASR resets to 0 all the status flag bits except VIOLVL and DVLVL.
*The ADCOV bit is cleared by all forms of reset. All other bits are reset only by POR.

Maxim Integrated

5.2.2 Oscillator Control Register (OSCC)
The OSCC register contains the oscillator enable and configuration bits.

Register Description: Oscillator Control Register
Register Name: OSCC
Register Address: Module 05h, Index 0Ch

Bits 15 to 12, 4, and 3: Reserved. Read 0, write ignored.

Bits 11 and 10: High-Frequency Crystal Output Capacitance Select 1 and 0 (HFOC1 and HFOC0). These bits select the output
capacitance of the on-chip high-frequency oscillator. The capacitor value is switched on to the XOUT pin of the MAXQ7665. The pos-
sible selections are given below. Note: For the default 00 setting, only a 1.3pF capacitor is switched on. The 6pF capacitor value is
essentially due to stray capacitance.

Note: For the MAXQ7666, the HFIC1:HFIC0 bits select both the input and output capacitance of the on-chip high-frequency oscillator.
The HFOC1:HFOC0 bits are used to select one of four possible crystal drive strengths as shown in the following table. Refer to the
MAXQ7666 data sheet for typical drive strengths.

MAXQ7665/MAXQ7666 User’s Guide

5-6

Bit # 15 14 13 12 11 10 9 8

Name — — — — HFOC1 HFOC0 HFIC1 HFIC0

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name ADCD2 ADCD1 ADCD0 — — EXTHF RCE HFE

Reset 0 0 0 0 0 0 1 0

Access rw rw rw r r rw rw rw

r = read, w = write
Note: This register is cleared to 0002h on power-on reset and is not affected by other forms of reset.

HFOC1 HFOC0 CAPACITOR VALUE
(pF)

0 0 6 (default)

0 1 17

1 0 27

1 1 34

HFOC1 HFOC0 DRIVE STRENGTH

0 0 Drive 2 (default)

0 1 Drive 3 (highest)

1 0 Drive 0 (smallest)

1 1 Drive 1

Maxim Integrated

Bits 9 and 8: High-Frequency Crystal Input Capacitance Select 1 and 0 (HFIC1 and HFIC0). These bits select the input capaci-
tance of the on-chip high-frequency oscillator. The capacitor value is switched on to the XIN pin of the MAXQ7665. The possible selec-
tions are given below. Note: For the default 00 setting, only a 1.3pF capacitor is switched on. The 7pF capacitor value is essentially
due to stray capacitance.

Note: For the MAXQ7666, the HFIC1:HFIC0 bits set both the input and output capacitance. The HFOC1:HFOC0 bits are used to select
the crystal drive strength as previously explained.

Bits 7, 6, and 5: ADC Clock Divider Bits 2, 1, and 0 (ADCCD2, ADCCD1, ADCCD0). See Section 3 for more information on these
bits.

Bit 2: External High-Frequency Clock Enable (EXTHF). Setting this bit to logic 1 enables direct input of the external high-frequency
clock to the XIN pin. Clearing this bit to logic 0 disables the high-frequency clock input. To use this as the system clock source, the XT
bit in the CKCN register must be set to logic 1.

Bit 1: Internal 7.6MHz RC Oscillator Enable (RCE). Setting this bit to logic 1 enables the internal 7.6MHz RC oscillator. Clearing this
bit to logic 0 disables the internal 7.6MHz RC oscillator. To use the internal 7.6MHz RC oscillator as the system clock source, the XT
bit in the CKCN register must be set to 0. In the MAXQ7665/MAXQ7666, the internal 7.6MHz RC oscillator is the default system clock
(RCE = 1, XT =0) after power-on reset. The watchdog timer is clocked by the internal 7.6MHz RC oscillator.

Note: The internal 7.6MHz RC oscillator is the default system clock source, so disabling it before the high-frequency crystal oscillator
is stable (XHFRY = 1) and selected as the system clock source (XT = 1) can cause unrecoverable system errors.

Bit 0: High-Frequency Crystal Oscillator Enable (HFE). Setting this bit to logic 1 enables the on-chip high-frequency oscillator for
use with an external crystal or resonator. Clearing this bit to 0 disables the high-frequency oscillator.

To use the external crystal or resonator as the system clock source, the HFE bit should first be set to logic 1 to allow the crystal oscil-
lator to power-up. At some time later, the XT bit of the CKCN register should be set to logic 1 to swap the system clock source from
the internal 7.6MHz RC oscillator to external crystal. If sufficient time has elapsed between setting HFE and setting XT to 1, the oscil-
lator is ready and the clock source will swap immediately. Otherwise, the crystal oscillator continues to power-up and the clock source
will swap to crystal when the power-up has completed. The XHFRY bit of the ASR indicates when the crystal oscillator circuit is ready
(XHFRY = 1), and the clock source can swap from the internal 7.6MHz RC oscillator to external crystal.

MAXQ7665/MAXQ7666 User’s Guide

5-7

HFIC1 HFIC0 CAPACITOR VALUE
(pF)

0 0 7 (default)

0 1 18

1 0 27

1 1 34

Maxim Integrated

5.2.3 System Clock Control Register (CKCN)
The 8-bit CKCN register is part of the system register group and used to support system clock generation. It controls the system clock
speed and power management mode selection.

Register Description: System Clock Control Register
Register Name: CKCN
Register Address: Module 08h, Index 0Eh

Bit 7: External Crystal Select (XT). This bit selects the external crystal/clock or the internal 7.6MHz RC oscillator as the desired clock
source. The XT bit is the inverse of RGMD except during the crystal warmup period when resuming from the stop mode through the
7.6MHz RC oscillator. This bit is cleared to 0 after a power-on reset, which selects the internal 7.6MHz RC oscillator as the clock source;
otherwise, it is unchanged by other forms of reset.

Changing the XT bit from 0 to 1 causes the system clock source to swap from the internal RC to the high-frequency crystal oscillator.
This change occurs automatically within a few clock cycles if sufficient crystal warmup time has elapsed since the HFE bit of the OSCC
register was set. If the crystal has not finished warming up when XT is set to 1, the crystal oscillator continues to warm up and the clock
source swaps to crystal when this is complete. The XHFRY bit of the ASR register indicates when the crystal oscillator circuit is ready
and the clock source can swap from 7.6MHz RC oscillator to crystal.

Changing the XT bit from 1 to 0 selects the internal 7.6MHz RC oscillator as the system clock source. Allow four 7.6MHz RC oscillator
cycles after enabling the 7.6MHz RC oscillator (RCE = 1) before switching XT to 0. To use the 7.6MHz RC oscillator, the RCE bit in the
OSCC register must be set to logic 1, which enables the 7.6MHz RC oscillator.

Bit 6: Reserved. Read 0, write ignored.

Bit 5: 7.6MHz RC Oscillator Mode (RGMD). This read-only bit reflects the selection of clock source. RGMD = 1 indicates that the
7.6MHz RC oscillator is providing the system clock. RGMD = 0 indicates that the external crystal/clock is providing the system clock.
Note that RGMD is set to 1 only for POR reset.

Bit 4: Stop Mode Select (STOP). Setting this bit to 1 causes the MAXQ7665/MAXQ7666 to enter stop mode. This will not change the
currently selected clock divide ratio (CD0, CD1, and PMME). This bit is cleared by a reset or any of the enabled external interrupts.
Stop mode disables all circuits within the MAXQ7665/MAXQ7666 including the watchdog timer and its clock source (the internal
7.6MHz RC oscillator). All clock sources, timers, and peripherals are halted, and no code execution occurs. The system clock is
stopped, and all processing activity is halted.

Bit 3: Switchback Enable (SWB). If the SWB bit is cleared to 0, switchback mode is not active. If the SWB is set to 1, switchback
mode is active. Switchback mode has no effect if power management mode is not active (PMME = 0). If power management mode is
active and switchback mode is enabled, the PMME bit will be cleared to 0 when any of the following conditions occur:

• An external interrupt condition occurs on a port pin and the corresponding external interrupt is enabled.

• An active-low transition occurs on the UART serial receive-input line (modes 1, 2, and 3) and data reception is enabled.

• The SBUF0 register is written to send an outgoing byte through the UART and transmission is enabled.

• The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and transmis-
sion is enabled.

MAXQ7665/MAXQ7666 User’s Guide

5-8

Bit # 7 6 5 4 3 2 1 0

Name XT — RGMD STOP SWB PMME CD1 CD0

Reset 0 0 1 0 0 0 0 1

Access rw r r rw rw rw rw rw

r = read, w = write
Note: Bits 4:0 are set to 00001b on all forms of reset. See bit description for bits 7 and 5.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-9

• The SPI module’s SS (slave select input) signal is asserted in slave mode.

• A CAN bus activity on its data input (CANRXD) while its interrupt is enabled.

• Active debug mode is entered either by break point match or issuance of the debug command from background mode.

When any of these conditions cause switchback to clear PMME to 0, the system clock rate will then revert back to the divide-by-1 mode
(CD1:CD0 = 00). After PMME is cleared to 0 by switchback, it may not be set back to 1 as long as any of the above conditions are
true.

Bit 2: Power Management Mode Enable (PMME). If the PMME bit is cleared to 0, the values of CD1 and CD0 determine the number
of oscillator (clock source) cycles per system clock cycle. If the PMME bit is set to 1, the values of CD1 and CD0 are ignored and the
system clock operates in a fixed mode of 1 cycle per 256 oscillator cycles (divide by 256). If the PMME bit is set to 1 and switchback
mode has been enabled (SWB = 1), when a switchback source (such as an enabled external interrupt) becomes active, PMME is
cleared to 0 and cannot be set to 1 unless all switchback sources are inactive.

Note: The CD1 and CD0 (CKCN1:CKCN0) bits must both be cleared to 0 before setting the PMME bit to 1.

Bits 1 and 0: Clock Divide Control Bits 1 and 0 (CD1 and CD0). If the PMME bit is cleared, the CD1 and CD0 bits control the num-
ber of oscillator (clock source) cycles required to generate one system clock as follows:

If the PMME bit is set to 1, the values of CD1 and CD0 may not be altered and do not affect the system clock frequency.

PMME CD1 CD0
OSCILLATOR CYCLES PER SYSTEM

CLOCK CYCLE
(CLOCK DIVIDE RATIO)

0 0 0 1

0 0 1 2 (default)

0 1 0 4

0 1 1 8

1 0 0 256

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-10

5.2.4 Watchdog Timer Control Register (WDCN)
The 8-bit WDCN register is part of the system register group and used to provide system control. It controls the watchdog timeout peri-
od and interrupt or reset generation on watchdog timeout. The watchdog timer is clocked by the internal 7.6MHz RC oscillator. Enabling
the watchdog does not force the internal 7.6MHz RC oscillator enable (RCE) bit to logic 1.

Register Description: Watchdog Timer Control Register
Register Name: WDCN
Register Address: Module 08h, Index 0Fh

Bit 7: Power-On Reset Flag (POR). This bit is set to 1 whenever a power-on reset occurs. It is unaffected by other forms of reset. This
bit can be checked by software following a reset to determine if a power-on reset occurred. It should always be cleared by software
following a reset so that the source of the next reset can be correctly determined by software.

Bit 6: Watchdog Interrupt Enable (EWDI). If this bit is set to 1, an interrupt request can be generated when the WDIF bit is set to 1
by any means. If this bit is cleared to 0, no interrupt will occur when WDIF is set to 1; however, it does not stop the watchdog timer or
prevent watchdog timer resets from occurring if EWT = 1. If EWT = 0 and EWDI = 0, the watchdog timer will be stopped. If the watch-
dog timer is stopped (EWT = 0 and EWDI = 0), setting the EWDI bit resets the watchdog interval and reset counter, and enables the
watchdog timer. This bit is cleared to 0 by power-on reset and is unaffected by other forms of reset.

Note: The watchdog timer is clocked by the internal 7.6MHz oscillator. Therefore, RCE must be set to 1 for the watchdog timer
operation.

Bits 5 and 4: Watchdog Timer Mode Select Bits 1 and 0 (WD1 and WD0). These bits determine the watchdog interval or the length
of time between resetting of watchdog timer and the watchdog generated interrupt in terms of RC clocks. Modifying the watchdog
interval via the WD1:WD0 bits automatically resets the watchdog timer unless the 512 RC clock reset counter is already in progress,
in which case, changing the WD1:WD0 bits does not affect the watchdog timer or reset counter.

Bit 3: Watchdog Interrupt Flag (WDIF). This flag is set to 1 when the watchdog timer interval has elapsed or can be set to 1 by user
software. When WDIF = 1, an interrupt request is generated if the watchdog interrupt has been enabled (EWDI = 1) and not otherwise
masked or prevented by an interrupt already in service (i.e., IGE = 1, IMS = 1, and INS = 0 must be true for the interrupt to occur). This
bit should be cleared by software before exiting the interrupt service routine to avoid repeated interrupts. Furthermore, if the watchdog
reset has been enabled (EWT = 1), a reset is scheduled to occur 512 RC clock cycles following setting of the WDIF bit.

Bit # 7 6 5 4 3 2 1 0

Name POR EWDI WD1 WD0 WDIF WTRF EWT RWT

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: Bits 5, 4, 3, and 0 are cleared to 0 on all forms of reset; for others, see the individual bit descriptions.

WATCHDOG TIMEOUT PERIOD

RC CLOCKS MILLISECONDS (FOR RC = 7.6MHz) WD1 WD0

UNTIL INTERRUPT UNTIL RESET UNTIL INTERRUPT UNTIL RESET

0 0 212 (default) 212 + 29 0.539 0.606

0 1 215 215 + 29 4.31 4.38

1 0 218 218 + 29 34.49 34.56

1 1 221 221 + 29 275.94 276.01

Maxim Integrated

Bit 2: Watchdog Reset Flag (WTRF). This flag is set to 1 when the watchdog resets the processor. Software can check this bit fol-
lowing a reset to determine if the watchdog was the source of the reset. Setting this bit to 1 in software will not cause a watchdog reset.
This bit is cleared by power-on reset only and is unaffected by other forms of reset. It should always be cleared by software following
a reset so that the source of the next reset can be correctly determined by software. This bit is only set to 1 when a watchdog reset
actually occurs, so if EWT is cleared to 0 when the watchdog timer elapses, this bit will not be set.

Bit 1: Enable Watchdog Timer Reset (EWT). If this bit is set to 1 when the watchdog timer elapses, the watchdog resets the proces-
sor 512 system clock cycles later unless action is taken to disable the reset event. Clearing this bit to 0 prevents a watchdog reset from
occurring but does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI = 1. If EWT = 0 and EWDI = 0,
the watchdog timer will be stopped. If the watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWT bit resets the watch-
dog interval and reset counter, and enables the watchdog timer. This bit is cleared on power-on reset and is unaffected by other forms
of reset.

Note: The watchdog timer is clocked by the internal 7.6MHz RC oscillator. Therefore, RCE should be set to 1 for the watchdog timer
operation.

Bit 0: Reset Watchdog Timer (RWT). Setting this bit to 1 resets the watchdog timer count. If watchdog interrupt and/or reset modes
are enabled, the software must set this bit to 1 before the watchdog timer elapses to prevent an interrupt or reset from occurring. This
bit always returns 0 when read.

5.2.5 Analog Interrupt Enable Register (AIE)
The AIE register contains the enable bits for various analog interrupts. With respect to the clock generation logic, it contains the enable
bit for high-frequency oscillator failure detection.

Register Description: Analog Interrupt Enable Register
Register Name: AIE
Register Address: Module 05h, Index 0Ah

Bits 15 to 7 and 3: Reserved. Read 0, write ignored.

Bit 6: External High-Frequency Oscillator Failure Interrupt Enable (HFFIE). This bit must be set to logic 1 to generate an interrupt
request when high-frequency oscillator failure is detected and the HFFINT flag in the ASR register is set to logic 1. Clearing this bit to
0 disables the interrupt capability from the HFFINT flag.

Note: To be acknowledged by the microcontroller interrupt logic, this interrupt request must also be enabled by IGE bit in the IC reg-
ister and IM5 mask in the IMR peripheral register.

Bit 5: I/O Voltage Brownout Interrupt Enable (VIOBIE). See Section 2 for more information on this bit.

Bit 4: Digital Brownout Interrupt Enable (DVBIE). See Section 2 for more information on this bit.

Bit 2: ADC Overrun Interrupt Enable (AORIE). See Section 3 for more information on this bit.

Bit 1: ADC Data Ready Interrupt Enable (ADCIE). See Section 3 for more information on this bit.

Bit 0: This bit is implemented and available to be used as a user-software-controlled bit.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — HFFIE VIOBIE DVBIE — AORIE ADCIE —

Reset 0 0 0 0 0 0 0 1

Access r rw rw rw r rw rw rw

r = read, w = write

MAXQ7665/MAXQ7666 User’s Guide

5-11 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-12

5.3 System Clock Generation
All functional modules in the MAXQ7665/MAXQ7666 are synchronized to a single system clock. This system clock can be generated
from one of three possible sources:

• Internal 7.6MHz RC oscillator

• Internal high-frequency oscillator using external crystal or resonator circuit

• External high-frequency clock signal

Table 5-2 shows the registers and bits used to control clock generation and selection. For more information, see the register descrip-
tions in Section 5.2.

Table 5-2. Clock Generation and Selection Registers and Bits

5.3.1 Internal 7.6MHz Oscillator
The MAXQ7665/MAXQ7666 provide an internal 7.6MHz RC oscillator, which is used as the default source for the system clock follow-
ing any power-on reset or exit from stop mode. This oscillator, which requires no external components, typically runs at 7.6MHz. The
exact frequency may vary part to part and over temperature and supply voltage. For more details, refer to the MAXQ7665/
MAXQ7666 data sheet.

Following a power-on reset, to start up the internal oscillator the DVDD power supply must be above the minimum power-on reset
threshold of ˜1.2V and the external RESET must be deasserted (1). When the DVDD power supply crosses the ˜1.2V power-on reset
threshold, the internal 7.6MHz RC oscillator starts running and the 16-bit power-up counter is enabled. After 65,536 counts of the inter-
nal 7.6MHz RC oscillator (8.6ms typical), the power-up counter is disabled. The internal 7.6MHz RC oscillator is enabled as the sys-
tem clock (XT = 0, RGMD =1), and the MAXQ7665/MAXQ7666 start program execution at address 8000h in the utility ROM if the DVDD
power supply is above the power-on reset rising threshold level (2.7V–2.99V). Figure 5-2 illustrates the internal RC oscillator startup
and execution flow after a power-on reset. For more details on power-on reset, see Section 2.

To select the 7.6MHz RC oscillator as the system clock source, the XT bit (CKCN.7) must be set to 0 and RCE must be set to logic 1.
Starting execution using the internal 7.6MHz RC oscillator requires a 4-cycle warmup delay under the following circumstances:

• After power-on reset

• After exiting stop mode

• After enabling the 7.6MHz RC oscillator (RCE = 1) and before switching the XT bit from a 1 to 0

REGISTER ADDRESS BIT NAME FUNCTION

[1:0] CD[1:0] Selects clock divide-by-1 (00), by-2 (01), by-4 (10), or by-8 (11) mode.

2 PMME Selects divide-by-256 mode (1) or normal clock divide mode (0).

5 RGMD Read-only. Indicates if RC oscillator (1) or external crystal/clock (0) is currently being used to
provide the system clock.

CKCN M8[0Eh]

7 XT Selects external crystal/clock (1) or internal RC (0) as the clock source.

0 HFE Selects whether the internal high-frequency oscillator (for use with external crystal or resonator) is
enabled (1) or not (0).

1 RCE Selects whether the internal RC oscillator is enabled (1) or not (0).

2 EXTHF Selects whether the external high-frequency clock (direct input) is enabled (1) or not (0).

[9:8] HFIC[1:0] MAXQ7665: Selects the input capacitance of the on-chip high-frequency oscillator.
MAXQ7666: Selects both the input and output capacitance of the on-chip high-frequency oscillator.

OSCC M5[0Ch]

[11:10] HFOC[1:0] MAXQ7665: Selects the output capacitance of the on-chip high-frequency oscillator.
MAXQ7666: Selects the crystal drive strength of the on-chip high-frequency oscillator.

ASR M5[0Bh] 11 XHFRY Indicates if high-frequency oscillator warmup is complete (1) and ready. ASR read clears the bit.

Maxim Integrated

Figure 5-2. Oscillator Startup Flow

YES

YES

POWER-ON RESET

START UP 7.6MHz
INTERNAL RC OSCILLATOR

8.6ms POWER-UP COUNTER DELAY

RESET 16-BIT
POWER-UP COUNTER

INTERNAL RC-BASED
CODE EXECUTION

INTERNAL 7.6MHz RC OSCILLATOR STARTUP FLOW

A) POWER-UP COUNTER
= 65,535?

B) DVDD > DEFAULT POR
THRESHOLD LEVEL

(2.7V–2.99V)

DVDD > ˜1.2VNO

NO

In all other cases, setting XT = 0 switches the system clock source to the internal RC immediately. The RGMD (CKCN.5) bit indicates
the current system clock source. If the 7.6MHz RC oscillator is providing the system clock, RGMD equals 1; otherwise, RGMD equals
0. When used as the system clock, the 7.6MHz RC oscillator clock is divided down according to the PMME, CD1, CD0 bit selections
(CKCN.2:CKCN.0) just the same as the external crystal/clock possibilities. The WDT alone is always clocked by the undivided 7.6MHz
RC oscillator clock.

When the system clock source is switched from the 7.6MHz RC oscillator to the high-frequency external crystal/clock by setting XT =
1, the 7.6MHz RC oscillator will still be used as the system clock source until the warmup period has completed for the high-frequen-
cy oscillator. This is reflected by the value of the RGMD bit, which remains at 1 until the warmup for the high-frequency oscillator is
complete and the clock switches over, at which point RGMD switches to 0.

Note that in order to use the 7.6MHz RC oscillator, the RCE bit in the OSCC register must be set to logic 1, which enables the 7.6MHz
RC oscillator. The 7.6MHz RC oscillator is enabled (RCE = 1, XT = 0) by default after a power-on reset.

5.3.2 External Clock (Crystal/Resonator)
An external quartz crystal or a ceramic resonator can be connected from XIN to XOUT as the device determining the frequency of
operation. The MAXQ7665/MAXQ7666 are designed to operate at a maximum frequency of 8.12MHz. For details of the high-frequen-
cy crystal oscillator specification, refer to the MAXQ7665/MAXQ7666 data sheet.

MAXQ7665/MAXQ7666 User’s Guide

5-13 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-14

The crystal oscillator/resonator is disabled upon power-up, as the default mode for the MAXQ7665/MAXQ7666 is to run from the inter-
nal 7.6MHz RC oscillator. To use the external crystal/resonator, select the input (HFIC1:HFIC0) and output capacitance (HFOC1:HFOC0)
of the internal high-frequency oscillator (to match the external crystal/resonator load capacitance requirement) in the OSCC register.
Figure 5-3 shows the possible options. The HFE bit (OSCC.0) must be set to 1 to enable the internal high-frequency oscillator.

Note: For MAXQ7666, the HFIC1:HFIC0 bits select both the input and output capacitance. The HFOC1:HFOC0 bits are used to select
the crystal drive strength as explained in the oscillator control register subsection.

To select the crystal/resonator as the system clock source, the XT bit must be set to 1. When the system clock source is switched from
the 7.6MHz RC oscillator to the high-frequency external crystal/resonator by setting XT = 1, the 7.6MHz RC oscillator will still be used as
the system clock source until the warmup period has completed for the high-frequency oscillator. It is important that the 7.6MHz RC oscil-
lator is not disabled (RCE = 0) before the system clock is switched to external crystal/resonator. The RGMD bit may be monitored by
application software to determine when this switchover has actually occurred, as code execution continues during the warmup delay.

The switchover to the high-frequency oscillator requires a warmup delay of 4096 crystal/resonator clock cycles under the following
circumstances:

• When resuming execution from stop mode with HFE = 1 and XT = 1.
• When the high-frequency oscillator has been shutdown (HFE = 0) or has not been started since the last POR or stop mode exit.

Setting the HFE bit to 1 allows the high-frequency oscillator to keep running even when the internal RC oscillator has been selected as the
system clock. Once the high-frequency oscillator has been started and allowed to warm up for the first time (following a POR, exit from
stop mode, shutdown of the oscillator), application code can switch to the high-frequency oscillator with a warmup delay of only four clock
cycles instead of 4096. The XHFRY (ASR.11) bit can be monitored by application software to determine if the high-frequency oscillator
warmup is complete (XHFRY = 1). Figure 5-4 illustrates the steps to select external crystal/resonator as the system clock source.

When the high-frequency oscillator (using external crystal/resonator) is used as the system clock source, the clock is divided down
according to the PMME, CD1, CD0 bit selections (CKCN.2:CKCN.0).

5.3.2.1 High-Frequency Oscillator Application Configuration
The MAXQ7665/MAXQ7666 high-frequency oscillator is optimized for 8MHz operation. Figure 5-5 shows an example application con-
figuration using an external crystal, two low-end capacitors, and an optional series resistor to limit current through the crystal. Pins XIN
and XOUT connect the oscillator to the external crystal. By using the internal built-in capacitor (selected by HFIC1:HFIC0 and
HFOC1:HFOC0 bits), the user can save board space and avoid the external end capacitors. The user should review the crystal spec-
ifications for appropriate values of the external components. Additionally, the user should verify the oscillator performance across the
required DVDD and temperature range.

Note: For MAXQ7666, the HFIC1:HFIC0 bits select both the input and output capacitance. The HFOC1:HFOC0 bits are used to select
the crystal drive strength as explained in the oscillator control register subsection.

Figure 5-3. High-Frequency Crystal Oscillator Configuration

11pF

STOP

AGC

11pF

7pF

6pF

XTAL

9pF

9pF

7pF

7pF

FAIL
DETECT

HFCI1

HFFINT

HFCI0

HFCO1 HFCO0

XOUT

XIN

DVDD

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-15

ENABLE HF OSCILLATOR
HFE = 1

SELECT CLOCK DIVIDE VALUE:
PMME, CD1 AND CD0 BITS

CRYSTAL/RESONATOR-BASED
CODE EXECUTION

SELECT XIN/XOUT CAPACITOR VALUES
AND DRIVE STRENGTH:

HFIC[1:0] AND HFOC[1:0]

SELECTING EXTERNAL CRYSTAL/RESONATOR AS SYSTEM CLOCK

SELECT EXTERNAL CRYSTAL/RESONATOR AS
CLOCK SOURCE XT = 1

~600μs (4096 CRYSTAL/RESONATOR CLOCK CYCLES)
WARMUP DELAY

WAIT FOR HIGH-FREQ OSCILLATOR
FLAG TO BE SET: XHFRY = 1?

NO

Figure 5-4. Selecting External Crystal/Resonator as System Clock

AGC

RF = 812kΩ

8MHz

XO
UT

XI
N

USER-SELECTABLE
(HFIC[1:0]) INPUT

CAPACITANCE

USER-SELECTABLE
(HFOC[1:0]) OUTPUT

CAPACITANCE

EXTERNAL CAPACITOR
NOT NEEDED. USE BUILT-IN

INPUT CAPACITANCE INSTEAD.

EXTERNAL CAPACITOR
NOT NEEDED. USE BUILT-IN

OUTPUT CAPACITANCE INSTEAD.

OPTIONAL SERIES RESISTOR

USER-SELECTABLE CRYSTAL DRIVE STRENGTH (MAXQ7666)

MAXQ7665/MAXQ7666

Figure 5-5. High-Frequency Oscillator Application Configuration

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-16

5.3.3 External Clock (Direct Input)
The MAXQ7665/MAXQ7666 can also obtain the system clock signal directly from an external source. In this configuration, the clock
generation circuitry is driven directly by an external clock.

To operate from an external clock, connect the clock source to the XIN pin and leave the XOUT pin floating. Figure 5-6 shows the exter-
nal clock source configuration. The clock source should be driven through a CMOS driver at the same level as DVDD (nominally +3.3V).
If the clock driver is a TTL gate, its output must be connected to DVDD through a pullup resistor to ensure a satisfactory logic level for
active clock pulses. The MAXQ7665/MAXQ7666 are designed to operate at a maximum frequency of 8MHz. For more details, refer to
the MAXQ7665/MAXQ7666 data sheet.

The external clock input is disabled upon power-up, as the default mode for the MAXQ7665/MAXQ7666 is to run from the internal
7.6MHz RC oscillator. To use the external clock input, the EXTHF bit (OSCC.2) must be set to 1. To select the external clock as the sys-
tem clock source, the XT bit (CKCN.7) must be set to 1. When the external clock input is used as the system clock source, the clock
is divided down according to the PMME, CD1, CD0 bit selections (CKCN.2:CKCN.0).

5.3.4 Internal System Clock Generation
The internal system clock is derived from the currently selected system clock source. By default, two system clock cycles are gener-
ated per oscillator clock source cycle, but the number of oscillator clock cycles per system clock can also be increased by setting the
power management mode enable (PMME) bit and the clock-divide control (CD1:CD0) bits per Table 5-3.

Table 5-3. System Clock Rate Control Settings

11pF

STOP

AGC

11pF

7pF

6pF

OSC
0–8MHz

9pF

9pF

7pF

7pF

FAIL
DETECT

HFCI1 HFCI0

HFCO1 HFCO0

XOUT

XIN

DVDD

DVDD

HFFINT

Figure 5-6. External Clock Source Configuration

PMME CD[1:0] CYCLES PER SOURCE CLOCK

0 00 1

0 01 2 (default)

0 10 4

0 11 8

1 00 256

Maxim Integrated

5.3.5 External Crystal-Fail Detection and Automatic Switchover
The MAXQ7665/MAXQ7666 have a high-frequency oscillator-fail detection circuit. An automatic clock switchover from crystal to
7.6MHz RC oscillator is forced if:

• XT = 1 (external crystal is selected as the system clock source).

• XHFRY = 1 (high-frequency oscillator warmup is complete).

• A clock failure (high-frequency source drops below 30kHz) is detected.

When the above condition has been detected, the clock circuitry will:

• Enable the internal 7.6MHz RC oscillator immediately (RCE forced to 1).

• Switch the system clock source from external to internal (XT forced to 0).

• Set the high-frequency crystal failure interrupt flag to 1 (HFFINT = 1).

The 7.6MHz RC oscillator system clock should be ready after a four-cycle delay. This switchover remains in effect until software recon-
figures the clock structure. A crystal failure interrupt is generated if the high-frequency oscillator failure interrupt is enabled (HFFIE =
1). Also, for the interrupt to be acknowledged by the microcontroller interrupt logic, the interrupt request must also be enabled by the
IGE bit in the IC register and IM5 mask in the IMR peripheral register. Figure 5-7 illustrates the external crystal-fail detection and auto-
matic clock switchover flow.

EXTERNAL CRYSTAL FAIL
DETECTION AND AUTOMATIC SWITCHOVER

YES

*NOTE: TRIGGERED WHEN THE HIGH-FREQUENCY
 OSCILLATOR DROPS BELOW 30kHz.

**NOTE: INTERRUPT IS GENERATED IF HFFIE, IGE,
 AND IM5 ARE SET TO LOGIC 1.

DONE

HIGH-FREQ OSCILLATOR
SELECTED AND STABLE

(XT = 1, XHFRY = 1)

AUTOMATIC SWITCH TO
INTERNAL RC OSCILLATOR

(RCE = 1, XT = 0)

SET HIGH-FREQ FAILURE FLAG
(HFFINT = 1)**

HF OSCILLATOR
FAIL? *

(XHFRY = 0)

NO

Figure 5-7. External Crystal-Fail Detection

MAXQ7665/MAXQ7666 User’s Guide

5-17 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-18

5.4 Watchdog Timer
The watchdog timer is a user-programmable clock counter that can serve as a time-base generator, an event timer, or a system super-
visor. As shown in Figure 5-8, the watchdog timer is driven by the internal 7.6MHz RC clock and is supplied to a series of dividers. If
the watchdog interrupt and the watchdog reset are disabled (EWDI = 0 and EWT = 0), the watchdog timer is disabled and its input
clock is gated off. Whenever the watchdog timer is disabled, the watchdog interval timer (per WD1:WD0 bits) and 512 clock reset
counter will be reset if either the interrupt or reset function is enabled. When the watchdog timer is initially enabled, there will be a 1-
clock to 3-clock cycle delay before it starts. The divider output is selectable and determines the interval between timeouts. When the
timeout is reached, the interrupt flag WDIF is set, and if enabled, an interrupt occurs. A watchdog-reset function is also provided in
addition to the watchdog interrupt. The reset and interrupt are completely discrete functions that can be acknowledged or ignored,
together or separately for various applications.

The watchdog timer reset function works as follows. After initializing the correct timeout interval (discussed below), software can
enable, if desired, the reset function by setting the enable watchdog timer reset (EWT = WDCN.1) bit. Setting the EWT bit will
reset/restart the watchdog timer if the watchdog timer is not already enabled. At any time prior to reaching its user-selected terminal
value, software can set the refresh the watchdog timer (RWT = WDCN.0). If the watchdog timer is refreshed (RWT bit written to a logic
1) before the timeout period expires, the timer will start over. Hardware will automatically clear RWT after software sets it.

If the timeout is reached without RWT being set, hardware will generate a watchdog interrupt if the interrupt source has been enabled.
If no further action is taken to prevent a watchdog reset, in the 512 RC clock cycles following the timeout, hardware will reset the
MAXQ7665/MAXQ7666 if EWT = 1. When the reset occurs, the watchdog timer reset flag (WTRF = WDCN.2) will automatically be set
to indicate the cause of the reset; however, software must clear this bit manually after recovering from the reset.

The watchdog interrupt is also available for applications that do not need a true watchdog reset but rather a very long timer. The inter-
rupt is enabled using the enable watchdog timer interrupt (EWDI = WDCN.6) bit. When the timeout occurs, the watchdog timer sets
the WDIF bit (WDCN.3), and an interrupt occurs if the interrupt global enable (IGE = IC.0) and system interrupt mask (IMS = IMR.7)
are set and the interrupt in service (INS) bit is clear. Note that WDIF is set 512 clocks before a potential watchdog reset. The watch-
dog interrupt flag must be cleared by software.

Note: The watchdog timer is clocked by the internal 7.6MHz RC oscillator. Therefore, RCE should be set to 1 for the watchdog timer
operation. The interrupt and reset functions of the watchdog timer are summarized in Table 5-4.

Figure 5-8. Watchdog Timer Block Diagram

7.6MHz
RC CLOCK

DIVIDE
BY 212

212 215 218 221

DIVIDE
BY 23

DIVIDE
BY 23

WDIF

512 RC
CLOCK
DELAY

DIVIDE
BY 23

TIMEOUT SELECTOR

RCE

WD1

TIMEOUT

WATCHDOG
INTERRUPT

WATCHDOG
RESET

WTRF

EWDI

EWT

WD0
RWT

Maxim Integrated

Table 5-4. Interrupt and Reset Functions for Watchdog

Table 5-5. Watchdog Timeout Selections

The watchdog timeout selection is made using bits WD1 (WDCN.5) and WD0 (WDCN.4). The watchdog has four timeout selections
based on the internal RC clock as shown in Table 5-5.

Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset locations. Code is first
developed without enabling the watchdog interrupt or reset functions. Once the program is complete, the watchdog interrupt function
is enabled to identify the required locations in code to set the RWT (WDCN.0) bit. Incrementally adding instructions to refresh the watch-
dog timer prior to each address location (identified by the watchdog interrupt) allows the code to eventually run without receiving a
watchdog interrupt. At this point, the watchdog timer reset can be enabled without the potential of generating unwanted resets. At the
same time the watchdog interrupt may also be disabled. Proper use of the watchdog interrupt and watchdog reset allows interrupt soft-
ware to survey the system for errant conditions.

When using the watchdog timer as a system monitor, the watchdog reset function should be used. If the interrupt function were used,
the purpose of the watchdog would be defeated. For example, assume the system is executing errant code prior to the watch dog
interrupt. The interrupt would temporarily force the system back into control by vectoring the CPU to the interrupt service routine.
Restarting the watchdog and exiting by an RETI or RET, would return the processor to the lost position prior to the interrupt. By using
the watchdog reset function; the processor is restarted from the beginning of the program, and therefore placed into a known state.

RCE EWT EWDI WDIF OPERATION

0 x x x Watchdog disabled.

1 0 0 x Watchdog disable, clock is gated off.

1 0 1 0 Watchdog interrupt is enabled and has not occurred. Watchdog reset function disabled.

1 0 1 1 Watchdog interrupt is enabled and has occurred. Watchdog reset function disabled.

1 1 0 0 Watchdog reset function is enabled. Watchdog interrupt is disabled.

1 1 0 1 Watchdog reset function is enabled. No interrupt has been generated. Watchdog reset will occur in
512 RC cycles if RWT is not set.

1 1 1 0 Watchdog reset and interrupt functions are enabled.

1 1 1 1 Watchdog reset and interrupt functions are enabled. Watchdog interrupt has occurred. Watchdog
reset will occur in 512 RC cycles if RWT is not set.

WATCHDOG TIMEOUT PERIOD

RC CLOCKS MILLISECONDS (FOR RC = 7.6MHz) WD1 WD0

UNTIL INTERRUPT UNTIL RESET UNTIL INTERRUPT UNTIL RESET

0 0 212 (default) 212 + 29 0.539 0.606

0 1 215 215 + 29 4.31 4.38

1 0 218 218 + 29 34.49 34.56

1 1 221 221 + 29 275.94 276

MAXQ7665/MAXQ7666 User’s Guide

5-19 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

5-20

5.5 Power Management Mode
There are two major sources of power dissipation in CMOS circuitry. The first is static dissipation caused by leakage current. The sec-
ond is dynamic dissipation caused by transient switching current required to charge and discharge load capacitors, as well as short-
circuit current dissipated by momentary connections between VDD and ground during gate switching.

Usually, it is the dynamic switching power dissipation that dominates the total power consumption, and this power dissipation (PD) for
a CMOS circuit can be calculated in terms of load capacitance (CL), power-supply voltage (VDD), and operating frequency (f) as

PD = CL x VDD2 x f

Capacitance and supply voltage are technology dependent and relatively fixed. However, the operating frequency determines the
clock rate, and the required clock rate may be different from application to application depending on the amount of processing power
required. If an external crystal or oscillator is being used, the operating frequency can be adjusted by changing external components.
However, it may be the case that a single application may require maximum power at sometimes and very little at others. Power man-
agement mode allows an application to reduce its clock frequency, and therefore its power consumption, under software control.

The MAXQ7665/MAXQ7666 provide the following features to assist in power management:

• Divide-by-256 (PMM) mode to reduce current consumption.

• Switchback mode to exit PMM automatically when rapid processing is required.

• Ultra-low-power stop mode.

Table 5-6 shows the system clock control register (CKCN) bits used to control power management features.

Table 5-6. System Power Management

5.5.1 Divide-by-256 Mode (PMM)
In this power management mode, all operations continue as normal but at a reduced clock rate (the selected clock source divided by
256). This power management mode affects module clock rates as follows:

• Program execution occurs at the selected clock source rate divided by 256.

• All other functional modules (CAN, ADC, timers, UART, and SPI) operate at the selected clock source rate divided by 256.

• Watchdog timer, if enabled, continues to operate using the internal, undivided 7.6MHz RC oscillator as the clock source.

The power management mode is entered by setting the PMME bit (CKCN.2) to 1 while the CD1 and CD0 (CKCN1:CKCN0) bits are
both cleared to 0. When PMM mode is exited (either by clearing the PMME bit or as a result of a switchback trigger), system opera-
tion will revert to the mode indicated by the values of the CD1 and CD0 bits, which in this case will be the standard divide-by-1 clock
mode.

Note: The CD1 and CD0 (CKCN1:CKCN0) bits must both be cleared to 0 before setting the PMME bit to 1.

REGISTER ADDRESS BIT NAME FUNCTION

1:0 CD[1:0] Selects clock divide-by-1 (00), -2 (01), -4 (10), or -8 (11) mode. When PMM mode is enabled,
selects divide-by-256 (00) mode.

2 PMME Selects PMM mode (when set to 1) or normal clock divide mode (when set to 0)

3 SWB When set to 1, enables automatic switchback from PMM (divide-by-256 mode) to normal clock
divide mode under certain conditions.

CKCN M8[0Eh]

4 STOP When set to 1, causes the processor to enter stop mode.

Maxim Integrated

5.5.2 Switchback Mode
When power management mode is active, the MAXQ7665/MAXQ7666 operate at a reduced clock rate. Although execution continues
as normal, peripherals that base their timing on the system clock such as the UART module and the SPI module may be unable to
operate normally or at a high enough speed for proper application response. Additionally, interrupt latency is greatly increased.

The switchback feature is used to allow a processor running under power management mode to switch back to normal mode quickly
under certain conditions that require rapid response. Switchback is enabled by setting the SWB bit (CKCN.3) to 1. If switchback is
enabled, the MAXQ7665/MAXQ7666 running power management mode automatically clears the PMME bit to 0 and returns to normal
undivided clock rate when any of the following conditions occur:

• An external interrupt condition occurs on a port pin and the corresponding external interrupt is enabled.

• An active-low transition occurs on the UART serial receive-input line (modes 1, 2, and 3) and data reception is enabled.

• The SBUF0 register is written to send an outgoing byte through the UART and transmission is enabled.

• The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and transmis-
sion is enabled.

• The SPI module’s SS (slave select input) signal is asserted in slave mode.

• CAN bus activity on its data input (CANRXD) while its interrupt is enabled.

• Active debug mode is entered either by break point match or issuance of the debug command from background mode.

If any of the above conditions are true (a switchback source is active) and SWB has been set to logic 1, the PMME bit cannot be writ-
ten to enter power management mode. This is to prevent the MAXQ7665/MAXQ7666 from accidentally reducing the clock rate during
the service of an external interrupt or serial port activity.

5.5.3 Stop Mode
Stop mode disables all circuits within the MAXQ7665/MAXQ7666 including the watchdog timer and its clock source (the internal
7.6MHz RC oscillator). All clock sources, timers, and peripherals are halted, and no code execution occurs. The system clock is
stopped, and all processing activity is halted. Once in stop mode, the MAXQ7665/MAXQ7666 are in a mostly static state, with power
consumption determined mainly by leakage currents.

Stop mode is invoked by setting the STOP bit (CKCN.4) to 1. The MAXQ7665/MAXQ7666 enter stop mode immediately once the
instruction that sets the STOP bit is executed. Entering stop mode does not affect the settings of the clock control bits; this allows the
processor to return to its original operating frequency following stop mode removal.

The MAXQ7665/MAXQ7666 exit stop mode if any of the following conditions occur:

• An external reset signal is applied to the RESET pin.

• An external interrupt condition occurs on one of the port pins and the corresponding external interrupt is enabled.

• A CAN bus activity on its data input (CANRXD) while its interrupt is enabled.

• A brownout interrupt condition on DVDD or DVDDIO (if brownout detection and corresponding interrupt is enabled).

• A power-on/brownout reset (if brownout reset detection is enabled (VDPE = 1)).

Note that exiting stop mode via external reset or power-on/brownout reset causes the processor to undergo a normal reset cycle (see
Section 2), as opposed to resuming execution at the point at which it entered stop mode. Exiting stop mode by means of an external
interrupt or CAN bus activity interrupt causes the processor to resume execution at the instruction following the one which set the STOP
bit (and then immediately vector to the interrupt service routine).

When stop mode is exited, the MAXQ7665/MAXQ7666 execution resumes as follows:

• If the internal 7.6MHz RC oscillator is selected as the system clock source (RCE = 1 and XT = 0), execution will resume using
the 7.6MHz RC oscillator as the system clock source following a delay of four 7.6MHz RC oscillator cycles.

• If the high-frequency oscillator is selected as the system clock source (HFE = 1 and XT = 1), execution will resume using the
internal 7.6MHz RC oscillator as the system clock source following a delay of four 7.6MHz RC oscillator cycles. After a warmup
delay of 4096 high-frequency oscillator cycles, the system clock source will switch over to the high-frequency oscillator
automatically.

MAXQ7665/MAXQ7666 User’s Guide

5-21 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-1

This section contains the following information:

6.1 Architecture .6-3

6.1.1 UART Pins .6-5

6.2 UART Registers .6-5

6.2.1 Serial Port 0 Control Register (SCON0) .6-5

6.2.2 Serial Port 0 Mode Register (SMD0) .6-7

6.2.3 Phase Register 0 Register (PR0) .6-8

6.2.4 Serial Port 0 Data Buffer Register (SBUF0) .6-8

6.3 Modes of Operation .6-9

6.3.1 UART Mode 0 .6-9

6.3.2 UART Mode 1 .6-9

6.3.3 UART Mode 2 .6-12

6.3.4 UART Mode 3 .6-12

6.4 Baud-Rate Generation .6-15

6.4.1 Mode 0 Baud Rate .6-15

6.4.2 Mode 2 Baud Rate .6-15

6.4.3 Mode 1 or 3 Baud Rate .6-15

6.4.4 Baud-Clock Generator .6-16

6.5 Framing Error Detection .6-17

6.6 Serial UART Example: Asynchronous 10-Bit Output at 115,200 Baud 6-17

SECTION 6: SERIAL I/O MODULE

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-2

Figure 6-1. UART Synchronous Mode (Mode 0) . 6-4

Figure 6-2. UART Asynchronous Mode (Mode 1) . 6-4

Figure 6-3. UART Mode 0. 6-10

Figure 6-4. UART Mode 1. 6-11

Figure 6-5. UART Mode 2. 6-13

Figure 6-6. UART Mode 3. 6-14

Figure 6-7. UART Baud-Clock Generator. 6-16

LIST OF FIGURES

Table 6-1. UART Operation Modes .6-3

Table 6-2. MAXQ7665/MAXQ7666 UART Pins .6-5

Table 6-3. UART Baud-Clock Summary .6-15

Table 6-4. Example Baud-Clock Generator Settings (SMOD = 1) .6-16

LIST OF TABLES

Maxim Integrated

SECTION 6: SERIAL I/O MODULE
The MAXQ7665/MAXQ7666 serial I/O module provides access to a universal asynchronous receiver/transmitter (UART) for serial com-
munication with framing error detection. The UART is a full-duplex communication channel capable of supporting asynchronous and
synchronous data transfers. The UART allows the MAXQ7665/MAXQ7666 to conveniently communicate with other RS-232 interface-
enabled devices and can support LIN-bus implementation. Except where explicitly noted, the MAXQ7665 and MAXQ7666 features are
identical.

Features of the MAXQ7665/MAXQ7666 UART include:

• Asynchronous and synchronous data transfer

• Separate transmit and receive interrupts

• Framing error detection

• Baud rate based on system clock or baud-rate generator output

6.1 Architecture
The MAXQ7665/MAXQ7666 UART supports four basic modes of operation and is capable of synchronous and asynchronous com-
munication, with different protocols and baud rates. In the synchronous mode, the microcontroller supplies the clock, and communi-
cation takes place in a half-duplex manner, while the asynchronous mode supports full-duplex operation. Table 6-1 shows the UART
operating modes.

Table 6-1. UART Operation Modes

See Figure 6-1 for a simplified functional block diagram of the MAXQ7665/MAXQ7666 UART in synchronous mode. Serial I/O occurs
on the receive pin, which behaves as a bidirectional data line, and the shift clock is provided on the TXD pin. The MAXQ7665/
MAXQ7666 UART in asynchronous mode is shown in Figure 6-2. In asynchronous mode, the UART is a full-duplex communication
channel with a programmable baud-rate generator.

The MAXQ7665/MAXQ7666 UART has a control register (SCON0) and a transmit/receive register (SBUF0). The SBUF0 location pro-
vides access to both transmit and receive registers, where a read is directed to the receive buffer and a write is directed to the trans-
mit buffer. There is a holding buffer that allows the UART to receive an incoming word before software has read the previous one. The
UART baud clock is generated by the baud-rate generator or based directly on the system clock.

MAXQ7665/MAXQ7666 User’s Guide

6-3

UART MODE FUNCTION BAUD CLOCK* DATA BITS START/STOP 9TH BIT FUNCTION MAX BAUD RATE AT 8MHz

0 Synchronous 4 or 12 Clocks 8 None None 2Mbps

1 Asynchronous Baud Generation 8 1 Start, 1 Stop None 250kbps

2 Asynchronous 32 or 64 Clocks 9 1 Start, 1 Stop 0, 1, Parity 250kbps

3 Asynchronous Baud Generation 9 1 Start, 1 Stop 0, 1, Parity 250kbps

*Use of any system clock-divide modes or power management mode affects the baud clock.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-4

Figure 6-1. UART Synchronous Mode (Mode 0)

DIVIDE
BY 12

D7 D6 D5 D4 D3 D2 D1 D0LO
AD

CL
OC

K

OUTPUT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0CLOCK

RECEIVE SHIFT REGISTER

SI

BAUD
CLOCK

LOAD
SERIAL
BUFFER

RECEIVE
BUFFER

DATA
CLOCK

SERIAL I/O
CONTROL

IN
TS

SHIFT
READ

SERIAL

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 4

LDSBUF
RDSBUF

0 1

SBUF0

UTX
PIN

SYSTEM
CLOCK

URX
PIN

SERIAL
INTERRUPT

DATA BUS

Figure 6-2. UART Asynchronous Mode (Mode 1)

DIVIDE
BY 4

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER

SI

RESET

BAUD
CLOCK

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF0

SMOD

URX
PIN

SYSTEM
CLOCK

DIVIDE
BY 16

BIT
DETECTION

UTX
PIN

RB8 =
SCON0.2

BAUD CLOCK
GENERATOR

ST
AR

T

ST
OP

ST
AR

T

ST
AR

T

SERIAL
INTERRUPT

DATA BUS

Maxim Integrated

6.1.1 UART Pins
The MAXQ7665/MAXQ7666 UART supports dedicated transmit and receive pins as described in Table 6-2.

Table 6-2. MAXQ7665/MAXQ7666 UART Pins

6.2 UART Registers
The MAXQ7665/MAXQ7666 UART peripheral registers are described here.

6.2.1 Serial Port 0 Control Register (SCON0)
Register Description: Serial Port 0 Control Register
Register Name: SCON0
Register Address: Module 00h, Index 1Dh

Bits 15 to 8: Reserved.

Bit 7: Serial Port Mode Bit 0/Framing Error Flag (SM0/FE). When FEDE (SMD0.0) is set to 1, this bit is the framing error flag that is
set upon detection of an invalid stop bit. It must be cleared by software. Modification of this bit when FEDE is set has no effect on the
serial mode. This bit functions as the serial port mode bit 0 when FEDE is 0. SM0 is used in conjunction with the SM2 and SM1 bits to
define the serial mode as shown in the Serial Mode Definition table.

MAXQ7665/MAXQ7666 User’s Guide

6-5

PIN NUMBERUART
EXTERNAL

SIGNAL 48-PIN 56-PIN
FUNCTION

UTX 22 25 UART Transmitter Output. This signal is the transmit output from the UART. In
synchronous mode, the shift clock is output on this pin.

URX 23 26 UART Receiver Input: This signal is the receive input for the UART. In
synchronous mode, this pin behaves as a bidirectional data line.

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name SM0/FE SM1 SM2 REN TB8 RB8 TI RI

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-6

Serial Mode Definition

Bit 6: Serial Port Mode Bit 1 (SM1). See the Serial Mode Definition table.

Bit 5: Serial Port Mode Bit 2 (SM2). Setting this bit in mode 1 ignores received data if an invalid stop bit is detected. Setting this bit
in mode 2 or 3 enables multiprocessor communications, and prevents the RI bit from being set and the interrupt from being asserted
if the 9th bit received is 0. See the Serial Mode Definition table. This bit also used to support mode 0 for clock selection.

SM2 = 0: System clock is divided by 12.
SM2 = 1: System clock is divided by 4.

Bit 4: Receive Enable (REN)
REN = 0: Serial port 0 receiver disabled.
REN = 1: Serial port 0 receiver enabled for modes 1, 2 and 3. Initiate synchronous reception for mode 0.

Bit 3: 9th Transmission Bit State (TB8). This bit identifies the state of the 9th transmission bit in serial port modes 2 and 3.

Bit 2: 9th Received Bit State (RB8). This bit identifies the state of the 9th bit of received data in serial port modes 2 and 3. When SM2
is 0, it is the state of the stop bit in mode 1. This bit has no meaning in mode 0.

Bit 1: Transmit Interrupt Flag (TI). This bit indicates that the data in the serial port data buffer has been completely shifted out. It is
set at the end of the last data bit for all modes of operation and must be cleared by software once set.

Bit 0: Receive Interrupt Flag (RI). This bit indicates that a data byte has been received in the serial port buffer. The bit is set at the
end of the 8th bit for mode 0, after the last sample of the incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the
last sample of RB8 for modes 2 and 3. This bit must be cleared by software once set.

UART MODE SM2 SM1 SM0 FUNCTION LENGTH (BITS) PERIOD

0 0 0 0 Synchronous 8 12 System Clock

0 1 0 0 Synchronous 8 4 System Clock

1 X 1 0 Asynchronous 10 64/16 Baud Clock
(SMOD = 0/1)

2 0 0 1 Asynchronous 11 64/32 System Clock
(SMOD = 0/1)

2 1 0 1 Asynchronous (MP) 11 64/32 System Clock
(SMOD = 0/1)

3 0 1 1 Asynchronous 11 64/16 Baud Clock
(SMOD = 0/1)

3 1 1 1 Asynchronous (MP) 11 64/16 Baud Clock
(SMOD = 0/1)

Maxim Integrated

6.2.2 Serial Port 0 Mode Register (SMD0)
Register Description: Serial Port 0 Mode Register
Register Name: SMD0
Register Address: Module 00h, Index 1Eh

Bits 15 to 3: Reserved.

Bit 2: Enable Serial Port Interrupt (ESI). Setting this bit to 1 enables interrupt requests generated by the RI or TI flags in SCON0.
Clearing this bit to 0 disables the serial port interrupt. Note: For interrupt requests to happen, global interrupt mask bits IM0 (in the IMR
register) and IGE (in the IC peripheral register) must also be enabled.

Bit 1: Serial Port Baud Rate Select (SMOD). The SMOD bit selects the final baud rate for the asynchronous mode:

SMOD = 1: 16 times the baud clock for modes 1 and 3 (32 times the system clock for mode 2).
SMOD = 0: 64 times the baud clock for modes 1 and 3 (64 times the system clock for mode 2).

Bit 0: Framing Error Detection Enable (FEDE). This bit selects the function of the SM0/FE (SCON0.7) bit. Note: The information for
bits SM0 and FE are actually stored in different registers. Changing FEDE only modifies which register is accessed, not the contents
of either.

FEDE = 0: SM0/FE bit functions as SM0 for serial port mode selection.
FEDE = 1: SM0/FE is converted to the framing error (FE) flag.

MAXQ7665/MAXQ7666 User’s Guide

6-7

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — — — — — ESI SMOD FEDE

Reset 0 0 0 0 0 0 0 0

Access r r r r r rw rw rw

Maxim Integrated

6.2.3 Phase Register 0 Register (PR0)
Register Description: Phase Register 0
Register Name: PR0
Register Address: Module 00h, Index 1Fh

Bits 15 to 0: Phase Register 15 to 0 (PR0.15 to PR0.0). This register is used to load and read the 16-bit value in the phase register
that determines the baud rate of the serial port 0.

6.2.4 Serial Port 0 Data Buffer Register (SBUF0)
Register Description: Serial Port 0 Data Buffer Register
Register Name: SBUF0
Register Address: Module 00h, Index 07h

Bits 15 to 8: Reserved.

Bits 7 to 0: Serial Port 0 Data Buffer Bits 7 to 0 (SBUF0.7 to SBUF0.0). Data for serial port 0 is read from or written to this location.
The serial transmit and receive buffers are separate but both are addressed at this location.

MAXQ7665/MAXQ7666 User’s Guide

6-8

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name PR0.15 PR0.14 PR0.13 PR0.12 PR0.11 PR0.10 PR0.9 PR0.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name PR0.7 PR0.6 PR0.5 PR0.4 PR0.3 PR0.2 PR0.1 PR0.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —
Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name SBUF0.7 SBUF0.6 SBUF0.5 SBUF0.4 SBUF0.3 SBUF0.2 SBUF0.1 SBUF0.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

6.3 Modes of Operation
A detailed description of the MAXQ7665/MAXQ7666 UART modes is given in this section.

6.3.1 UART Mode 0
This mode is used to communicate in synchronous, half-duplex format with devices that accept the MAXQ7665/MAXQ7666 micro-
controller as a master. Figure 6-3 shows a functional block diagram and basic timing of this mode. As can be seen, there is one bidi-
rectional data line (URX) and one shift clock line (UTX) used for communication. Mode 0 requires that the MAXQ7665/MAXQ7666 be
the master since it generates the serial shift clock for data transfers that occur in either direction.

The URX signal is used for both transmission and reception. Data bits enter and exit least significant bit first. The UTX pin provides the
shift clock. The baud rate is equal to the shift clock frequency. When not using power management mode, the baud rate in mode 0 is
equivalent to the system clock divided by either 12 or 4, as selected by the SM2 bit in the SCON0 register.

The UART begins transmitting when a write is performed to SBUF0. The internal shift register then begins to shift data out. The clock
is activated and transfers data until the 8-bit value is complete. Data is presented one clock prior to the falling edge of the shift clock
(UTX) so that an external device can latch the data using the rising edge of the shift clock.

The UART begins to receive data when the REN bit in the SCON0 register (SCON0.4) is set to logic 1 and the RI bit (SCON0.0) is set
to logic 0. This condition indicates that there is data to be shifted in on the URX pin. The shift clock (UTX) is activated and data is
latched on the rising edge. The external device should, therefore, present data on the falling edge. This process continues until all 8
bits have been received. The RI bit is automatically set to logic 1, one clock cycle following the last rising edge of the shift clock on
UTX. This causes reception to stop until SBUF0 has been read and the RI bit cleared. When RI is cleared, another byte can be shift-
ed in, if available.

6.3.2 UART Mode 1
This mode provides asynchronous, full-duplex communication. A total of 10 bits is transmitted, consisting of a start bit (logic 0), 8 data
bits, and 1 stop bit (logic 1), as illustrated in Figure 6-4. The data is transferred least significant bit first. The baud rate is programma-
ble through the baud-clock generator and is discussed in Section 6.4.

Following a write to SBUF0, the UART begins transmission five clock cycles after the first baud clock from the baud-clock generator.
Transmission takes place on the UTX pin. It begins with the start bit being placed on the pin. Data is then shifted out onto the pin, least
significant bit first. The stop bit follows. The TI bit is set by hardware after the stop bit is placed on the pin. All bits are shifted out at
the rate determined by the baud-clock generator.

Once the baud-clock generator is active, reception can begin at any time. The REN bit (SCON0.4) must be set to logic 1 to allow recep-
tion. The detection of a falling edge on the URX pin is interpreted as the beginning of a start bit, and will begin the reception process.
Data is shifted in at the selected baud rate. At the middle of the stop bit time, certain conditions must be met to load SBUF0 with the
received data in the receive shift register:

RI must = 0, and either

if SM2 = 0, the state of the stop bit does not matter

or

if SM2 is 1, the state of the stop bit must be 1

If these conditions are true, SBUF0 will be loaded with the received byte, the RB8 bit (SCON0.2) is loaded with the stop bit, and the RI
bit (SCON0.0) is set. If these conditions are false, then the received data is lost (SBUF0 and RB8 not loaded) and RI is not set.
Regardless of the receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition on
the URX pin.

Each data bit received is sampled on the 7th, 8th, and 9th clock used by the divide-by-16 counter. Using majority voting, two equal
samples out of the three determine the logic level for each received bit. If the start bit was determined to be invalid (= 1), then the
receive logic goes back to looking for a 1-to-0 transition on the URX pin in order to start the reception of data.

MAXQ7665/MAXQ7666 User’s Guide

6-9 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-10

Figure 6-3. UART Mode 0

DIVIDE
BY 12

D7 D6 D5 D4 D3 D2 D1 D0LO
AD

CL
OC

K

OUTPUT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0CLOCK

RECEIVE SHIFT REGISTER

SI

BAUD
CLOCK

LOAD
SERIAL
BUFFER

RECEIVE
BUFFER

DATA
CLOCK

SERIAL I/O
CONTROL

IN
TS

SHIFT
READ

SERIAL

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 4

LDSBUF
RDSBUF

0 1

LDSBUF

SHIFT

RXD

(DATA OUT)

TXD

(DATA CLOCK)

TI

WRITE TO SCON0 (CLEAR RI)

WRITE TO SBSUF0

TRANSMIT TIMING

RECEIVE TIMING

SBUF0

UTX
PIN

SYSTEM
CLOCK

RDSBUF

SHIFT

RXD
(DATA IN)

TXD
(DATA CLOCK)

RI

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

URX
PIN

SERIAL
INTERRUPT

DATA BUS

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-11

Figure 6-4. UART Mode 1

DIVIDE
BY 4

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER

SI

RESET

BAUD
CLOCK

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF0

SMOD

URX
PIN

SYSTEM
CLOCK

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

DIVIDE
BY 16

BIT
DETECTION

UTX
PIN

RB8 =
SCON0.2

BAUD CLOCK
GENERATOR

ST
AR

T

ST
OP

ST
AR

T

ST
AR

T

SERIAL
INTERRUPT

DATA BUS

RECEIVE TIMING

BIT DETECTOR
SAMPLING

SHIFT

RI

RXD
STOPSTART

TRANSMIT TIMING

LDSBUF

SHIFT

TI

TXD
STOPSTART

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-12

6.3.3 UART Mode 2
This mode uses a total of 11 bits in asynchronous, full-duplex communication as illustrated in Figure 6-5. The 11 bits consist of one
start bit (logic 0), 8 data bits, a programmable 9th bit, and one stop bit (logic 1). Like mode 1, the transmissions occur on the UTX sig-
nal pin and receptions on URX.

For transmission purposes, the 9th bit can be stuffed as logic 0 or 1. A common use is to put the parity bit in this location. The 9th bit
is transferred from the TB8 bit position in the SCON0 register following a write to SBUF0 to initiate a transmission. The UART transmis-
sion begins five clock cycles after the first rollover of the divide-by-16 counter following a software write to SBUF0. It begins with the
start bit being placed on the UTX pin. The data is then shifted out onto the pin, least significant bit first, followed by the 9th bit, and
finally the stop bit. The TI bit is set when the stop bit is placed on the pin.

Once the baud-rate generator is active and the REN bit has been set to logic 1, reception can begin at any time. Reception begins
when a falling edge is detected as part of the incoming start bit on the URX pin. The URX pin is then sampled according to the baud
rate speed. The 9th bit is placed in the RB8 bit location of the SCON0 register. At the middle of the 9th bit time, certain conditions must
be met to load SBUF0 with the received data:

RI must = 0, and either

if SM2 = 0, the state of the 9th bit does not matter

or

if SM2 is 1, the state of the 9th bit must be 1

If these conditions are true, SBUF0 will be loaded with the received byte, the RB8 bit is loaded with the 9th bit, and the RI bit is set. If
these conditions are false, then the received data is lost (SBUF0 and RB8 not loaded) and RI is not set. Regardless of the receive word
status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition on the URX pin.

Data is sampled in a similar fashion to mode 1 with the majority voting on three consecutive samples. Mode 2 uses the sample divide-
by-16 counter with either the system clock divided by 2 or 4, thus resulting in a baud clock of either system clock/32 or system clock/64.

6.3.4 UART Mode 3
This mode has the same operation as mode 2, except for the baud-rate source. As shown in Figure 6-6, mode 3 generates the baud rates
through the baud-clock generator. The bit shifting and protocol are the same. The baud-clock generator is discussed in Section 6.4.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-13

Figure 6-5. UART Mode 2

DIVIDE
BY 2

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER

SI

RESET

SHIFT
CLOCK

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF0

SMOD

URX
PIN

SYSTEM
CLOCK/2

DIVIDE
BY 16

BIT
DETECTION

UTX
PIN

RB8 =
SCON0.2

TB8 =
SCON0.3

D8 ST
AR

T

ST
OP

D8

ST
AR

T

ST
OP

SERIAL
INTERRUPT

DATA BUS

D0START

START

D1 D2 D3 D4 D5 D6 D7 RB8 STOP

D0 D1 D2 D3 D4 D5 D6 D7 TB8 STOP

RECEIVE TIMING

SHIFT

RXD

BIT DETECTOR
SAMPLING

TRANSMIT TIMING

LDSBUF

SHIFT

TI

TXD

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-14

Figure 6-6. UART Mode 3

D0 D1 D2 D3 D4 D5 D6 D7 RB8 STOP

D0 D1 D2 D3 D4 D5 D6 D7 TB8 STOP

RECEIVE TIMING

TRANSMIT TIMING

BAUD
CLOCK

DIVIDE
BY 4

D7 D6 D5 D4 D3 D2 D1 D0

01

LO
AD

CL
OC

K

TRANSMIT SHIFT REGISTER

S0 LATCH

RECEIVE DATA BUFFER WR

SBUF0

RD

D7 D6 D5 D4 D3 D2 D1 D0

CL
OC

K

RECEIVE SHIFT REGISTER

SI

RESET

LOAD
SERIAL
BUFFER

LOAD

SERIAL I/O
CONTROL

IN
TS

SHIFT

READ
SERIAL

BUFFER

TI
FLAG =

SCON0.1

RI
FLAG =

SCON0.0

DIVIDE
BY 16

LDSBUF
RDSBUF

0 1

SBUF0

SMOD

URX
PIN

SYSTEM
CLOCK

DIVIDE
BY 16

BIT
DETECTION

UTX
PIN

BAUD CLOCK
GENERATOR

ST
AR

T

ST
OP

ST
AR

T

SERIAL
INTERRUPT

DATA BUS

TB8 =
SCON0.3

D8

RB8 =
SCON0.2

D8

ST
OP

LDSBUF

SHIFT

TI

TXD

SHIFT

RI

RXD

BIT DETECTOR
SAMPLING

START

START

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-15

6.4 Baud-Rate Generation
Each mode of operation has a baud-rate generation technique associated with it. The baud-rate generation is affected by certain user
options such as the power management mode enable (PMME) bit, serial mode 2 (SM2) bit, and baud-rate doubler (SMOD) bit. Table
6-3 summarizes the effects of the various user options on the UART baud clock.

Table 6-3. UART Baud-Clock Summary

*The baud frequency is determined by the baud-clock generator.

6.4.1 Mode 0 Baud Rate
Baud rates for mode 0 are driven directly from the system clock divided by either 12 or 4, with the default case being divide-by-12.
The user can select the shift clock frequency using the SM2 bit in the SCON0 register. When SM2 is set to logic 0, the baud rate is
fixed at divide-by-12 of the system clock. When SM2 is set to logic 1, the baud rate is divide-by-4 of the system clock.

Mode 0 Baud Rate = System Clock Frequency x (3SM2 / 12)

6.4.2 Mode 2 Baud Rate
In this asynchronous mode, baud rates are also generated from the system clock source. The user can effectively double the UART
baud-clock frequency by setting the SMOD bit to logic 1. The SMOD bit is set to logic 0 on all resets, thus making divide-by-64 the
default setting. The baud rate is given by the following formula:

Mode 2 Baud Rate = System Clock Frequency x (2SMOD / 64)

6.4.3 Mode 1 or 3 Baud Rate
These asynchronous modes are commonly used for communication with PCs, modems, and other similar interfaces. The baud rates
are programmable using the baud-rate generator in the UART module. The baud-clock generator is basically a phase accumulator that
generates a baud clock as the result of phase overflow into the most significant bit of the phase shifter. This baud-clock generator is
driven by the system clock or system clock divided by 4 (depending upon the state of the SMOD bit). The baud-clock generator out-
put is always divided by 16 to generate the exact baud rate.

MODE 0 MODE 2 MODES 1, 3*
SYSTEM CLOCK MODE

SM2 = 0 SM2 = 1 SMOD = 0 SMOD = 1 SMOD = 0 SMOD = 1

Divide by 1 CLK/12 CLK/4 CLK/64 CLK/32 BAUD/64 BAUD/16

Divide by 2 (default) CLK/24 CLK/8 CLK/128 CLK/64 BAUD/64 BAUD/16

Divide by 4 CLK/48 CLK/16 CLK/256 CLK/128 BAUD/64 BAUD/16

Divide by 8 CLK/96 CLK/32 CLK/512 CLK/256 BAUD/64 BAUD/16

Power Management Mode
(Divide by 256) CLK/3072 CLK/1024 CLK/16384 CLK/8192 BAUD/64 BAUD/16

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-16

6.4.4 Baud-Clock Generator
The baud-clock generator is basically a phase accumulator that produces a baud clock as the result of phase overflow from the most
significant bit of the phase shift circuitry. As illustrated in Figure 6-7, a user-programmable 16-bit phase register (PR0) is used to select
a suitable phase value for its baud clock. The phase value dictates the phase period of the accumulation process. The phase value
(from PR0) is added to the current phase accumulator value on each system clock (SMOD = 1) or every 4th system clock (SMOD =
0). The baud clock is the result of the addition overflow out of the most significant bit of the phase accumulator (bit 16). The baud-clock
generator output is always divided by 16 to produce the exact baud rate.

The following two formulas can be used to calculate the output of the baud-clock generator and the resultant mode 1, 3 baud rates.
Additionally, Table 6-4 gives example phase register (PR0) settings needed to produce some more common baud rates at certain sys-
tem clock frequencies (assuming SMOD = 1).

Baud-Clock Generator Output (BAUD) = System Clock Frequency x PR0 / 217

Baud Rate for Modes 1 and 3 = BAUD x 2(SMOD x 2) / 26

Table 6-4. Example Baud-Clock Generator Settings (SMOD = 1)

Figure 6-7. UART Baud-Clock Generator

0

15 0

PR0

16

ADDITION

BAUD CLOCK OUTPUT =
CARRY OUT FROM

PHASE ACCUMULATOR [16]

0

PHASE ACCUMULATOR

SYSTEM CLOCK
FREQUENCY (MHz) BAUD RATE PR0 SETTINGS

115,200 75F7h

57,600 3AFBh

19,200 13A9h

9600 09D5h

8

2400 0275h

115,200 FFFFh

57,600 8000h

19,200 2AABh

9600 1555h

3.6864

2400 0555h

SYSTEM CLOCK
FREQUENCY (MHz) BAUD RATE PR0 SETTINGS

115,200 83D2h

19,200 2BF1h

9600 15F8h
3.579545

2400 057Eh

57,600 C000h

19,200 4000h

9600 2000h
2.4576

2400 0800h

19,200 9D49h

9600 4EA5h1

2400 13A9h

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

6-17

6.5 Framing Error Detection
A framing error occurs when a valid stop bit is not detected. This results in the possible improper reception of the serial word. The
UART can detect a framing error and notify the software. Typical causes of framing errors are noise and contention. The framing error
condition is reported in the SCON0 register for the UART.

The framing error bit, FE, is located in SCON0.7. Note that this bit normally serves as SM0 and is described as SM0/FE0 in the regis-
ter description. Framing error information is made accessible by the FEDE (framing error detection enable) bit located at SMD0.0.
When FEDE is set to logic 1, the framing error information is shown in SM0/FE (SCON0.7). When FEDE is set to logic 0, the SM0 func-
tion is accessible. The information for bits SM0 and FE is actually stored in different registers. Changing FEDE only modifies which reg-
ister is accessed, not the contents of either.

The FE bit is set to 1 when a framing error occurs. It must be cleared by software. Note that the FEDE state must be 1 while reading
for writing the FE bit. Also note that receiving a properly framed serial word does not clear the FE bit. This must be done in software.

6.6 Serial UART Example: Asynchronous 10-Bit Output at 115,200 Baud

move SCON0.6, #1 ; Set to mode 1 (10-bit asynchronous)
move SCON0.4, #1 ; Enable receiver
move SMD0.1, #1 ; Baud rate = 16 x baud clock
move PR0, #75F7h ; PR0 = 2^21 * 115200 / 8MHz (crystal)

move SCON0.0, #0 ; Clear received character flag
move SCON0.1, #0 ; Clear transmit character flag

Loop1:
move Acc, #'0' ; Start with '0' character
move LC[0], #10 ; Transmit from '0' - '9'

Loop2:
move SBUF0, Acc ; Send character

Transmit:
move C, SCON0.1 ; check transmit flag
jump NC, Transmit ; wait for transmit to complete
move SCON0.1, #0 ; clear transmit flag
add #1 ; increment character by 1
djnz LC[0], Loop2
jump Loop1

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-1

SECTION 7: TYPE 2 TIMER/COUNTER MODULE

This section contains the following information:

7.1 Architecture .7-3

7.1.1 Type 2 Timer/Counter I/O Pins .7-6

7.2 Type 2 Timer/Counter Peripheral Registers .7-6

7.2.1 Type 2 Status/Control Registers .7-7

7.2.1.1 Type 2 Timer/Counter 2 Configuration Register (T2CFGx) 7-7

7.2.1.2 Type 2 Timer/Counter 2 Control Register A (T2CNAx) 7-8

7.2.1.3 Type 2 Timer/Counter 2 Control Register B (T2CNBx) 7-10

7.2.2 Type 2 Timer Value Registers .7-11

7.2.2.1 Type 2 Timer/Counter Value Register (T2Vx) .7-11

7.2.2.2 Type 2 Timer/Counter Value High Register (T2Hx) .7-12

7.2.3 Type 2 Reload Registers .7-13

7.2.3.1 Type 2 Timer/Counter Reload Register (T2Rx) .7-13

7.2.3.2 Type 2 Timer/Counter Reload High Register (T2RHx) .7-14

7.2.4 Type 2 Capture/Compare Registers .7-15

7.2.4.1 Type 2 Timer/Counter Capture/Compare Register (T2Cx) 7-15

7.2.4.2 Type 2 Timer/Counter Capture/Compare High Register (T2CHx) 7-16

7.3 Type 2 Timer/Counter Operation Modes .7-17

7.3.1 16-Bit Timer: Auto-Reload/Compare .7-19

7.3.2 16-Bit Timer: Capture Mode .7-20

7.3.3 16-Bit Counter .7-20

7.3.4 Dual 8-Bit Timers .7-21

7.3.5 8-Bit Timer/8-Bit Capture Mode .7-21

7.3.6 8-Bit Timer/8-Bit Counter .7-21

7.3.7 Type 2 Timer Input Clock Selection .7-21

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-2

7.4 Type 2 Timer/Counter Capture Application Examples .7-22

7.4.1 Measure Low-Pulse Duration .7-22

7.4.2 Measure High-Pulse Duration Repeatedly .7-23

7.4.3 Measure Period .7-24

7.4.4 Measure Duty Cycle Repeatedly .7-25

7.4.5 Overflow/Interrupt on Cumulative Time .7-26

7.5 Type 2 Timer/Counter Compare Application Example .7-27

7.5.1 A Simple Waveform Output .7-27

Figure 7-1. Type 2 Timer/Counter in 16-Bit Mode .7-4

Figure 7-2. Type 2 Timer/Counter in 8-Bit Mode .7-5

Figure 7-3. Type 2 Timer Mode Selection .7-18

Figure 7-4. Output Enable and Polarity Control .7-18

Figure 7-5. Type 2 Timer Clock .7-21

Figure 7-6. Type 2 Timer Application Example—Measure Low Pulse Width7-22

Figure 7-7. Type 2 Timer Application Example—Measure High Pulse Width 7-23

Figure 7-8. Type 2 Timer Application Example—Measure Period .7-24

Figure 7-9. Type 2 Timer Application Example—Measure Duty Cycle .7-25

Figure 7-10. Type 2 Timer Application Example—Overflow/Interrupt on Cumulative Time 7-26

Figure 7-11. Type 2 Timer Compare Application Example—A Simple Waveform Output7-27

LIST OF FIGURES

Table 7-1. Type 2 Timer/Counter Input and Output Pins .7-6

Table 7-2. Type 2 Timer/Counter Peripheral Registers .7-6

Table 7-3. Type 2 Timer/Counter Functions and Control .7-17

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-3

SECTION 7: TYPE 2 TIMER/COUNTER MODULE
The MAXQ7665/MAXQ7666 microcontrollers have three Type 2 timer/counter modules. The Type 2 timer/counter is an auto-reload 16-
bit timer/counter with the following functions:

• 8-bit/16-bit timer/counter

• Up/down auto-reload

• Counter function of external pulse

• Capture

• Compare

The three Type 2 timer/counter modules supported in MAXQ7665/MAXQ7666 are referred to as timer 0, timer 1, and timer 2 in this doc-
ument. To simplify the discussion, the generic notation x is appended to register and pin names to denote the MAXQ7665/MAXQ7666
timer/counter module they belong to (x = 0, 1, and 2). Except where explicitly noted, the MAXQ7665 and MAXQ7666 support identi-
cal features.

7.1 Architecture
The Type 2 timer/counter module is operable as a single 16-bit timer/counter or as a dual 8-bit timer/counter. In 16-bit mode, the timer
is composed of three registers: T2Vx, T2Rx, and T2Cx. The T2Vx register is a 16-bit register that holds the current timer value. The
reload value for the timer is held in the 16-bit T2Rx register. The T2Cx register is a 16-bit register that holds the compare value when
operating in compare mode and gets the capture value when operating in capture mode. When operating in 16-bit mode (T2MD = 0),
the full 16 bits of registers T2Vx, T2Rx, and T2Cx are read/write accessible.

When T2MD = 1, each 16-bit register associated with the Type 2 timer is split into separate upper and lower 8-bit registers to support
dual 8-bit timers. Thus, the primary 8-bit timer is composed of T2Hx (value), T2RHx (reload), and T2CHx (capture/compare), and the
secondary 8-bit timer is composed of T2Lx (value), T2RLx (reload), and T2CLx (capture/compare). In the dual 8-bit mode, the upper
bytes of T2Vx, T2Rx, and T2Cx are inaccessible and always reads 00h. Separate T2Hx, T2RHx, and T2CHx registers are provided to
facilitate high-byte access for dual 8-bit mode.

Note: For convenience, the lower byte of T2Vx (T2Vx.7–T2Vx.0) is referred to as T2Lx. Unlike T2Hx, there is no separate T2Lx register
and the low byte is always accessed through T2Vx. Similarly, the lower byte of T2Rx (T2Rx.7–T2Rx.0) is referred to as T2RLx and the
lower byte of T2Cx (T2Cx.7–T2Cx.0) is referred to as T2CLx. There are no separate T2RLx and T2CLx registers.

The input clock for the Type 2 timer is defined as the system clock divided by the ratio specified by the T2DIV2:T2DIV0 prescale bits.
Two of the three Type 2 timers in the MAXQ7665/MAXQ7666 are connected to device pins as detailed in Table 7-1.

Figure 7-1 shows a simplified functional block diagram of a MAXQ7665/MAXQ7666 Type 2 timer/counter module in 16-bit mode. Figure
7-2 shows a MAXQ7665/MAXQ7666 Type 2 timer/counter in dual 8-bit mode. The input and output conditioning shown in the block dia-
grams is selected in the status/control registers T2CNAx (Type 2 timer/counter control register A), T2CNBx (Type 2 timer/counter control
register B), and T2CFGx (Type 2 timer/counter configuration register) in addition to other functionalities. See Section 7.2 for detailed dis-
cussion of these registers.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-4

T2Vx REGISTER
16-BIT UP COUNTER

T2Rx REGISTER
16-BIT RELOAD

CAPTURE

EQUAL

OVERFLOW

RELOAD

CLOCK

T2Cx REGISTER
16-BIT CAPTURE/COMPARE

OUTPUT CONDITIONING
POLARITY SELECTION

INPUT CONDITIONING
SCALING
GATING

Figure 7-1. Type 2 Timer/Counter in 16-Bit Mode

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-5

T2CLx REGISTER
(LOWER BYTE OF T2Cx)

8-BIT CAPTURE/COMPARE LOW

T2Lx REGISTER
(LOWER BYTE OF T2Vx)

8-BIT UP COUNTER LOW

T2RLx REGISTER
(LOWER BYTE OF T2Rx)

8-BIT RELOAD LOW

T2CHx REGISTER
8-BIT CAPTURE/COMPARE HIGH

T2Hx REGISTER
8-BIT UP COUNTER HIGH

T2RHx REGISTER
8-BIT RELOAD HIGH

OUTPUT CONDITIONING
POLARITY SELECTION

OUTPUT CONDITIONING
POLARITY SELECTION

INPUT CONDITIONING
SCALING
GATING

CAPTURE

CAPTURE

CLOCK

CLOCK

EQUAL

EQUAL

OVERFLOW

RELOAD

RELOAD

OVERFLOW

Figure 7-2. Type 2 Timer/Counter in 8-Bit Mode

Maxim Integrated

7.1.1 Type 2 Timer/Counter I/O Pins
Each Type 2 timer/counter module normally supports one primary input/output pin that is referred to as Tx. Table 7-1 describes the pin
assignments for the three MAXQ7665/MAXQ7666 timer/counter modules.

Table 7-1. Type 2 Timer/Counter Input and Output Pins

7.2 Type 2 Timer/Counter Peripheral Registers
The MAXQ7665/MAXQ7666 provide three Type 2 timer/counter modules: timer 0, timer 1, and timer 2. Table 7-2 shows the associated
peripheral registers for these timer/counter modules.

Table 7-2. Type 2 Timer/Counter Peripheral Registers

MAXQ7665/MAXQ7666 User’s Guide

7-6

PINTIMER/COUNTER
EXTERNAL SIGNAL 48 56

MULTIPLEXED
WITH PORT PIN FUNCTION

T0—Timer 0
Input/Output 24 27 P0.6 Timer 0 Input/Output. T0 is shared with GPIO port P0 bit 6. As timer 0 input/output, the

pin supports clock gating, capture/compare, counter, and PWM functionalities.

T1—Timer 1
Input/Output 25 29 P0.7 Timer 1 Input/Output. T1 is shared with GPIO port P0 bit 7. As timer 1 input/output, the

pin supports clock gating, capture/compare, counter, and PWM functionalities.

ADDRESSTIMER/COUNTER
REGISTER TIMER 0 TIMER 1 TIMER 2

FUNCTION

Configuration Register T2CFG0
M2[10h]

T2CFG1
M2[11h]

T2CFG2
M3[10h]

Controls counter/timer select, capture/compare function select,
8-bit/16-bit mode select, and clock divide modes

Control Register A T2CNA0
M2[0h]

T2CNA1
M2[04h]

T2CNA2
M3[0h] I/O settings, run enables, polarity modes

Control Register B T2CNB0
M2[08h]

T2CNB1
M2[0Ch]

T2CNB2
M3[08h] Contains capture, compare, overflow flags

Value Register T2V0
M2[09h]

T2V1
M2[0Dh]

T2V2
M3[09h] Holds current timer value

Value MSB Register T2H0
M2[01h]

T2H1
M2[05h]

T2H2
M3[01h] Provides access to high byte of T2Vx

Reload Register T2R0
M2[0Ah]

T2R1
M2[0Eh]

T2R2
M3[0Ah] Holds timer reload value

Reload MSB Register T2RH0
M2[02h]

T2RH1
M2[06h]

T2RH2
M3[02h] Provides access to high byte of T2Rx

Capture/Compare
Register

T2C0
M2[0Bh]

T2C1
M2[0Fh]

T2C2
M3[0Bh] Holds capture/compare value

Capture/Compare MSB
Register

T2CH0
M2[03h]

T2CH1
M2[07h]

T2CH2
M3[03h] Access to high byte of T2Cx

Note: In the MAXQ7665/MAXQ7666, the timer 2 input/output signal, T2, is not supported on the 48- and 56-pin packages. Thus, timer 2 can serve only as an
internal timer.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-7

7.2.1 Type 2 Status/Control Registers
The MAXQ7665/MAXQ7666 timer/counter module registers T2CFGx (configuration), T2CNAx (control A), and T2CNBx (control B),
where x = 0, 1, and 2, are described here.

7.2.1.1 Type 2 Timer/Counter 2 Configuration Register (T2CFGx)
Register Description: Type 2 Timer/Counter 2 Configuration Register
Register Name: T2CFGx (x = 0, 1, 2)
Register Address:

T2CFG0: Module 02h, Index 10h
T2CFG1: Module 02h, Index 11h
T2CFG2: Module 03h, Index 10h

Bits 15 to 7: Reserved. Read 0, write ignored.

Bits 6 to 4: Type 2 Timer Clock Divide Bits 2 to 0 (T2DIV2 to T2DIV0). These three bits select the divide ratio for the timer clock
input clock (as a function of the system clock).

Bit 3: Type 2 Timer Mode Select (T2MD). This bit enables the dual 8-bit mode of operation. The default reset state is 0, which selects
the 16-bit mode of operation. When the dual 8-bit mode is established, the primary timer/counter (T2Hx) carries all the counter/cap-
ture functionality, while the secondary 8-bit timer (T2Lx) must operate in timer compare mode, sourcing the defined internal clock.

0 = 16-bit mode (default)
1 = dual 8-bit mode

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name — T2DIV2 T2DIV1 T2DIV0 T2MD CCF1 CCF0 C/T2

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

T2DIV2:T2DIV0 DIVIDE RATIO

0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-8

Bits 2 and 1: Capture/Compare Function Select Bits (CCF1 and CCF0). These bits, in conjunction with the C/T2 bit, select the basic
operating mode of the Type 2 timer. In the dual 8-bit mode of operation (T2MD = 1), the T2Lx timer only operates in compare mode.

Bit 0: Counter/Timer Select (C/T2). This bit enables/disables the edge counter mode of operation for the 16-bit counter (T2Vx) or the
8-bit counter (T2Hx) when the dual 8-bit mode of operation is enabled (T2MD = 1). The edge for counting (rising/falling/both) is defined
by the CCF1:CCF0 bits.

0 = timer mode
1 = counter mode

Note: Timer 2 in the MAXQ7665/MAXQ7666 does not support an input/output pin and serves only as an internal timer. Thus, counter
mode (C/T2 = 1) functionality does not apply for timer 2.

7.2.1.2 Type 2 Timer/Counter 2 Control Register A (T2CNAx)
Register Description: Type 2 Timer/Counter 2 Control Register A
Register Name T2CNAx (x = 0, 1, 2)
Register Address:

T2CNA0: Module 02h, Index 00h
T2CNA1: Module 02h, Index 04h
T2CNA2: Module 03h, Index 00h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bit 7: Enable Type 2 Timer Interrupts (ET2). This bit serves as the local enable for the Type 2 timer interrupt sources that fall under
the TF2 and TCC2 interrupt flags.

CCF1 CCF0 EDGE(s) C/T2 = 0 (TIMER MODE) C/T2 = 1 (COUNTER MODE)

0 0 None Compare Mode Disabled

0 1 Rising Capture/Reload Counter

1 0 Falling Capture/Reload Counter

1 1 Rising and Falling Capture/Reload Counter

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ET2 T2OE0 T2POL0 TR2L TR2 CPRL2 SS2 G2EN

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-9

Bit 6: Type 2 Timer Output Enable 0 (T2OE0). This register bit enables the timer output function for the external Tx pin. The follow-
ing table shows the timer output possibilities for the external pin. Note: When the timer output function on the Tx pin is enabled, the
polarity bit (T2POL0) selects the starting logic level for the pin output.

Bit 5: Type 2 Timer Polarity Select 0 (T2POL0). When the timer output function has been enabled (T2OE0 = 1), the polarity select bit
defines the starting logic level for the Tx output waveform. When T2POL0 = 0, the starting state for the output is logic-low. When
T2POL0 = 1, the starting state for the output is logic-high. The T2POL0 bit can be modified at any time, but takes effect on the exter-
nal pin when T2OE0 is changed from 0 to 1. When the Type 2 timer pin is being used as an input (T2OE0 = 0), the polarity select bit
defines which logic level can be used to gate the timer input clock (when CCF1:CCF0 ≠ 11b). When CCF1:CCF0 = 11b, T2POL0
defines which edge can start/stop a single-shot capture and which edge reload can be skipped (if CPRL2 = 1 and G2EN = 1).

Note: The MAXQ7665/MAXQ7666 timer 2 does not support an input/output pin and serves only as an internal timer. Thus, polarity
select functionality does not apply for timer 2.

Bit 4: Type 2 Timer Low Run Enable (TR2L). This bit start/stops the low 8-bit timer (T2Lx) when dual 8-bit mode (T2MD = 1) is in
effect. This bit has no effect when T2MD = 0.

0 = timer low stopped
1 = timer low run

Bit 3: Type 2 Timer Run Enable (TR2). This bit starts/stops the Type 2 timer. In the dual 8-bit mode of operation, this bit applies only
to the T2Hx timer/counter. Otherwise, the bit applies to the full 16-bit T2Vx timer/counter. When the timer is stopped (TR2 = 0), the timer
registers hold their count. The single-shot bit (SS2) can override and/or delay the effect of the TR2 bit.

0 = timer stopped
1 = timer run

Bit 2: Capture and Reload Enable (CPRL2). This bit enables a reload (in addition to a capture) on the edge specified by CCF1:CCF0
when operating in capture/reload mode (C/T2 = 0). If both edges are defined for capture/reload (CCF1:CCF0 = 11b), enabling the gat-
ing control (G2EN = 1) allows the T2POL0 bit to be used to prevent a reload on one of the edges; if T2POL0 is 0, no reload on the
falling edge; or, if T2POL0 is 1, no reload on the rising edge.

0 = capture on edge(s) specified by CCF1:CCF0 bits
1 = capture and reload on edge(s) specified by CCF1:CCF0 bits

Bit 1: Single-Shot (SS2). This bit is used to automatically override or delay the effect of the TR2 bit setting. The single-shot bit is only
useful in the timer mode of operation (C/T2 = 0) and should not be set to 1 when the counter mode of operation is enabled (C/T2 = 1).

Compare Mode: If SS2 is written to 1 while in compare mode, one cycle of the defined waveform (reload to overflow) is output to
the Tx pin as prescribed by T2POL0 and T2OE0 controls. The only time that this does not immediately occur is when a gating con-
dition is also defined. If a gating condition is defined, the single-shot cycle cannot occur until the gating condition is removed. If
the specified nongated level is already in effect, the single-shot period starts. The gated single-shot output is not supported in dual
8-bit mode.

Capture Mode: If SS2 is written to 1 while in capture mode, the timer is halted and the single-shot capture cycle does not begin
until 1) the edge specified by CCF1:CCF0 is detected, or 2) the defined gating condition is removed. Once running, the timer con-
tinues running (as allowed by the gate condition) until the defined capture single-shot edge is detected. In this way, the SS2 bit
can be used to delay the running of a timer until an edge is detected (setting both SS2 and TR2 = 1) or override the TR2 = 0 bit
setting for one capture cycle (setting only SS2 = 1). When both edges are defined for capture (CCF1:CCF0 = 11b), the T2POL0
bit serves to define the single-shot start/end edge: falling edge if T2POL0 = 1, rising edge if T2POL0 = 0. No interrupt flag is set
when the starting edge for the single-shot capture cycle is detected. The single-shot capture cycle always ends when the next
single-shot edge is detected. The start/end edge is defined by T2POL0. This bit is intended to automate pulse-width measurement
(low or high) and duty cycle/period measurement.

Note: The MAXQ7665/MAXQ7666 timer 2 does not support an input/output pin and serves only as an internal timer. Thus, some
single-shot functionality does not apply for timer 2.

T2OE0 T2MD TIMER INPUT/OUTPUT PIN (Tx)

0 X Port latch data

1 0 16-bit PWM output

1 1 8-bit PWM output (T2Hx)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-10

Bit 0: Gating Enable (G2EN). This bit enables the external Tx pin to gate the input clock to the 16-bit (T2MD = 0) or highest 8-bit
(T2MD = 1) timer. Gating uses Tx as an input, so it can only be used when T2OE0 = 0 and C/T2 = 0. Gating is not possible on the low
8-bit timer (T2Lx) when the Type 2 timer is operated in dual 8-bit mode. Gating is not supported for counter mode operation (C/T2 =
1). The G2EN bit serves a different purpose when capture and reload have been defined for both edges (CCF1:CCF0 = 11b and
CPRL2 = 1). For this special case, setting G2EN = 1 allows the T2POL0 bit to specify which edge does not cause a reload. If T2POL0
is 0, there is no reload on the falling edge; if T2POL0 is 1, there is no reload on the rising edge.

0 = gating disabled
1 = gating enabled

Note: The MAXQ7665/MAXQ7666 timer 2 does not support an input/output pin and serves only as an internal timer. Thus, gating func-
tionality does not apply for timer 2.

7.2.1.3 Type 2 Timer/Counter 2 Control Register B (T2CNBx)
Register Description: Type 2 Timer/Counter 2 Control Register B
Register Name: T2CNBx (x = 0, 1, 2)
Register Address:

T2CNB0: Module 02h, Index 08h
T2CNB1: Module 02h, Index 0Ch
T2CNB2: Module 03h, Index 08h

Bits 15 to 8, 6 to 4: Reserved. Read 0, write ignored.

Bit 7: Enable Type 2 Timer Low Interrupts (ET2L). This bit serves as the local enable for T2Lx interrupt sources that fall under the
TF2L and TC2L interrupt flags.

Bit 3: Type 2 Timer Overflow Flag (TF2). This flag becomes set anytime there is an overflow of the full 16-bit T2Vx timer/counter (when
T2MD = 0) or an overflow of the 8-bit T2Hx timer/counter when the dual 8-bit mode of operation is selected (T2MD = 1).

Bit 2: Type 2 Timer Low Overflow Flag (TF2L). This flag is meaningful only when in the dual 8-bit mode of operation (T2MD = 1). It
is set whenever there is an overflow of the T2Lx 8-bit timer.

Bit 1: Type 2 Timer Capture/Compare Flag (TCC2). This flag is set on any compare match between the Type 2 timer value and com-
pare register (T2Vx = T2Cx or T2Hx = T2CHx, respectively, for 16-bit and 8-bit compare modes) or when a capture event is initiated
by an external edge.

Bit 0: Type 2 Timer Low Compare Flag (TC2L). This flag is meaningful only for the dual 8-bit mode of operation (T2MD = 1). It is set
only when a compare match occurs between T2CLx and T2Lx. The Type 2 timer low does not have an associated capture function.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ET2L — — — TF2 TF2L TCC2 TC2L

Reset 0 0 0 0 0 0 0 0

Access rw r r r rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-11

7.2.2 Type 2 Timer Value Registers
The MAXQ7665/MAXQ7666 timer/counter registers T2Vx (timer value) and T2Hx (timer value high), where x = 0, 1, and 2, are described
here.

7.2.2.1 Type 2 Timer/Counter Value Register (T2Vx)
Register Description: Type 2 Timer/Counter Value Register
Register Name: T2Vx (x = 0, 1, 2)
Register Address:

T2V0: Module 02h, Index 09h
T2V1: Module 02h, Index 0Dh
T2V2: Module 03h, Index 09h

Bits 15 to 0: Type 2 Timer/Counter Value Register (T2Vx.15 to T2Vx.0). The T2Vx register is a 16-bit register that holds the current
timer value. When operating in 16-bit mode (T2MD = 0), the full 16 bits are read/write accessible. If the dual 8-bit mode of operation
(T2MD = 1) is selected, the upper byte of T2Vx is inaccessible. T2Vx reads while in the dual 8-bit mode return 00h as the high byte and
writes to the upper byte of T2Vx are blocked. A separate T2Hx register is provided to facilitate high-byte access for dual 8-bit mode.

Note: For convenience, the lower byte of T2Vx (T2Vx.7–T2Vx.0) is referred to as T2Lx. Unlike T2Hx, there is no separate T2Lx register
and the low byte is always accessed through T2Vx.

Bit # 15 14 13 12 11 10 9 8

Name T2Vx.15 T2Vx.14 T2Vx.13 T2Vx.12 T2Vx.11 T2Vx.10 T2Vx.9 T2Vx.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2Vx.7 T2Vx.6 T2Vx.5 T2Vx.4 T2Vx.3 T2Vx.2 T2Vx.1 T2Vx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

7.2.2.2 Type 2 Timer/Counter Value High Register (T2Hx)
Register Description: Type 2 Timer/Counter Value High Register
Register Name: T2Hx (x = 0, 1, 2)
Register Address:

T2H0: Module 02h, Index 01h
T2H1: Module 02h, Index 05h
T2H2: Module 03h, Index 01h

Bits 15 to 8: Reserved.

Bits 7 to 0: Type 2 Timer/Counter Value High Register (T2Hx.7 to T2Hx.0). This register is used to load and read the most signifi-
cant 8-bit timer value (T2Hx) for the dual 8-bit mode.

MAXQ7665/MAXQ7666 User’s Guide

7-12

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name T2Hx.7 T2Hx.6 T2Hx.5 T2Hx.4 T2Hx.3 T2Hx.2 T2Hx.1 T2Hx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-13

7.2.3 Type 2 Reload Registers
The MAXQ7665/MAXQ7666 timer/counter module registers T2Rx (timer reload) and T2RHx (timer reload high), where x = 0, 1, and
2, are described here.

7.2.3.1 Type 2 Timer/Counter Reload Register (T2Rx)
Register Description: Type 2 Timer/Counter Reload Register
Register Name: T2Rx (x = 0, 1, 2)
Register Address:

T2R0: Module 02h, Index 0Ah
T2R1: Module 02h, Index 0Eh
T2R2: Module 03h, Index 0Ah

Bits 15 to 0: Type 2 Timer/Counter Reload Register (T2Rx.15 to T2Rx.0). This 16-bit register holds the reload value for the timer.
When operating in 16-bit mode (T2MD = 0), the full 16 bits are read/write accessible. If the dual 8-bit mode of operation is selected,
the upper byte of T2Rx is inaccessible. T2Rx reads while in the dual 8-bit mode return 00h as the high byte and writes to the upper
byte of T2Rx are blocked. A separate T2RHx register is provided to facilitate high-byte access for the dual 8-bit mode.

Note: For convenience, the lower byte of T2Rx (T2Rx.7–T2Rx.0) is referred to as T2RLx. Unlike T2RHx, there is no separate T2RLx reg-
ister and the low byte is always accessed through T2Rx.

Bit # 15 14 13 12 11 10 9 8

Name T2Rx.15 T2Rx.14 T2Rx.13 T2Rx.12 T2Rx.11 T2Rx.10 T2Rx.9 T2Rx.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2Rx.7 T2Rx.6 T2Rx.5 T2Rx.4 T2Rx.3 T2Rx.2 T2Rx.1 T2Rx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

7.2.3.2 Type 2 Timer/Counter Reload High Register (T2RHx)
Register Description: Type 2 Timer/Counter Reload High Register
Register Name: T2RHx (x = 0, 1, 2)
Register Address:

T2RH0: Module 02h, Index 02h
T2RH1: Module 02h, Index 06h
T2RH2: Module 03h, Index 02h

Bits 15 to 8: Reserved.

Bits 7 to 0: Type 2 Timer/Counter Reload High Register (T2RHx.7 to T2RHx.0). This register is used to load and read the most
significant 8-bit reload value (T2RHx) in the timer for the dual 8-bit mode.

MAXQ7665/MAXQ7666 User’s Guide

7-14

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name T2RHx.7 T2RHx.6 T2RHx.5 T2RHx.4 T2RHx.3 T2RHx.2 T2RHx.1 T2RHx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-15

7.2.4 Type 2 Capture/Compare Registers
The MAXQ7665/MAXQ7666 timer/counter module registers T2Cx (timer capture/compare) and T2CHx (timer capture/compare high),
where x = 0, 1, and 2, are described here.

7.2.4.1 Type 2 Timer/Counter Capture/Compare Register (T2Cx)
Register Description: Type 2 Timer/Counter Capture/Compare Register
Register Name: T2Cx (x = 0, 1, 2)
Register Address:

T2C0: Module 02h, Index 0Bh
T2C1: Module 02h, Index 0Fh
T2C2: Module 03h, Index 0Bh

Bits 15 to 0: Type 2 Timer/Counter Capture/Compare Register (T2Cx.15 to T2Cx.0). This 16-bit register holds the compare value
when operating in compare mode and gets the capture value when operating in capture mode. When operating in 16-bit mode (T2MD
= 0), the full 16 bits are read/write accessible. If the dual 8-bit mode of operation is selected, the upper byte of T2Cx is inaccessible.
T2Cx reads while in the dual 8-bit mode return 00h as the high byte and writes to the upper byte of T2Cx are blocked. A separate
T2CHx register is provided to facilitate high-byte access.

Note: For convenience, the lower byte of T2Cx (T2Cx.7–T2Cx.0) is referred to as T2CLx. Unlike T2CHx, there is no separate T2CLx
register and the low byte is always accessed through T2Cx.

Bit # 15 14 13 12 11 10 9 8

Name T2Cx.15 T2Cx.14 T2Cx.13 T2Cx.12 T2Cx.11 T2Cx.10 T2Cx.9 T2Cx.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name T2Cx.7 T2Cx.6 T2Cx.5 T2Cx.4 T2Cx.3 T2Cx.2 T2Cx.1 T2Cx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

7.2.4.2 Type 2 Timer/Counter Capture/Compare High Register (T2CHx)
Register Description: Type 2 Timer/Counter Capture/Compare High Register
Register Name: T2CHx (x = 0, 1, 2)
Register Address:

T2CH0: Module 02h, Index 03h
T2CH1: Module 02h, Index 07h
T2CH2: Module 03h, Index 03h

Bits 15 to 8: Reserved.

Bits 7 to 0: Type 2 Timer/Counter Capture/Compare High (T2CHx.7 to T2CHx.0). This register is used to load and read the most
significant 8-bit capture/compare value (T2CHx) of the timer for the dual 8-bit mode.

MAXQ7665/MAXQ7666 User’s Guide

7-16

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name T2CHx.7 T2CHx.6 T2CHx.5 T2CHx.4 T2CHx.3 T2CHx.2 T2CHx.1 T2CHx.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-17

7.3 Type 2 Timer/Counter Operation Modes
The MAXQ7665/MAXQ7666 Type 2 timer/counter supports six operation modes. Table 7-3 summarizes the modes supported by the
Type 2 timer and the peripheral register bits associated with those modes.

The Type 2 timer operating mode selection is illustrated in Figure 7-3. Figure 7-4 shows the PWM timer output possibilities.

Table 7-3. Type 2 Timer/Counter Functions and Control

MODE T2MD C/T2 CCF1:CCF0 CONTROL BITS

T2OE0: Output enable (PWM out)

T2POL0: Input/output polarity select

SS2: Single-shot pulse control
16-Bit Auto-

Reload/Compare Timer 0 0 00

G2EN: Gate timer clock

T2POL0: Gate level/reload edge select

SS2: Single-shot capture

G2EN: Gate timer clock (or gate reload)

16-Bit Capture
(CCF1:CCF0 bits define

capture edge)
0 0 01, 10, or 11 T2OE0 = 0

CPRL2: Reload enable

16-Bit Counter
(CCF1:CCF0 bits define

count edge)
0 1 01, 10, or 11 T2OE0 = 0

T2POL0: Output polarity select
T2OE0: Output enable (PWM out)Dual 8-Bit Auto-Reload

Timers 1 0 00

T2Hx Only: SS2: Single-shot pulse control

T2OE0 = 0

T2POL0: Gate level/reload edge select

SS2: Single-shot capture

G2EN: Gate timer (or gate reload)

8-Bit Capture and 8-Bit
Timer/PWM

(CCF1:CCF0 bits define
capture edge)

1 0 01, 10, or 11 T2Hx Only:

CPRL2: Reload enable

8-Bit Counter and 8-Bit
Timer/PWM

(CCF1:CCF0 bits define
count edge)

1 1 01, 10, or 11 T2Hx Only: T2OE0 = 0

Note: Timer 2 in the MAXQ7665/MAXQ7666 does not support an input/output pin and serves only as an internal timer.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-18

T2CLx

EDGE DETECTION
AND GATING

C/T2

TR2L
T2MD

T2CLK

CCF[1:0]
G2EN
TR2
SS2

T2POL[0]

T2Lx

T2Lx COMPARE MATCH

T2Vx COMPARE MATCH
OR T2Hx COMPARE MATCH

T2Lx OVERFLOW

T2Vx OVERFLOW
OR T2Hx OVERFLOW

T2RLx

Tx PIN INPUT

T2CHx

T2Hx

T2RHx

Figure 7-3. Type 2 Timer Mode Selection

T2Vx
16-BIT TIMER

OR
T2Hx 8-TIMER

POSSIBLE INPUT USE:
TIMER GATE EDGE
CAPTURE/RELOAD

EDGE COUNTER

T2OE[0]

POx.x DATA
(IF PDx.x = 1)

Tx PIN

T2POL[0]

Figure 7-4. Output Enable and Polarity Control

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-19

7.3.1 16-Bit Timer: Auto-Reload/Compare
The 16-bit auto-reload/compare mode for the Type 2 timer is in effect when the timer-mode select bit (T2MD) is cleared and the cap-
ture/compare function definition bits are both cleared (CCF1:CCF0 = 00b). The timer value is contained in the T2Vx register. The timer
run control bit (TR2) starts and stops the 16-bit timer. The input clock for the 16-bit Type 2 timer is defined as the system clock divid-
ed by the ratio specified by the T2DIV2:T2DIV0 prescale bits. The timer begins counting from the value contained in the T2Vx register
until an overflow occurs. When an overflow occurs, the reload value is reloaded instead of the x0000h state. The timer overflow flag
(TF2) is set every time that an overflow condition (T2Vx = 0xFFFFh) is detected. If the Type 2 timer interrupts have been enabled (ET2
= 1), the TF2 flag can generate an interrupt request. When operating in compare mode, the capture/compare register, T2Cx, is com-
pared versus the timer value registers. Whenever a compare match occurs, the capture/compare status flag (TCC2) is set. If the Type
2 timer interrupts have been enabled (ET2 = 1), this event can generate an interrupt request. If the capture/compare register is set to
a value outside of the timer counting range, a compare match is not signaled and the TCC2 flag is not set. Internally, a timer output
clock is generated that toggles on the cycle following any compare match or overflow, unless the compare match value has been set
equal to the overflow condition, in which case, only one toggle occurs. This clock, if enabled by the T2OE0 bit, can be output on the
timer pin Tx. Note: For an interrupt to occur, the global enable bits IM2 (for timer 0 and timer 1) and IM3 (for timer 2) in the IMR periph-
eral register and IGE in the IC peripheral register must also be enabled.

• Output Enable (PWM Out). The output enable bit (T2OE0) enables the timer output clock to be presented on the timer
input/output pin Tx (0 for timer 0, 1 for timer 1). Note: T2 is not supported on the 48- and 56-pin packages. Thus, timer 2 can
serve only as an internal timer.

• Polarity Control. The polarity control bit (T2POL0) can be used to modify (invert) the enabled clock output to the pin. The
enabled clock output toggles on each compare match or overflow. The T2POL0 bit is logically XORed with the timer output sig-
nal, therefore setting T2POL0 will result in a high starting state. The T2POL0 bit can be changed any time, however, the assigned
T2POL0 state will take effect on the external pin only when the corresponding T2OE0 bit is changed from 0 to 1. When gener-
ating PWM output, note that changing the compare match register can result in a perceived duty cycle inversion if a compare
match is missed or multiple compare matches occur during the reload to overflow counting.

• Gated. To use the Tx pin as a timer input clock gate, the T2OE0 bit must be cleared to 0 and the G2EN bit must be set to 1.
When T2OE0 = 1, the G2EN bit setting has no effect. When T2OE0 is cleared to 0, the respective polarity control bit is used to
modify the polarity of the input signal to the timer. In the gated mode, the timer input clock is gated anytime the external signal
matches the state of the T2POL0 bit. This means that the default clock gating condition for the Tx pin is logic-low (since T2POL0
= 0 default). Setting T2POL0 = 1 results in the timer input clock being gated when the Tx pin is high.

• Single-Shot. When operating in 16-bit compare mode, the single-shot is used to automate the generation of single pulses under
software control or in response to an external signal (single-shot gated). To generate single-shot output pulses solely under soft-
ware control, the G2EN bit should be cleared to 0, the output enables and polarity controls should be configured as desired,
and the single-shot bit should be set to 1. Writing the single-shot bit effectively overrides the TR2 = 0 condition until timer over-
flow/reload occurs. The single-shot bit is automatically cleared once the overflow/reload occurs.

Writing SS2 and TR2 = 1 at the same time still causes the SS2 bit to stay in effect until an overflow/reload occurs, however, since
TR2 was also written to a 1, the specified PWM output continues even after SS2 becomes clear.

• Capture/Reload Control. For the 16-bit compare operating mode, the CPRL2 bit is not used.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-20

7.3.2 16-Bit Timer: Capture Mode
The 16-bit capture mode requires that some event trigger the capture. Normally, this event will be an external edge. The CCF1:CCF0
bits define which edge(s) causes a capture to occur. If CCF1:CCF0 = 01b, a rising edge causes a capture. If CCF1:CCF0 = 10b, a
falling edge causes a capture. If CCF1:CCF0 = 11b, rising and falling edges both cause a capture to occur. The CPRL2 bit enables
both capture and reload to occur on the specified edge(s). Whenever a capture occurs, the capture/compare status flag (TCC2) is set.
If the Type 2 timer interrupts have been enabled (ET2 = 1), this event can generate an interrupt request.
Note: For an interrupt to occur, the global enable bits IM2 (for timer 0 and timer 1) and IM3 (for timer 2) in the IMR peripheral register
and IGE in the IC peripheral register must also be enabled.

• Output Enable. In 16-bit capture mode, the output enables are meaningless. No output waveform is allowed since the cap-
ture/compare registers are being used for the purpose of capturing the timer value.

• Polarity Control. The polarity control bit (T2POL0) has no specific meaning as related to the output function since there is no
output function. The T2POL0 bit is used to establish the gating condition for the single-edge capture mode when gating is
enabled (G2EN = 1). If capture and reload are defined (CPRL2 = 1 and CCF1:CCF0 = 11b) for both edges, the T2POL0 bit can
be used to specify which edge does not have an associated edge reload when gating has also been enabled (G2EN bit = 1).
When the SS2 bit is used to delay the timer run (for both edge capture), the T2POL0 bit also defines which edge starts/ends
the single-shot process.

• Edge Detection. Edge detection was described above (CCF1:CCF0 controlled).
• Gated. If gating is specified, it uses the T2POL0 bit to define when the input clock to the timer is gated (just as described for

the compare mode). This mode can easily be used to measure or incrementally capture high or low pulse durations. If a pre-
defined high/low duration is required to generate an interrupt, the gated compare mode can also be used. Note that if capture
is defined for both rising and falling edges, gating would serve no useful purpose because it would result in redundant capture
data/interrupts. For this reason, when G2EN = 1 and CCF1:CCF0 = 11b, the T2POL0 bit is used to specify which edge is a cap-
ture-only edge when CPRL2 = 1 (gating of the reload event).

• Single-Shot. The single-shot bit overrides the TR2 = 0 bit setting for a single edge-to-edge capture cycle (as defined by the
CCF1:CCF0 bits). The single-shot takes effect (starting the timer) only when 1) the edge defined by CCF1:CCF0 is detected or
2) the defined gating condition is removed. While a capture and/or reload may occur on this starting edge, the interrupt flag will
not be set since a single-shot event has been requested. When rising or falling edge capture is defined, the single-shot mode
is useful for measuring single periods. If gating is also specified for the single-shot, the high/low pulse widths are easily mea-
sured. If rising and falling edges are defined, the T2POL0 bit designates which edge starts/ends the single-shot cycle, but the
starting edge will not cause the interrupt flag to set. If G2EN = 1 for the two-edge capture, the alternate edge (opposite of
defined start/end edge can only be used for capture, not capture and reload). For T2POL0 = 1, the falling edge starts and stops
the single shot. This is important for combined duty cycle and period measurement.

• Capture and Reload. The CPRL2 bit enables both capture and reload on the specified edge(s). The only exception to this rule
is when the G2EN bit is set to a logic 1. When G2EN is set to 1, a reload does not occur on the edge specified by T2POL0.
When T2POL0 = 0, the falling edge does not cause a reload; if T2POL0 = 1, the rising edge does not cause a reload.

7.3.3 16-Bit Counter
The 16-bit counter mode is enabled by setting the C/T2 bit to logic 1. When C/T2 = 1, rising, falling, or both rising and falling edges
are counted as determined by the CCF1:CCF0 bits. If CCF1:CCF0 = 00b, neither edge is defined as a counted edge, and the T2Vx
counter will hold its count. When an overflow occurs, the reload value (T2Rx) is reloaded instead of the x0000h state. The timer/counter
2 overflow flag (TF2) is set every time that an overflow occurs. If timer/counter 2 interrupts have been enabled (ET2 = 1), the TF2 flag
can generate an interrupt request. In counter mode, the capture/compare register (T2Cx) is compared versus the timer/counter 2 value
register. Whenever a compare match occurs, the capture/compare status flag (TCC2) is set. If timer/counter 2 interrupts have been
enabled (ET2 = 1), this event can generate an interrupt request. If the capture/compare register is set to a value outside of the Type 2
timer counting range, a compare match is not signaled and the TCC2 flag is not set.
Note: For an interrupt to occur, the global enable bits IM2 (for timer 0 and timer 1) and IM3 (for timer 2) in the IMR peripheral register
and IGE in the IC peripheral register must also be enabled.

• Output Enable. For the timer to serve as a counter, the Tx pin must be used as an input. Thus, when C/T2 = 1, the T2OE0 bit
is ignored. Note: T2 is not supported on the 48- and 56-pin packages. Thus, timer 2 can only serve as an internal timer.

• Polarity Control. When C/T2 = 1, the T2OE0 and T2POL0 bits are ignored.

• Gating and Single-Shot. Neither gating nor single-shot modes are supported when operating in 16-bit counter mode. The
G2EN and SS2 bits should not be set to 1 when operating in the counter mode (C/T2 = 1).

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-21

T2DIV[2:0]

SYSTEM CLOCK

T2CLK

DIVIDE-BY-N
PRESCALE

Figure 7-5. Type 2 Timer Clock

7.3.4 Dual 8-Bit Timers
The dual 8-bit timer mode of operation is initiated by setting the T2MD bit to logic 1. When T2MD = 1, each 16-bit register associated
with the Type 2 timer is split into separate upper and lower 8-bit registers to support dual 8-bit timers. Thus, the primary 8-bit timer is
composed of T2Hx (value), T2RHx (reload), T2CHx (capture/compare), and the secondary 8-bit timer is composed of T2Lx (value),
T2RLx (reload), and T2CLx (capture/compare). There is but a single internal Type 2 timer input clock that can be sourced by either of
these two 8-bit timers. The secondary 8-bit timer/counter has its own run control bit (TR2L) and interrupt flags (TF2L, TC2L).

• Output Enable (PWM out). The output enable bit (T2OE0) enables the primary T2Hx 8-bit timer output to be presented on the
Tx pin. T2Lx can only serve as an internal timer.

• Polarity Control. The polarity control bit (T2POL0) can be used to modify (invert) the enabled clock output to the pin. The start-
ing state of the enabled clock output is the logic state of T2POL0 and toggles on each compare match or overflow. The T2POL0
bit is logically XORed with the timer output signal, therefore setting the T2POL0 bit results in a high starting state. The T2POL0
bit can be changed any time, however the assigned T2POL0 state will take effect on the external pin only when the corre-
sponding T2OE0 bit is changed from 0 to 1. When generating PWM output, note that changing the compare match register can
result in a perceived duty cycle inversion if a compare match is missed or multiple compare matches occur during the reload
to overflow counting.

• Gated. To use the Tx pin as a timer input clock gate, the T2OE0 bit must be cleared to 0 and the G2EN bit must be set to 1.
When T2OE0 = 1, the G2EN bit setting has no effect. When T2OE0 is cleared to 0, the respective polarity control bit is used to
modify the polarity of the input signal to the timer. In the gated mode, the input clock to T2Hx is gated anytime that the exter-
nal signal matches the state of the T2POL0 bit. This means that the default clock gating condition is associated with the Tx pin
being low (T2POL0 = 0). Note that the secondary 8-bit timer, T2Lx, cannot be gated.

• Single-Shot. The single-shot bit and mode apply only to the primary 8-bit timer (T2Hx). The single-shot mode is used to auto-
mate the generation of single pulses under software control. To generate single-shot output pulses under software control, the
G2EN bit should be cleared to 0, the output enables and polarity controls should be configured as desired, and the single-shot
bit should be set to 1. Writing the single-shot bit effectively overrides the TR2 = 0 condition until the timer overflow/reload occurs.
Writing SS2 and TR2 = 1 at the same time still causes the SS2 bit to stay in effect until an overflow/reload occurs, however, the
specified PWM output continues since TR2 was also written to 1.

7.3.5 8-Bit Timer/8-Bit Capture Mode
When the CCF1:CCF0 bits are configured to a state other than 00b, the edge capture mode is enabled for the primary timer (T2Hx).
The secondary timer (T2Lx) always remains in the timer/compare mode and does not support any capture functionality. The capture
controls for the 8-bit mode are identical to those specified for the 16-bit mode, however, they apply only to the upper timer, T2Hx.

7.3.6 8-Bit Timer/8-Bit Counter
Just as in the 16-bit mode, setting the C/T2 bit to logic 1 enables the external Tx pin to function as a counter input. The edges that are
counted are determined by the CCF1:CCF0 bits. The counter mode of operation applies only to the primary timer/counter (T2Hx). In a
similar fashion to the 16-bit counter mode, when an overflow occurs, an auto-reload of T2RHx occurs and the TF2 flag is set. The TCC2
flag is also set on a compare match between the T2Hx counter and the T2CHx compare register (except for the case where T2CHx is
outside of the T2RHx to 0xFFh counting range). The secondary timer (T2Lx) always continues to operate in 8-bit compare mode.

7.3.7 Type 2 Timer Input Clock Selection
The Type 2 timer clock source is illustrated in Figure 7-5. System clock is used as the Type 2 timer clock source and is optionally divid-
ed down as defined by the T2DIV2:T2DIV0 bits.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-22

7.4 Type 2 Timer/Counter Capture Application Examples
The following examples are used to demonstrate some of the Type 2 timer capture functions. All examples assume that pulse and/or
period measurements do not exceed 216 (i.e., 65,536) input clocks and that capture register holds the desired result.

7.4.1 Measure Low-Pulse Duration
To measure the duration of the first full low pulse seen on the T0 input pin, the Type 2 timer is configured for a single-shot capture, gat-
ing enabled for logic-high, and capture on the rising edge. The CPRL2 bit can optionally be set to generate a reload on the same ris-
ing edge as the capture, if the preconfigured T2R0 value is expected to be needed next.

; ------------------ Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2CFG0, #00000010b ;

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =01 (rising edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA0, #10100111b ; ET2 =1 (enable Timer ints)
; T2OE0 =0 (input)
; T2POL0 =1 (gating level = ‘1’)
; TR2L:TR2 =00 (don’t start timer)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : DURATION = T2C0

T0 PIN

CODE EXECUTION:
POINT A

CODE EXECUTION:
POINT B

1A 2A

1B 2B 3B

EVENTS:
1A: GATING CONDITION REMOVED; SINGLE-SHOT CAPTURE CYCLE BEGINS.
2A: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C0.
1B: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS, TIMER CLOCK GATED SINCE T0 PIN = 1.
2B: GATING CONDITION REMOVED; TIMER RUNS.
3B: RISING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C0.

Figure 7-6. Type 2 Timer Application Example—Measure Low Pulse Width

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-23

7.4.2 Measure High-Pulse Duration Repeatedly
To measure the duration of high pulses seen on the T0 input pin repeatedly, the Type 2 timer is configured for a single-shot delayed
run, gating enabled for logic-low, and capture on the falling edge. The CPRL2 bit can be set to generate a reload on each falling edge.

; ------------------ Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2CFG0, #00000100b ;

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =10 (falling edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA0, #10001111b ; ET2 =1 (enable Timer ints)
; T2OE0 =0 (input)
; T2POL0 =0 (gating level = ‘0’)
; TR2L:TR2 =01 (start timer on single shot
; condition)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : DURATION = T2C0

EVENTS:
1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS; TIMER CLOCK GATED SINCE T0 PIN = 0.
2A: GATING CONDITION REMOVED; TIMER RUNS.
3A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C0. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, BUT TIMER CLOCK GATED SINCE T0 PIN = 0.
4A: GATING CONDITION REMOVED; TIMER RUNS.

1B: GATING CONDITION REMOVED; SINGLE-SHOT CAPTURE CYCLE BEGINS.
2B: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; DURATION = T2C0. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, BUT TIMER CLOCK GATED SINCE T0 PIN = 0.
3B: GATING CONDITION REMOVED; TIMER RUNS.

T0 PIN

CODE EXECUTION:
POINT A

CODE EXECUTION:
POINT B

1A 2A

1B 2B 3B

3A 4A

Figure 7-7. Type 2 Timer Application Example—Measure High Pulse Width

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-24

7.4.3 Measure Period
To measure the period of the signal seen on the T0 input pin, the Type 2 timer is configured for a single-shot capture, no gating, either
edge (selected by the CCF1:CCF0 bits). The CPRL2 bit can be set to generate a reload on each capture edge.

; ------------------ Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2CFG0, #00000100b ;

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =10 (falling edge)
; C/T2 =0 (timer/capture)

MOVE T2CNA0, #10000110b ; ET2 =1 (enable Timer ints)
; T2OE0 =0 (input)
; T2POL0 =0 (gating level = ‘0’)
; TR2L:TR2 =00 (don’t start timer)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single shot mode)
; G2EN =0 (gating disabled)

; ------------------ TCC2 Interrupt : PERIOD = T2C0

T0 PIN

CODE EXECUTION:
POINT A

CODE EXECUTION:
POINT B

1A 2A

1B 2B

EVENTS:
1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS.
2A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; PERIOD = T2C0.

1B AND 2B: SAME SEQUENCE AS 1A–2A, EXCEPT THAT THE SINGLE-SHOT CAPTURE CYCLE DOES NOT BEGIN UNTIL THE FIRST FALLING EDGE IS DETECTED.

Figure 7-8. Type 2 Timer Application Example—Measure Period

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-25

7.4.4 Measure Duty Cycle Repeatedly
To measure the duty cycle of the signal seen on the T0 input pin, the Type 2 timer is configured for a single-shot delayed run with both
edges defined for capture. The CPRL2 bits should be configured to 1 to request reloads on each edge. To prevent reloads on one of
the edges, gating should be enabled. The T2POL0 bit specifies which edge starts/ends the capture cycle and which edge does not
have a reload associated with it.

; ------------------ Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2CFG0, #00000110b ;

; T2DIV[2:0] =000 (/1)
; T2MD =0 (16-bit)
; CCF[1:0] =11 (both edges)
; C/T2 =0 (timer/capture)

MOVE T2CNA0, #10101111b ; ET2 =1 (enable Timer ints)
; T2OE0 =0 (input)
; T2POL0 =1 (no reload on rising edge
; single shot start/end on falling edge)
; TR2L:TR2 =01 (start timer on single shot condition)
; CPRL2 =1 (reload on capture edge)
; SS2 =1 (single shot mode)
; G2EN =1 (gating enabled)

; ------------------ TCC2 Interrupt : LOW TIME=T2C0
;------------------- TCC2 Interrupt : PERIOD = T2C0

T0 PIN

CODE EXECUTION:
POINT A

CODE EXECUTION:
POINT B

1A 3A

1B 3B

2A

2B

EVENTS:
1A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE BEGINS.
2A: RISING EDGE CAUSES CAPTURE; LOW TIME = T2C0.
3A: FALLING EDGE CAUSES CAPTURE/RELOAD; SINGLE-SHOT CAPTURE CYCLE ENDS; PERIOD = T2C0. TIMER CONTINUES TO OPERATE

SINCE TR2 = 1, ALLOWING THE NEXT LOW TIME/PERIOD TO BE MEASURED.
1B–3B: SAME SEQUENCE AS 1A–3A, EXCEPT THAT THE SINGLE-SHOT CAPTURE CYCLE DOES NOT BEGIN UNTIL THE FIRST FALLING EDGE IS DETECTED.

Figure 7-9. Type 2 Timer Application Example—Measure Duty Cycle

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

7-26

7.4.5 Overflow/Interrupt on Cumulative Time
To cause an overflow only when the T0 pin has been low for some cumulative duration, the Type 2 timer can be configured to the gated
compare mode of operation with an initial starting value appropriate for the cumulative duration to be detected.

; ------------------ Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2V0, #1234h ; Overflow after T0 input low for (10000h-01234h) T2CLKs
MOVE T2CFG0, #01110000b ;

; T2DIV[2:0] =111 (/128)
; T2MD =0 (16-bit)
; CCF[1:0] =00 (no edges)
; C/T2 =0 (timer/compare)

MOVE T2CNA0, #10101001b ; ET2 =1 (enable Timer ints)
; T2OE0 =0 (input)
; T2POL0 =1 (gating level = ‘1’)
; TR2L:TR2 =01 (start timer)
; CPRL2 =0 (no capture possible)
; SS2 =0 (not single shot mode)
; G2EN =1 (gating enabled)

; ------------------ TF2 Interrupt : Cumulative low duration reached

T0 PIN

CODE EXECUTION:
POINT A

CODE EXECUTION:
POINT B

1A

1B

2A

2B

EVENTS:
1A: GATING CONDITION IS REMOVED; TIMER BEGINS TO RUN.
2A: TIMER OVERFLOWS.

1B–2B: SAME SEQUENCE AS 1A–2A, EXCEPT THAT TIMER STARTS RUNNING IMMEDIATELY SINCE IT IS NOT GATED.

Figure 7-10. Type 2 Timer Application Example—Overflow/Interrupt on Cumulative Time

Maxim Integrated

7.5 Type 2 Timer/Counter Compare Application Example
The following example is used to demonstrate the Type 2 timer compare function.

7.5.1 A Simple Waveform Output
To output a simple waveform on the T0 pin whose frequency and duty cycle can be configured with an appropriate initial starting value
for T2R0 and T2C0 registers.

; --------- Reset State: T2R0 = T2V0 = T2C0 = 0000h ------------------------
MOVE T2V0, #4000h ; Set to reload value to keep first pulse from being extra long
MOVE T2R0, #4000h ; Reload value
MOVE T2C0, #C000h ; T0 output high for (C000h – 4000h) T2CLKS
MOVE T2CFG0, #01110000b ;

; T2DIV[2:0] = 111 (/128)
; T2MD = 0 (16-bit)
; CCF[1:0] = 00 (compare mode)
; C/T2 = 0 (timer/compare)

MOVE T2CNA0, #11101000b ; ET2 = 1 (enable Timer ints)
; T2OE0 = 1 (pin enabled as output)
; T2POL0 = 0 (high start value on pin)
; TR2L:TR2 = 01 (start timer)
; CPRL2 = 0 (no capture possible)
; SS2 = 0 (not single shot mode)
; G2EN = 0 (gating disbled)

; -------- TCC2 Interrupt: Compare match; high duration reached
; --------- TF2 Interrupt: Overflow/Reload; low duration reached

MAXQ7665/MAXQ7666 User’s Guide

7-27

T0 PIN

1A

1B

2A

2B

EVENTS:
1A AND 2A: COMPARE MATCH T2V0 = T2C0 IS TRUE; T0 OUTPUT GOES LOW.
2A AND 2B: OVERFLOW AND RELOAD; T2V0 = FFFFH; T2V0 RELOADED WITH T2R0 VALUE; T0 OUTPUT GOES HIGH.

Figure 7-11. Type 2 Timer Compare Application Example—A Simple Waveform Output

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

8-1

This section contains the following information:

8.1 Architecture . 8-2

8.1.1 Port Pins . 8-3

8.2 Port Registers . 8-3

8.2.1 Port 0 Output Register (PO0) . 8-3

8.2.2 External Interrupt Flag Register (Port 0) (EIF0) . 8-4

8.2.3 Port 0 Input Register (PI0) . 8-5

8.2.4 External Interrupt Enable Register (Port 0) (EIE0) . 8-6

8.2.5 Port 0 Direction Register (PD0) . 8-7

8.2.6 External Interrupt Edge Select Register (Port 0) (EIES0) . 8-8

8.3 GPIO Operation . 8-9

8.3.1 Port P0 Direction Control and Input/Output . 8-9

8.3.2 Port P0 External Interrupts . 8-9

8.3.3 Port P0 Special and Alternate Functions . 8-9

8.3.4 Port Pin Examples. 8-11

8.3.4.1 Port Pin Example 1: Driving Outputs on Port 0 . 8-11
8.3.5.1 Port Pin Example 2: Receiving Inputs on Port 0 . 8-11

SECTION 8: GENERAL-PURPOSE I/O MODULE

Figure 8-1. Type D Port Pin Schematic . 8-2

LIST OF FIGURES

Table 8-1. MAXQ7665/MAXQ7666 Port P0 Pins .8-3

Table 8-2. Port P0 Pin Input/Output States (in Standard Mode) .8-9

Table 8-3. Port Pin Special and Alternate Functions .8-10

LIST OF TABLES

Maxim Integrated

SECTION 8: GENERAL-PURPOSE I/O MODULE
The MAXQ7665/MAXQ7666 smart data-acquisition microcontrollers provide 8 port pins for general-purpose I/O, which are grouped
into the logical port P0. The P0 port pins have the following features:

• All pins are multiplexed with alternate functions

• CMOS-compatible I/O levels to VDDIO and GND rails

• User-selectable, weak pullup resistors when configured as inputs (power-on state)

• Push-pull or open-drain output (can use internal pullup for open drain)

• Rising or falling edge selectable interrupt or wakeup inputs on all digital I/O pins

• Low leakage

8.1 Architecture
The MAXQ7665/MAXQ7666 support one Type D port P0. Type D is a bidirectional I/O port that incorporates Schmitt trigger receivers
and full CMOS output drivers, and can support alternate functions. The pin is either three-stated or weakly pulled up when defined as
an input. All Type D pins also have interrupt capability.

All port P0 pins can support special function (SF). Enabling the special function automatically converts the pin to that function. Special
function is usually implemented in another functional module and supported by individual enable or status bits.

Figure 8-1 illustrates a Type D port pin function. The pin logic of each port pin is identical.

MAXQ7665/MAXQ7666 User’s Guide

8-2

Figure 8-1. Type D Port Pin Schematic

PD.x

SF ENABLE

PO.x

PI.x OR SF INPUT

SF OUTPUT

SF DIRECTION

I/O PAD

M
UX

M
UX P0.x

PD

PO

˜400kΩ

VDDIO

FLAG EIE.x
EIES.x

DETECT
CIRCUIT

INTERRUPT
FLAG

MAXQ7665/MAXQ7666

Maxim Integrated

8.1.1 Port Pins
The MAXQ7665/MAXQ7666 port P0 pins are summarized in Table 8-1.

8.2 Port Registers
The following peripheral registers control the general-purpose I/O and external interrupt features specific to the MAXQ7665/MAXQ7666.

8.2.1 Port 0 Output Register (PO0)
Register Description: Port 0 Output Register
Register Name: PO0
Register Address: Module 00h, Index 00h

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bits 7 to 0: Port 0 Output Register Bits 7 to 0 (PO0.7 to PO0.0). Port 0 is a Type D I/O port. The PO0 register stores output data for
port 0 when it is defined as an output port and controls whether the internal pullup resistor is enabled/disabled if a port pin is defined
as an input. The contents of this register can be modified by a write access. Reading from the register returns the contents of the reg-
ister. Changing the direction of port 0 does not change the data contents of the register.

MAXQ7665/MAXQ7666 User’s Guide

8-3

r = read, w = write
Note: This register is cleared to FFh on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name PO0.7 PO0.6 PO0.5 PO0.4 PO0.3 PO0.2 PO0.1 PO0.0

Reset 1 1 1 1 1 1 1 1

Access rw rw rw rw rw rw rw rw

PIN NUMBERPORT P0
SIGNALS 48-PIN 56-PIN

FUNCTION

P0.0/TDO 32 37 Port 0 Data 0/JTAG Serial Test Data Output. P0.0 is a general-purpose digital I/O with interrupt/wakeup
capability. TDO is the JTAG serial test data output. After power-up or a reset this pin defaults to JTAG TDO pin.

P0.1/TMS 33 38 Port 0 Data 1/JTAG Test Mode Select. P0.1 is a general-purpose digital I/O with interrupt/wakeup capability. TMS
is the JTAG test mode select input. After power-up or a reset this pin defaults to JTAG TMS pin.

P0.2/TDI 34 39 Port 0 Data 2/JTAG Test Data Input. P0.2 is a general-purpose digital I/O with interrupt/wakeup capability. TDI is
the JTAG serial test data input. After power-up or a reset this pin defaults to JTAG TDI pin.

P0.3/TCK 35 40 Port 0 Data 3/JTAG Test Clock Input. P0.3 is a general-purpose digital I/O with interrupt/wakeup capability. TCK
is the JTAG serial test clock input. After power-up or a reset this pin defaults to JTAG TCK pin.

P0.4/ADCCNV 36 41
Port 0 Data 4/ADC Conversion Start Input. P0.4 is a general-purpose digital I/O with interrupt/wakeup capability.
ADCCNV is the ADC conversion start input signal that can trigger ADC sampling and conversion on a rising or
falling edge. After power-up or a reset this pin defaults to a weakly pulled up general-purpose input.

P0.5/DACLOAD 37 43
Port 0 Data 5/DAC Load Input. P0.5 is a general-purpose digital I/O with interrupt/wakeup capability. DACLOAD
is the DAC load input signal that can trigger DAC conversion by loading the DAC output register on a rising or
falling edge. After power-up or a reset this pin defaults to a weakly pulled up general-purpose input.

P0.6/T0 24 27
Port 0 Data 6/Timer 0 Input/Output. P0.6 is a general-purpose digital I/O with interrupt/wakeup capability. As
Timer 0 Input/Output, the pin supports clock gating, capture/compare, counter, and PWM functionalities. After
power-up or a reset this pin defaults to a weakly pulled up general-purpose input.

P0.7/T1 25 29
Port 0 Data 7/Timer 1 Input/Output. P0.7 is a general-purpose digital I/O with interrupt/wakeup capability. As
Timer 1 Input/Output, the pin supports clock gating, capture/compare, counter, and PWM functionalities. After
power-up or a reset this pin defaults to a weakly pulled up general-purpose input.

Table 8-1. MAXQ7665/MAXQ7666 Port P0 Pins

Maxim Integrated

8.2.2 External Interrupt Flag Register (Port 0) (EIF0)
Register Description: External Interrupt Flag Register (Port 0)
Register Name: EIF0
Register Address: Module 00h, Index 03h

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bit 7: Bit 7 Edge Detect (IE7). This bit is set when a negative edge (IT7 = 1) or a positive edge (IT7 = 0) is detected on the interrupt
7 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 6: Bit 6 Edge Detect (IE6). This bit is set when a negative edge (IT6 = 1) or a positive edge (IT6 = 0) is detected on the interrupt
6 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 5: Bit 5 Edge Detect (IE5). This bit is set when a negative edge (IT5 = 1) or a positive edge (IT5 = 0) is detected on the interrupt
5 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 4: Bit 4 Edge Detect (IE4). This bit is set when a negative edge (IT4 = 1) or a positive edge (IT4 = 0) is detected on the interrupt
4 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 3: Bit 3 Edge Detect (IE3). This bit is set when a negative edge (IT3 = 1) or a positive edge (IT3 = 0) is detected on the interrupt
3 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

MAXQ7665/MAXQ7666 User’s Guide

8-4

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

Bit 2: Bit 2 Edge Detect (IE2). This bit is set when a negative edge (IT2 = 1) or a positive edge (IT2 = 0) is detected on the interrupt
2 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 1: Bit 1 Edge Detect (IE1). This bit is set when a negative edge (IT1 = 1) or a positive edge (IT1 = 0) is detected on the interrupt
1 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

Bit 0: Bit 0 Edge Detect (IE0). This bit is set when a negative edge (IT0 = 1) or a positive edge (IT0 = 0) is detected on the interrupt
0 pin. Setting this bit to 1 generates an interrupt to the CPU if enabled. This bit remains set until cleared by software or a reset. It must
be cleared by software before exiting the interrupt source routine or another interrupt will be generated as long as this bit is set. Note
that this flag register simply indicates whether an edge has been detected at port 0 and is not affected by the state of EIE0.

8.2.3 Port 0 Input Register (PI0)
Register Description: Port 0 Input Register
Register Name: PI0
Register Address: Module 00h, Index 08h

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bits 7 to 0: Port 0 Input Register Bits 7 to 0 (PI0.7 to PI0.0). Port 0 is a Type D I/O port. The PI0 register always reflects the logic
state of its pins when read.

MAXQ7665/MAXQ7666 User’s Guide

8-5

r = read, s = dependent on pin’s state
Note: The reset value for this register is dependent on the logical states of the pins.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name PI0.7 PI0.6 PI0.5 PI0.4 PI0.3 PI0.2 PI0.1 PI0.0

Reset s s s s s s s s

Access r r r r r r r r

Maxim Integrated

8.2.4 External Interrupt Enable Register (Port 0) (EIE0)
Register Description: External Interrupt Enable Register (Port 0)
Register Name: EIE0
Register Address: Module 00h, Index 0Bh

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bit 7: Enable External Interrupt 7 (EX7). Setting this bit to 1 enables external interrupt on port pin P0.7. Clearing this bit to 0 disables
the interrupt function.

Bit 6: Enable External Interrupt 6 (EX6). Setting this bit to 1 enables external interrupt on port pin P0.6. Clearing this bit to 0 disables
the interrupt function.

Bit 5: Enable External Interrupt 5 (EX5). Setting this bit to 1 enables external interrupt on port pin P0.5. Clearing this bit to 0 disables
the interrupt function.

Bit 4: Enable External Interrupt 4 (EX4). Setting this bit to 1 enables external interrupt on port pin P0.4. Clearing this bit to 0 disables
the interrupt function.

Bit 3: Enable External Interrupt 3 (EX3). Setting this bit to 1 enables external interrupt on port pin P0.3. Clearing this bit to 0 disables
the interrupt function.

Bit 2: Enable External Interrupt 2 (EX2). Setting this bit to 1 enables external interrupt on port pin P0.2. Clearing this bit to 0 disables
the interrupt function.

Bit 1: Enable External Interrupt 1 (EX1). Setting this bit to 1 enables external interrupt on port pin P0.1. Clearing this bit to 0 disables
the interrupt function.

Bit 0: Enable External Interrupt 0 (EX0). Setting this bit to 1 enables external interrupt on port pin P0.0. Clearing this bit to 0 disables
the interrupt function.

MAXQ7665/MAXQ7666 User’s Guide

8-6

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name EX7 EX6 EX5 EX4 EX3 EX2 EX1 EX0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

8.2.5 Port 0 Direction Register (PD0)
Register Description: Port 0 Direction Register
Register Name: PD0
Register Address: Module 00h, Index 10h

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bits 7 to 0: Port 0 Direction Register Bits 7 to 0 (PD0.7 to PD0.0). Port 0 is a Type D I/O port. The PD0 register is used to determine
the direction of each pin that makes up the port. The port pins are independently controlled by their direction bit. When a bit in PD0 is
set to 1, its corresponding pin is enabled as an output. The data value in the respective bit of the PO register will be driven on the pin.
When a bit in PD0 is cleared to 0, its corresponding pin is available as an input, and allows an external signal to drive the pin. Note
that each port pin has a weak pullup resistor when functioning as an input, which is controlled by the respective PO bit. If the PO bit
is set to 1, the pullup is enabled; if the PO bit is cleared to 0, the pullup is disabled and the port pin is in high impedance three-state.

MAXQ7665/MAXQ7666 User’s Guide

8-7

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name PD0.7 PD0.6 PD0.5 PD0.4 PD0.3 PD0.2 PD0.1 PD0.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

8.2.6 External Interrupt Edge Select Register (Port 0) (EIES0)
Register Description: External Interrupt Edge Select Register (Port 0)
Register Name: EIES0
Register Address: Module 00h, Index 13h

Bits 15 to 8: Reserved Read returns 0, write ignored.

Bit 7: Edge Select for External Interrupt 7 (IT7)
IT7 = 0: External interrupt 7 is positive-edge triggered.
IT7 = 1: External interrupt 7 is negative-edge triggered.

Bit 6: Edge Select for External Interrupt 6 (IT6)
IT6 = 0: External interrupt 6 is positive-edge triggered.
IT6 = 1: External interrupt 6 is negative-edge triggered.

Bit 5: Edge Select for External Interrupt 5 (IT5)
IT5 = 0: External interrupt 5 is positive-edge triggered.
IT5 = 1: External interrupt 5 is negative-edge triggered.

Bit 4: Edge Select for External Interrupt 4 (IT4)
IT4 = 0: External interrupt 4 is positive-edge triggered.
IT4 = 1: External interrupt 4 is negative-edge triggered.

Bit 3: Edge Select for External Interrupt 3 (IT3)
IT3 = 0: External interrupt 3 is positive-edge triggered.
IT3 = 1: External interrupt 3 is negative-edge triggered.

Bit 2: Edge Select for External Interrupt 2 (IT2)
IT2 = 0: External interrupt 2 is positive-edge triggered.
IT2 = 1: External interrupt 2 is negative-edge triggered.

Bit 1: Edge Select for External Interrupt 1 (IT1)
IT1 = 0: External interrupt 1 is positive-edge triggered.
IT1 = 1: External interrupt 1 is negative-edge triggered.

Bit 0: Edge Select for External Interrupt 0 (IT0)
IT0 = 0: External interrupt 0 is positive-edge triggered.
IT0 = 1: External interrupt 0 is negative-edge triggered.

MAXQ7665/MAXQ7666 User’s Guide

8-8

r = read, w = write
Note: This register is cleared to 00h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name IT7 IT6 IT5 IT4 IT3 IT2 IT1 IT0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Maxim Integrated

8.3 GPIO Operation
From a software perspective, the MAXQ7665/MAXQ7666 port P0 appears as a group of peripheral registers with unique addresses and
is addressed as a byte or 8 individual bit locations. The port is designed to provide programming flexibility for the user application.

• All individual I/O bits are independently configured.

• Any combination of input, output, or alternate function in a port is permitted.

• All I/O pins have protection circuitry to VDDIO and ground.

8.3.1 Port P0 Direction Control and Input/Output
The port 0 direction register (PD0) controls the MAXQ7665/MAXQ7666 port P0 pin input/output direction. The port 0 input register (PI0)
is a read-only register that always reflects the logic state on the pins. The port 0 output register (PO0) has a dual function. For pins
defined as output, PO0 stores output data, and for pins defined as input, PO0 controls whether the internal weak pullup is enabled or
disabled. The port P0 pins input/output states in standard mode (no special or alternate function enabled) are according to Table 8-2.

Table 8-2. Port P0 Pin Input/Output States (in Standard Mode)

The port P0 can be used to support applications that require open-drain functionality. This can be achieved by using the PO0 and PD0
register of the port.

• Three-state the port pin needed to be open drain by setting the corresponding PD0 bit to 0.

• Clear the corresponding PO0 bit to 0.

• Use the corresponding PD0 bit to drive the port pin function, instead of the 00 register.
Note that the internal pullup has a relatively high impedance (typically ˜400kΩ), so a particular system may require a stronger (exter-
nal) pullup to meet the system level needs.

8.3.2 Port P0 External Interrupts
Each of the port P0 pins can function as an external interrupt with individual enable, flag, and active edge selection bits.

• External interrupt enable register (EIE0) bits determine if the external interrupt functionality at each pin is enabled or not.

• External interrupt edge select register (EIES0) bits determine if the external interrupt is generated on rising or falling edge of the
interrupt pin input.

• External interrupt flag register (EIF0) bits indicate if a valid rising or falling edge has been detected on the interrupt pin input. An
interrupt is generated only if the external interrupt functionality is enabled for the pin. Also, global interrupt mask bits IM0 (in the
IMR register) and IGE (in the IC register) must be enabled.

Note: The detection of a valid interrupt edge on any of the external interrupt pins can act as a switchback-trigger source, causing the
microcontroller to switch back from power management mode (PMME = 1, clock set to divide-by-256) to the standard divide-by-1 sys-
tem clock frequency.

8.3.3 Port P0 Special and Alternate Functions
All the MAXQ7665/MAXQ7666’s port pins are multiplexed with special functions as listed in Table 8-3. All these special functions are
disabled by default with the exception of the JTAG interface pins, which are enabled by default following any reset. The behavior of
these functions breaks down into two categories:

• Special functions override the PD0 and PO0 settings for the port pin when they are enabled. Once the special function takes con-
trol, normal control of the port pin is lost until the special function is disabled. Examples of special functions include timer 0 and
timer 1 output.

• Alternate functions operate in parallel with PD0 and PO0 settings for the port pin, and generally consist of input-only functions
such as external interrupts. When an alternate function is enabled for a port pin, the port pin’s output state is still controlled in the
usual manner.

MAXQ7665/MAXQ7666 User’s Guide

8-9

PD0.x PO0.x PORT PIN MODE PORT PIN (P0.x) STATE

0 0 Input Three-state

0 1 Input Weak pullup HIGH

1 0 Output Strong drive LOW

1 1 Output Strong drive HIGH

Maxim Integrated

Table 8-3. Port Pin Special and Alternate Functions

MAXQ7665/MAXQ7666 User’s Guide

8-10

PORT PIN FUNCTION
TYPE FUNCTION ENABLED WHEN MULTIPLEXING/PRIORITIZATION

Special TDO—JTAG Data Out, Output TAP = 1
The JTAG is the default interface; this port pin is
configured as an output and is ready for JTAG
operation after a reset.P0.0

Alternate INT0—External Interrupt 0, Input EX0 = 1

Special TMS—JTAG Mode Select, Input TAP = 1 This pin defaults to a weak pullup input and is ready
for JTAG operation after a reset.P0.1

Alternate INT1—External Interrupt 1, Input EX1 = 1

Special TDI—JTAG Data In, Input TAP = 1 This pin defaults to a weak pullup input and is ready
for JTAG operation after a reset.P0.2

Alternate INT2—External Interrupt 2, Input EX2 = 1

Special TCK—JTAG Clock In, Input TAP = 1 This pin defaults to a weak pullup input and is ready
for JTAG operation after a reset.P0.3

Alternate INT3—External Interrupt 3, Input EX3 = 1

Special ADCCNV—ADC Conversion Start,
Input

ADCS2:ADCS0 = 100 or
101 This pin defaults to a weak pullup input after a reset.

P0.4
Alternate INT4—External Interrupt 4, Input EX4 = 1

Special DACLOAD—DAC Load, Input DACLD2:DACLD0 = 000,
100, or 101 This pin defaults to a weak pullup input after a reset.

P0.5
Alternate INT5—External Interrupt 5, Input EX5 = 1

Special Timer 0 (Type 2) Output T2OE0 = 1 This pin defaults to a weak pullup input after a reset.

Special Timer 0 (Type 2) Counter Input
C/T2 = 1;

CCF1 - CCF0 ≠ 00b;
T2OE0 must be 0

Special Timer 0 (Type 2) Gate Input

G2EN = 1 or CCF1:CCF0 =
11b and CPRL2 = 1;
T2OE0 must be 0;

C/T2 must be 0

P0.6

Alternate INT6—External Interrupt 6, Input EX6 = 1

Special Timer 1 (Type 2) Output T2OE0 = 1 This pin defaults to a weak pullup input after a reset.

Special Timer 1 (Type 2) Counter Input
C/T2 = 1;

CCF1:CCF0 ≠ 00b;
T2OE0 must be 0

Special Timer 1 (Type 2) Gate Input

G2EN = 1 or CCF1:CCF0 =
11b and CPRL2 = 1;
T2OE0 must be 0;

C/T2 must be 0

P0.7

Alternate INT7—External Interrupt 7, Input EX7 = 1

Maxim Integrated

8.3.4 Port Pin Examples

8.3.4.1 Port Pin Example 1: Driving Outputs on Port 0
move PO0, #000h ; Set all outputs low
move PD0, #0FFh ; Set all P0 pins to output mode

8.3.4.2 Port Pin Example 2: Receiving Inputs on Port 0
move PO0, #0FFh ; Set weak pullups ON on all pins
move PD0, #000h ; Set all P1 pins to input mode

nop ; Wait for external source to drive P1

move Acc, PI0 ; Get input values from P0
; (will return FF if no other source
; drives the pins low)

MAXQ7665/MAXQ7666 User’s Guide

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-1

This section contains the following information:

9.1 Architecture .9-3

9.1.1 SPI Pins .9-4

9.2 SPI Peripheral Registers .9-4

9.2.1 SPI Data Buffer Register (SPIB) .9-4

9.2.2 SPI Control Register (SPICN) .9-5

9.2.3 SPI Configuration Register (SPICF) .9-7

9.2.4 SPI Clock Register (SPICK) .9-8

9.3 SPI Operation .9-9

9.3.1 SPI Master Operation .9-9

9.3.2 SPI Slave Operation .9-10

9.3.3 SPI Transfer Formats .9-11

9.3.4 SPI Character Lengths .9-12

9.4 SPI Transfer Baud Rates .9-12

9.5 SPI System Errors .9-12

9.5.1 Mode Fault .9-12

9.5.2 Receive Overrun .9-13

9.5.3 Write Collision While Busy .9-13

9.6 SPI Interrupts .9-13

9.7 SPI Example: Enabling Master Mode .9-13

SECTION 9: SERIAL PERIPHERAL INTERFACE (SPI) MODULE

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-2

Figure 9-1. SPI Block Diagram .9-3

Figure 9-2. SPI Bus Configuration .9-9

Figure 9-3. SPI Transfer Formats (CKPOL, CKPHA Control) .9-11

LIST OF FIGURES

Table 9-1. MAXQ7665/MAXQ7666 SPI Pins .9-4

LIST OF TABLES

Maxim Integrated

SECTION 9: SERIAL PERIPHERAL INTERFACE (SPI) MODULE
The MAXQ7665/MAXQ7666 serial peripheral interface (SPI) module provides an independent serial communication channel to com-
municate synchronously with peripheral devices in a multiple master or multiple slave system. The interface allows access to a 4-wire
full-duplex serial bus that can be operated in either master mode or slave mode. The MAXQ7665/MAXQ7666 SPI features include the
following:

• 4-wire synchronous full-duplex communication

• Master or slave mode

• 8-bit or 16-bit character lengths

• Four standard SPI clocking modes

• Programmable baud-rate generator

• Mode-fault detection

• Data overrun and collision detection

• Interrupt or polled operation

• Maximum data rate: 1/8 the system clock for slave and 1/2 the system clock for master mode

9.1 Architecture
Figure 9-1 shows a simplified block diagram of the MAXQ7665/MAXQ7666 SPI. The main element in the SPI module is the block con-
taining the shift register and the read buffer. The shift register serves as the transmit and receive data buffer, while the read buffer is
the holding register for data received from the network and ready for the CPU to read. Each time that an SPI transfer completes, the
received character is transferred to the read buffer, giving double buffering on the receive side. No buffer overrun will occur as long
as the first character is read out of the data buffer before the next character is ready to be transferred into the read buffer. The SPI is
single buffered in the transmit direction. New data for transmission cannot be written to the shift register until the previous transfer is
completed. The CPU has read/write access to the control unit and the SPI data buffer (SPIB). The SPIB provides access for both trans-
mit data and receive data; reads are directed to the read buffer and writes to the shift register automatically.

Figure 9-1. SPI Block Diagram

SPIEN =
SPICN.0

MSTM = SPICN.1

SHIFT REGISTER
MOSI

SPIB WRITES

READ
BUFFER

SPIB READS

0

0

1
15/7

15/7

MISO0

1

SPI STATUS & CONTROL UNIT

0

SCLK1

0

SS

MAXQ7665/MAXQ7666 User’s Guide

9-3 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-4

9.1.1 SPI Pins
The SPI signals are shown in Table 9-1.

Table 9-1. MAXQ7665/MAXQ7666 SPI Pins

9.2 SPI Peripheral Registers
The MAXQ7665/MAXQ7666 SPI peripheral registers are described here. All the SPI peripheral registers are directly accessible by the
microcontroller through the module/index address.

9.2.1 SPI Data Buffer Register (SPIB)
Register Description: SPI Data Buffer Register
Register Name: SPIB
Register Address: Module 01h, Index 06h

Bits 15 to 0: SPIB Data Bits 15 to 0 (SPIB.15 to SPIB.0). Data for SPI is read from or written to this location. The serial transmit and
receive buffers are separate but both are addressed at this location. Write access is allowed only outside of the transfer cycle. When
the STBY bit (SPICN.7) is set, write attempts are blocked and cause a write collision error.

PIN NUMBERSPI EXTERNAL
SIGNAL 48 56

MASTER MODE USE SLAVE MODE USE

MISO—Master In,
Slave Out 35 Input to serial shift register. Output from serial shift register when selected. Data sent

most significant bit first.

MOSI—Master Out,
Slave In 34 Output from serial shift register. Data

sent most significant bit first. Input to serial shift register when selected.

SCLK 33 Serial shift clock sourced to slave
device(s). Serial shift clock from an external master.

SS 32 (Optional) Mode-fault-detection input
if enabled (MODFE = 1). Slave select input.

—

Bit # 15 14 13 12 11 10 9 8

Name SPIB.15 SPIB.14 SPIB.13 SPIB.12 SPIB.11 SPIB.10 SPIB.9 SPIB.8

Reset 0 0 0 0 0 0 0 0

Access rw* rw* rw* rw* rw* rw* rw* rw*

Bit # 7 6 5 4 3 2 1 0

Name SPIB.7 SPIB.6 SPIB.5 SPIB.4 SPIB.3 SPIB.2 SPIB.1 SPIB.0

Reset 0 0 0 0 0 0 0 0

Access rw* rw* rw* rw* rw* rw* rw* rw*

r = read, w = write, * = write allowed only when STBY = 0

Maxim Integrated

9.2.2 SPI Control Register (SPICN)
Register Description: SPI Control Register
Register Name: SPICN
Register Address: Module 01h, Index 07h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bit 7: SPI Transfer Busy Flag (STBY). This bit is used to indicate the current transmit/receive activity of the SPI module. STBY is set
to 1 when an SPI transfer cycle starts and is cleared to 0 when the transfer cycle is completed. This bit is controlled by hardware and
is read only for user software.

0 = SPI module is idle—no transfer in progress.
1 = SPI transfer in progress.

Bit 6: SPI Transfer Complete Flag (SPIC). This bit signals the completion of an SPI transfer cycle. This bit must be cleared to 0 by
software once set. Setting this bit to logic 1 causes an interrupt if enabled.

0 = No SPI transfers have completed since the bit was last cleared.
1 = SPI transfer complete.

Bit 5: Receive Overrun Flag (ROVR). This bit indicates a receive overrun has occurred. A receive overrun results when a received
character is ready to be transferred to the SPI receive data buffer before the previous character in the data buffer is read. The most
recent receive data is lost. This bit must be cleared to 0 by software once set. Setting this bit to logic 1 causes an interrupt if enabled.

0 = No receive overrun has occurred.
1 = Receive overrun occurred.

Bit 4: Write Collision Flag (WCOL). This bit signifies that an attempt was made by software to write the SPI buffer (SPIB) while a trans-
fer was in progress (STBY = 1). Such attempts will always be blocked. This bit must be cleared to 0 by software once set. Setting this
bit to logic 1 causes an interrupt if enabled.

0 = No write collision has been detected.
1 = Write collision detected.

MAXQ7665/MAXQ7666 User’s Guide

9-5

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name STBY SPIC ROVR WCOL MODF MODFE MSTM SPIEN

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-6

Bit 3: Mode-Fault Flag (MODF). This bit is the mode-fault flag for SPI master mode operation. When mode fault detection is enabled
(MODFE = 1) in master mode, detection of high-to-low transition on the SS pin signifies a mode fault causes MODF to be set to 1. This
bit must be cleared to 0 by software once set. Setting this bit to logic 1 causes an interrupt if enabled. This flag has no meaning in
slave mode.

0 = No mode fault has been detected.
1 = Mode fault detected while operating as a master (MSTM = 1).

Bit 2: Mode-Fault Enable (MODFE). When to set logic 1, the SS input pin is used for mode fault detection during SPI master mode
operation. When cleared to 0, the SS input has no function. In slave mode, the SS pin always functions as a slave-select input signal
to the SPI module, independent of the setting of the MODFE bit.

Bit 1: Master Mode Enable (MSTM). The MSTM bit functions as the master mode enable bit for the SPI module. Note that this bit can
be set from 0 to 1 only when the SS signal is deasserted. This bit is automatically cleared to 0 by hardware if a mode fault is detected.

0 = SPI module operates in slave mode when enabled (SPIEN = 1).
1 = SPI module operates in master mode when enabled (SPIEN = 1).

Bit 0: SPI Enable (SPIEN)

0 = SPI module and its baud-rate generator are disabled.
1 = SPI module and its baud-rate generator are enabled.

Maxim Integrated

9.2.3 SPI Configuration Register (SPICF)
Register Description: SPI Configuration Register
Register Name: SPICF
Register Address: Module 01h, Index 08h

Bits 15 to 8, 6 to 3: Reserved. Read 0, write ignored.

Bit 7: Enable SPI Interrupt (ESPII). This bit enables any of the SPI interrupt source flags (MODF, WCOL, ROVR, SPIC) to generate
interrupt requests. Note: For interrupt requests to happen, global interrupt mask bits IM1 (in the IMR register) and IGE (in the IC periph-
eral register) must also be enabled.

0 = SPI interrupt sources disabled.
1 = SPI interrupt sources enabled.

Bit 2: Character Length Select (CHR). This bit determines the character length for an SPI transfer cycle. A character can be 8 bits in
length or 16 bits in length.

0 = 8-bit character length specified.
1 = 16-bit character length specified.

Bit 1: Clock Phase Select (CKPHA). This bit selects the clock phase and is used with the CKPOL bit to define the SPI data transfer
format.

0 = Data sampled on the active clock edge.
1 = Data sampled on the inactive clock edge.

Bit 0: Clock Polarity Select (CKPOL). This bit selects the clock polarity and is used with the CKPHA bit to define the SPI data trans-
fer format.

0 = Clock idles in the logic 0 state (rising = active clock edge).
1 = Clock idles in the logic 1 state (falling = active clock edge).

MAXQ7665/MAXQ7666 User’s Guide

9-7

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ESPII — — — — CHR CKPHA CKPOL

Reset 0 0 0 0 0 0 0 0

Access rw r r r r rw rw rw

r = read, w = write

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-8

9.2.4 SPI Clock Register (SPICK)
Register Description: SPI Clock Register
Register Name: SPICK
Register Address: Module 01h, Index 09h

Bits 15 to 8: Reserved. Read 0, write ignored.

Bits 7 to 0: Clock Divide Ratio (CKR.7 to CKR.0). This 8-bit value determines the system clock divide ratio to be used for SPI mas-
ter mode baud-clock generation. This register has no function when operating in slave mode, as the SPI clock generation circuitry is
disabled. The frequency of the SPI master mode baud rate is calculated using the following equation:

SPI baud rate = 0.5 x system clock frequency / (CKR7:CKR0 + 1)

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name CKR.7 CKR.6 CKR.5 CKR.4 CKR.3 CKR.2 CKR.1 CKR.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

9.3 SPI Operation
The MAXQ7665/MAXQ7666 SPI can be viewed as a synchronous serial I/O port that shifts a data stream of 8 or 16 bits between periph-
eral devices. Data is shifted in and out of the SPI through the programmable shift registers that are formed by serially connecting the
master’s shift register and a slave shift register. The SPI bus is typically implemented with one master device and multiple slave devices.
Each slave device has a unique SS pin that is used to enable transfers to that device. Figure 9-2 shows a typical SPI bus configuration.

During an SPI transfer, data is simultaneously transmitted and received. The serial clock signal (SCLK) synchronizes shifting and sam-
pling of the bit stream on the two serial data pins. For both the master and the slave, data is shifted out of the shift registers on one
edge of SCLK and latched into the shift registers on the opposite SCLK clock edge.

The SPI module operates in one of two modes once enabled by setting the SPI enable bit (SPIEN) in the SPI control register. The mas-
ter mode bit (MSTM) selects the operating mode and the source of the SCLK signal.

9.3.1 SPI Master Operation
The MAXQ7665/MAXQ7666 SPI module is placed in master mode by setting the master mode enable (MSTM) bit in the SPI control
register to logic 1.

Only an SPI master device can initiate a data transfer. The master is responsible for manually selecting/deselecting the desired slave
devices. This can be done using a general-purpose output pin. Writing a data character to the SPI shift register (SPIB) while in master mode
starts a data transfer. The SPI master immediately shifts out the data serially on the MOSI pin, most significant bit first, while providing the
serial clock on SCLK output. New data is simultaneously received on the MISO pin into the least significant bit of the shift register.

The data transfer format (clock polarity and phase), character length, and baud rate are configurable as described in later sections.
During the transfer, the SPI transfer busy (STBY) flag is set to indicate that a transfer is in progress. At the end of the transfer, the data
contained in the shift register is moved into the receive data buffer, the STBY bit is cleared by hardware, and the SPI transfer complete
flag (SPIC) is set. Setting the SPIC bit generates an interrupt request if SPI interrupt sources are enabled (ESPII = 1). Also, for an inter-
rupt request to be generated global interrupt masks IM1 (in the IMR register) and IGE (in the IC peripheral register) must also be enabled.

MAXQ7665/MAXQ7666 User’s Guide

9-9

Figure 9-2. SPI Bus Configuration

MOSI MOSI

SPI SLAVE
#1

SPI SLAVE
#2

MISO

SCLK

SS

MOSI

MISO

SCLK

SS

MISO

SPI MASTER SCLK

SS1

SS2

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-10

9.3.2 SPI Slave Operation
The MAXQ7665/MAXQ7666 SPI module operates in slave mode when the MSTM bit is cleared to logic 0. In slave mode, the SPI mod-
ule is dependent on the SCLK signal sourced from the master to control the data transfer. The SCLK input frequency should be no
greater than the system clock of the MAXQ7665/MAXQ7666 slave device divided by 8.

The slave select (SS) input must be externally asserted by a master before data exchange can take place. SS must be low before
data transaction begins and must remain low for the duration of the transaction. If data is to be transmitted by the slave device, it
must be written to its shift register before the beginning of a transfer cycle, otherwise the character already in the shift register will be
transferred. The slave device considers a transfer to begin with the first clock edge or the falling edge of SS, dependent on the data
transfer format.

The SPI slave receives data from the external master MOSI pin, most significant bit first, while simultaneously transferring the contents
of its shift register to the master on the MISO pin, also most significant bit first. Data received from the external master replaces data
in the internal shift register until the transfer completes. Just like the master mode of operation, received data is loaded into the read
buffer and the SPI transfer complete flag is set at the end of transfer. The setting of the transfer complete flag generates an interrupt
request if enabled.

When SS is not asserted, the slave device ignores the SCLK clock and the shift register is disabled. Under this condition, the device
is basically idle, no data is shifted out from the shift register, and no data is sampled from the MOSI pin. The MISO pin is placed in an
input mode and is weakly pulled high to allow other devices on the bus to drive the bus. Deassertion of the SS signal by the master
during a transfer (before a full character, as defined by the CHR, is received) aborts the current transfer. When the transfer is aborted
no data is loaded into the read buffer, the SPIC flag is not set, and the slave logic and bit counter are reset.

In slave mode, the clock divide ratio bits (CKR7:CKR0) have no function since an external master supplies the serial clock. The trans-
fer format (CKPOL, CKPHA settings) and the character length selection (CHR) for the slave device, however, should match the master
for proper communication.

Maxim Integrated

9.3.3 SPI Transfer Formats
During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a single serial shift
clock. The polarity and phase of the serial shift clock are the primary components in defining the SPI data transfer format. The polarity
of the serial clock corresponds to the idle logic state of the clock line and therefore also defines which clock edge is the active edge.
To define a serial shift clock signal that idles in a logic-low state (active clock edge = rising), the clock polarity select (SPICF.0: CKPOL)
bit should be configured to 0, while CKPOL = 1 causes the shift clock to idle in a logic-high state (active clock edge = falling). The
phase of the serial clock selects which edge is used to sample the serial shift data. The clock phase select (SPICF.1:CKPHA) bit con-
trols whether the active or inactive clock edge is used to latch the data. When CKPHA is set to logic 1, data is sampled on the inactive
clock edge (clock returning to the idle state). When CKPHA is set to logic 0, data is sampled on the active clock edge (clock transition
to the active state). Together, the CKPOL and CKPHA bits allow the four possible SPI data transfer formats as illustrated in Figure 9-3.

Anytime that the active clock edge is used for sampling (CKPHA = 0), the transfer cycle must be started with assertion of the SS sig-
nal. This requirement necessitates that the SS signal be deasserted and reasserted between successive transfers. Conversely, when
the inactive edge is used for sampling (CKPHA = 1), the SS signal may remain low through successive transfers allowing the active
clock edge to signal the start of a new transfer.

MAXQ7665/MAXQ7666 User’s Guide

9-11

Figure 9-3. SPI Transfer Formats (CKPOL, CKPHA Control)

SCLK

CKPOL = 0
CKPHA = 0

CKPOL = 0
CKPHA = 1

CKPOL = 1
CKPHA = 0

CKPOL = 1
CKPHA = 1

MOSI/MISO

SS

SAMPLING POINTS

TRANSFER CYCLE (CHARACTER LENGTH DEFINED BY CHR)

MSBIT LSBIT

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

9-12

9.3.4 SPI Character Lengths
To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable through the char-
acter length bit (CHR) in the SPI configuration register. The CHR bit allows selection of either 8-bit or 16-bit transfers.

When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right justified or placed in the least signif-
icant byte of the word. When a byte transfer completes, the received byte is right justified and can be read from the least significant
byte of the SPIB word. The MSB of the SPIB data buffer is not significant when transmitting and receiving 8-bit characters.

9.4 SPI Transfer Baud Rates
When operating as a slave device, an external master drives the MAXQ7665/MAXQ7666 SPI serial clock. For proper slave operation,
the serial clock provided by the external master should not exceed the system clock frequency divided by 8.

When operating in the master mode, the SPI serial clock is sourced to the external slave device(s). The serial clock baud rate is deter-
mined by the clock-divide ratio (CKR) specified in the SPI clock-divide ratio (SPICK) register. The MAXQ7665/MAXQ7666 SPI module sup-
ports 256 different clock divide ratio selections for serial clock generation. The SCLK clock rate is determined by the following formula:

SPI baud rate = 0.5 x system clock frequency / (CKR7:CKR0 + 1)

Since the SPI baud rate is a function of the system clock frequency, using any of the system clock-divide modes (including power man-
agement mode) alters the baud rate.

Note, however, that once in power management mode (PMME = 1), writes to SPIB in master mode and assertion of the SS pin slave
mode both qualify as switchback sources if enabled (SWB = 1). The MAXQ7665/MAXQ7666 SPI module clocks are halted if the device
is placed into stop mode.

9.5 SPI System Errors
The MAXQ7665/MAXQ7666 SPI module can detect three types of SPI system errors. A mode-fault error arises in a multiple master sys-
tem when more than one SPI device simultaneously tries to be a master. A receive-overrun error occurs when an SPI transfer com-
pletes before the previous character has been read from the receive-holding buffer. The third kind of error, write collision, indicates that
an attempted write to SPIB was detected while a transfer was in progress (STBY = 1).

9.5.1 Mode Fault
When the MAXQ7665/MAXQ7666 SPI device is configured as a master and its mode-fault enable bit (SPICN.2:MODFE) is also set, a
mode-fault error occurs if the SS input signal is driven low by an external device. This error is typically caused when a second SPI device
attempts to function as a master in the system. In the condition where more than one device is configured as master concurrently, there
is a possibility of bus contention that can cause permanent damage to push-pull CMOS drivers. The mode-fault-error detection is to pro-
vide protection from such damage by disabling the bus drivers. When a mode fault is detected, the following actions are taken imme-
diately.

1) The MSTM bit is forced to logic 0 to reconfigure the SPI device as a slave.

2) The SPIEN bit is forced to logic 0 to disable the SPI module.

3) The mode fault (SPICN.3: MODF) status flag is set. Setting the MODF bit can generate an interrupt if it is enabled.

The application software must correct the system conflict before resuming its normal operation. The MODF flag is set automatically by
hardware, but must be cleared by software once set. Setting the MODF bit to logic 1 by software causes an interrupt if enabled.

Mode-fault detection is optional and can be disabled by clearing the MODFE bit to logic 0. Disabling the mode-fault detection disables
the function of the SS signal during master mode operation.

Note that the mode-fault mechanism does not provide full protection from bus contention in multiple master, multiple slave systems.
For example, if two devices are configured as master at the same time, the mode-fault-detect circuitry offers protection only when one
of them selects the other as slave by asserting its SS signal. Also, if a master accidentally activates more than one slave and those
devices try to simultaneously drive their output pins, bus contention can occur without a mode-fault error being generated.

Maxim Integrated

9.5.2 Receive Overrun
Since the receive direction of the MAXQ7665/MAXQ7666 SPI is double buffered, there is no overrun condition as long as the received
character in the read buffer is read before the next character in the shift register is ready to be transferred to the read buffer. However,
if previous data in the read buffer has not been read out when a transfer cycle is completed and the new character is ready to be
loaded into the read buffer, a receive overrun occurs and the receive overrun flag (SPICN.5: ROVR) is set. Setting the ROVR flag indi-
cates that the most recent received character is lost. Setting the ROVR bit to logic 1 causes an interrupt if enabled. Once set, the ROVR
bit is cleared only by software or a reset.

9.5.3 Write Collision While Busy
A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY = 1). Since the shift register
is single buffered in the transmit direction, writes to SPIB are made directly into the shift register. Allowing the write to SPIB while anoth-
er transfer is in progress could easily corrupt the transmit/receive data. When such a write attempt is made, the current transfer con-
tinues undisturbed, the attempted write data is not transferred to the shift register, and the control unit sets the write collision flag
(SPICN.4:WCOL). Setting the WCOL bit to logic 1 causes an interrupt if SPI interrupt sources are enabled. Once set, the WCOL bit is
cleared only by software or a reset.

Normally, write collisions are associated solely with slave devices since they do not control initiation of transfers and do not have access
to as much information about SCLK as the master. As a master, write collisions are completely avoidable, however, the control unit
detects write collisions for both master and slave modes.

9.6 SPI Interrupts
Four flags in the SPI control register (SPICN) can generate an SPI interrupt when enabled.

• Mode Fault (MODF)

• Write Collision (WCOL)

• Receive Overrun (ROVR)

• SPI Transfer Complete (SPIC)

These four bits serve as interrupt flags that allow the system programmer to determine the source of interrupts that can cause an inter-
rupt request to the CPU. These bits default to 0 on a reset and must be cleared by software when set.

The ESPII bit in the SPI configuration register (SPICF) enables any of the SPI interrupt source flags (MODF, WCOL, ROVR, SPIC) to
generate interrupt requests. For interrupt requests to happen, global interrupt mask bits IM1 (in the IMR register) and IGE (in the IC
peripheral register) must also be enabled.

9.7 SPI Example: Enabling Master Mode
move SPICN, #03h ; Enable SPI for master mode communication
move SPICF, #00h ; Rising clock, active edge sample, 8-bit character
move SPICK, #0Fh ; Divide by 16 clock

MAXQ7665/MAXQ7666 User’s Guide

9-13 Maxim Integrated

This section contains the following information:

10.1 TAP Overview .10-3

10.2 Architecture .10-3

10.2.1 TAP Pins .10-4

10.3 TAP Interface Control .10-5

10.3.1 System Control Register (SC) .10-5

10.4 TAP Controller Operation .10-6

10.4.1 Test-Logic-Reset .10-6

10.4.2 Run-Test-Idle .10-7

10.4.3 IR-Scan Sequence .10-7

10.4.4 DR-Scan Sequence .10-8

10.4.5 Communication via TAP .10-8

10.4.5.1 TAP Communication Examples IR-Scans and DR-Scans 10-9

MAXQ7665/MAXQ7666 User’s Guide

10-1

SECTION 10: TEST ACCESS PORT (TAP)

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-2

Figure 10-1. MAXQ7665/MAXQ7666 TAP and TAP Controller .10-3

Figure 10-2. TAP Controller State Diagram .10-6

Figure 10-3. TAP Controller Debug Mode—IR-Scan Example .10-9

Figure 10-4. TAP Controller Debug Mode—DR-Scan Example .10-10

LIST OF FIGURES

Table 10-1. MAXQ7665/MAXQ7666 TAP Pins .10-4

Table 10-2. Instruction Register Content vs. TAP Controller State .10-7

Table 10-3. Instruction Register Commands .10-8

LIST OF TABLES

Maxim Integrated

SECTION 10: TEST ACCESS PORT (TAP)
10.1 TAP Overview
The MAXQ7665/MAXQ7666 incorporate a test access port (TAP) and TAP controller for communication with a host device across a
4-wire synchronous serial interface. The MAXQ7665/MAXQ7666 use the TAP to support in-system flash programming, in-circuit debug,
and device test functions. The MAXQ7665/MAXQ7666 TAP features include the following:

• 4-wire synchronous communication
• TAP signals compatible with JTAG IEEE Standard 1149.1
• Maximum TAP clock frequency limited to 1/8 the system clock

For detailed information on the TAP and TAP controller, refer to IEEE STD 1149.1 "IEEE Standard Test Access Port and Boundary-Scan
Architecture." Except where explicitly noted, the MAXQ7665 and MAXQ7666 features are identical.

10.2 Architecture
The MAXQ7665/MAXQ7666 TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals. The
TAP state control is achieved through host manipulation of the test mode select (TMS) and test clock (TCK) signals. Based on its state
transition, the controller provides the clock and control sequence for TAP operation. The performance of the TAP is dependent on the
TCK clock frequency. The maximum TCK clock frequency should be limited to 1/8 the system clock frequency. Figure 10-1 shows a
simplified functional block diagram of the MAXQ7665/MAXQ7666 TAP and TAP controller.

The TAP provides an independent serial channel to communicate synchronously with the host system. The TMS signal is sampled at
the rising edge of TCK and decoded by the TAP Controller to control movement between the TAP states. The TDI input and TDO out-
put are meaningful once the TAP is in a serial shift state.

The TAP controller block has four working registers that control the operation of the port.
• TAP Debug Register
• TAP System Programming Register
• TAP Instruction Register
• TAP Bypass Register

These registers are accessed through the TAP port only and control the sequencing of the TAP state machine. These registers are not
accessible from the CPU.

MAXQ7665/MAXQ7666 User’s Guide

10-3

Figure 10-1. MAXQ7665/MAXQ7666 TAP and TAP Controller

P0.0/TDO

DVDDIODVDDIO

DVDDIO

P0.2/TDI

WRITE

P0.3/TCK

DEBUG REGISTER

UPDATE-DR

UPDATE-DR

P0.1/TMS

SYSTEM PROGRAMMING
REGISTER

READ

TO DEBUG
ENGINE

SHADOW
REGISTER

POWER-ON
RESET

BYPASS

INSTRUCTION REGISTER

7 6 5 4 3 2 1 0 s1 s0

2 1 0

2 1 0

DVDDIO

TAP CONTROLLER

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-4

10.2.1 TAP Pins
The TAP is formed by four interface signals as described in Table 10-1. The TAP signals are multiplexed with port pins P0.0, P0.1, P0.2,
and P0.3. These pins default to their JTAG TAP function on reset, which means that the MAXQ7665/MAXQ7666 will always be ready
for in-circuit debugging or in-circuit programming following any reset.

Once an application has been loaded and starts running, the JTAG TAP port can still be used for in-circuit debugging operations. If
in-circuit debugging functionality is not needed, the P0.0, P0.1, P0.2, and P0.3 port pins can be reclaimed for application use by set-
ting the TAP (SC.7) bit to 0. This disables the JTAG TAP interface and allows the four pins to operate as normal port pins.

Table 10-1. MAXQ7665/MAXQ7666 TAP Pins
PIN

48 56
NAME MULTIPLEXED WITH

PORT SIGNAL FUNCTION

32 37 TDO P0.0

JTAG Serial Test Data Output. This signal is used to serially transfer internal data to the
external host. Data is transferred least significant bit first. Data is driven out only on the
falling edge of TCK, only during TAP Shift-IR or Shift-DR states and is otherwise inactive.
This pin is weakly pulled high internally when inactive and/or when SC.7 (TAP) = 1. After
power-up or a reset this pin defaults to JTAG TDO pin.

33 38 TMS P0.1
JTAG Test Mode Select Input. This signal is sampled at the rising edge of TCK and
controls movement between TAP states. TMS is weakly pulled high internally when TAP =
1. After power-up or a reset this pin defaults to JTAG TMS pin.

34 39 TDI P0.2

JTAG Serial Test Data Input. This signal is used to receive data serially transferred by the
host. Data is received least significant bit first and is sampled on the rising edge of TCK.
TDI is weakly pulled high internally when TAP = 1. After power-up or a reset this pin
defaults to JTAG TDI pin.

35 40 TCK P0.3
JTAG Serial Test Clock Input. Provided by the host. When this signal is stopped at 0,
storage elements in the TAP logic retain their data indefinitely. TCK is weakly pulled high
internally when TAP = 1. After power-up or a reset this pin defaults to JTAG TCK pin.

Maxim Integrated

10.3 TAP Interface Control
Once an application has been loaded and starts running, the MAXQ7665/MAXQ7666 JTAG TAP interface can be controlled by the TAP
bit in the system control register as described in Section 10.3.1.

10.3.1 System Control Register (SC)
Register Description: System Control Register
Register Name: SC
Register Address: Module 08h, Index 08h

Bit 7: Test Access (JTAG) Port Enable (TAP). This bit controls whether the TAP special function pins are enabled. The TAP defaults
to being enabled.

0 = JTAG/TAP functions are disabled and P0.0–P0.3 can be used as general-purpose I/O pins
1 = TAP special function pins P0.0–P0.3 are enabled to act as JTAG inputs and outputs

Bits 6 and 0: Reserved.

Bits 5 and 4: Code Data Access Bits 1 and 0 (CDA1:CDA0). See Section 1 for more information on these bits.

Bit 3: Upper Program Access (UPA). See Section 1 for more information on this bit.

Bit 2: ROM Operation Done (ROD). See Section 11 for more information on this bit.

Bit 1: Password Lock (PWL). See Section 12 for more information on this bit.

MAXQ7665/MAXQ7666 User’s Guide

10-5

Bit # 7 6 5 4 3 2 1 0

Name TAP — CDA1 CDA0 UPA ROD PWL —

Reset 1 0 0 0 0 0 1* 0

Access rw r rw rw rw rw rw r

r = read, w = write
*This register defaults to 80h on all forms of reset except after power-on reset. After power-on reset, the PWL bit is also set and this register defaults to 82h.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-6

10.4 TAP Controller Operation
The MAXQ7665/MAXQ7666 TAP controller is formed by a finite state machine that provides 16 operational states for access control. The
TAP state control is achieved through host manipulation of the TMS and TCK signals. The TMS signal is sampled at the rising edge of TCK
and decoded by the TAP controller to control movement between the TAP states. The TDI input and TDO output are meaningful once the
TAP is in a serial shift state. This section provides a brief description of the TAP controller state machine and its state transitions.

The state diagram in Figure 10-2 summarizes the transitions caused by the TMS signal sampling on the rising edge at TCK. The TMS
signal value is shown adjacent to each state transition in the figure.

10.4.1 Test-Logic-Reset
On a power-on reset, the TAP controller is initialized to the test-logic-reset state and the instruction register (IR2:IR0) is initialized to the
bypass instruction so that it does not affect normal system operation. No matter what the state of the controller, it enters test-logic-reset
when TMS is held high for at least five rising edges of TCK. The controller remains in the test-logic-reset state if TMS remains high. An
erroneous low signal on the TMS can cause the controller to move into the run-test-idle state, but no disturbance is caused to system
operation if the TMS signal is returned and kept at the intended logic-high for three rising edges of TCK since this returns the controller
to the test-logic-reset state.

TEST-LOGIC-RESET

RUN-TEST-IDLE SELECT-DR-SCAN

EXIT2-DR

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

UPDATE-DR

SELECT-IR-SCAN

EXIT2-IR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

UPDATE-IR

1

0

1 1 1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0 0

1 1

0 0

Figure 10-2. TAP Controller State Diagram

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-7

10.4.2 Run-Test-Idle
As illustrated in Figure 10-2, the run-test-idle state is an intermediate state for getting to one of the two state sequences in which the
TAP controller performs meaningful operations:

• Controller state sequence (IR-scan)

• Data register state sequence (DR-scan)

10.4.3 IR-Scan Sequence
The MAXQ7665/MAXQ7666 support a 3-bit TAP instruction register to allow certain device specific instructions (e.g., "Debug" or
"System Programming") to be supported. The IR-Scan sequence allows instructions (e.g., "Debug" and "System Programming") to be
shifted into the instruction register starting from the select-IR-scan state. In the TAP, the instruction register is connected between the
TDI input and the TDO output. Inside the IR-scan sequence, the capture-IR state loads a fixed binary pattern (001b) into the 3-bit shift
register and the shift-IR state causes shifting of TDI data into the shift register and serial output to TDO, least significant bit first. Once
the desired instruction is in the shift register, the instruction can be latched into the parallel instruction register (IR2:IR0) on the falling
edge of TCK in the update-IR state. The contents of the 3-bit instruction shift register and parallel instruction register (IR2:IR0) are sum-
marized with respect to the TAP controller states in Table 10-2.

When the parallel instruction register (IR2:IR0) is updated, the TAP controller decodes the instruction and performs any necessary
operations, including activation of the data shift register to be used for the particular instruction during data register shift sequences
(DR-scan). The length of the activated shift register depends upon the value loaded to the instruction register (IR2:IR0). The support-
ed instruction register encodings and associated data-register selections are shown in Table 10-3.

The extest (IR2:IR0 = 000b) and sample/preload (IR2:0 = 001b) instructions are mandated by the JTAG standard; however, the
MAXQ7665/MAXQ7666 do not make use of these instructions. These instructions are treated as no operations and may be entered into
the instruction register without affecting the on-chip system logic or pins and does not change the existing serial data register selection
between TDI and TDO.

The bypass (IR2:IR0 = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard. The bypass instruction is fully imple-
mented by the MAXQ7665/MAXQ7666 to provide a minimum length serial data path between the TDI and the TDO pins. This is accom-
plished by providing a single-cell bypass shift register. When the instruction register is updated with the bypass instruction, a single
bypass register bit is connected serially between TDI and TDO in the shift-DR state. The instruction register automatically defaults to
the bypass instruction when the TAP is in the test-logic-reset state. The bypass instruction has no effect on the operation of the on-chip
system logic.

The debug (IR2:IR0 = 010b) and system programming (IR2:IR0 = 100b) instructions are private instructions that are intended solely
for in-circuit debug and in-system programming operations, respectively. If the instruction register is updated with the debug instruc-
tion, a 10-bit serial shift register is formed between the TDI and TDO pins in the shift-DR state. If the system programming instruction
is entered into the instruction register (IR2:IR0), a 3-bit serial data shift register is formed between the TDI and TDO pins in the shift-
DR state.

Instruction register (IR2:IR0) settings other than those listed and previously described are reserved for internal use. As can be seen in
Figure 10-1, the instruction register serves to select the length of the serial data register between TDI and TDO during the shift-DR state.

Table 10-2. Instruction Register Content vs. TAP Controller State
 TAP CONTROLLER STATE INSTRUCTION SHIFT REGISTER PARALLEL (3-BIT) INSTRUCTION REGISTER (IR2:IR0)

Test-Logic-Reset Undefined Set to bypass (011b) instruction
Capture-IR Load 001b at the rising edge of TCK Retain last state

Shift-IR Input data via TDI and shift towards TDO at the rising
edge of TCK

Retain last state

Exit1-IR, Exit2-IR, Pause-IR Retain last state Retain last state
Update-IR Retain last state Load from shift register at the falling edge of TCK

All other states Undefined Retain last state

Maxim Integrated

10.4.4 DR-Scan Sequence
Once the instruction register has been configured to a desired state (mode), transactions are performed via a data buffer register asso-
ciated with that mode. These data transactions are executed serially in a manner analogous to the process used to load the instruc-
tion register. The transactions are grouped in the TAP controller state sequence starting from the select-DR-scan state. In the TAP con-
troller state sequence, the shift-DR state allows internal data to be shifted out through the TDO pin while the external data is shifted in
simultaneously via the TDI pin. Once a complete data pattern is shifted in, input data can be latched into the parallel buffer of the
selected register on the falling edge of TCK in the update-DR state. On the same TCK falling edge, in the update-DR state, the inter-
nal parallel buffer is loaded to the data shift register for output. This shift-DR/update-DR process serves as the basis for passing infor-
mation between the external host and the MAXQ7665/MAXQ7666. These data register transactions occur in the data register portion
of the TAP controller state sequence diagram and have no effect on the instruction register.

10.4.5 Communication via TAP
The TAP controller is in test-logic-reset state after a power-on-reset. During this initial state, the instruction register contains bypass
instruction and the serial path defined between the TDI and TDO pins for the shift-DR state is the 1-bit bypass register. All TAP signals
(TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on any reset. The TAP controller remains in the test-logic-reset
state as long as TMS is held high. The TCK and TMS signals can be manipulated by the host to transition to other TAP states. The TAP
controller remains in a given state whenever TCK is held low.

For the host to establish a specific data communication link, a private instruction must be loaded into the IR2:IR0 register. Once the
instruction is latched in the instruction parallel buffer at the update-IR state, it is recognized by the TAP controller and the communi-
cation channel is established. In-circuit debug or in-system programming commands and data can be exchanged between the host
and the MAXQ7665/MAXQ7666 by operating in the data register portion of the state sequence (i.e., DR-scan). The TAP retains the pri-
vate instruction that was loaded into IR2:IR0 until a new instruction is shifted in or until the TAP controller returns to the test-logic-reset
state.

MAXQ7665/MAXQ7666 User’s Guide

10-8

Table 10-3. Instruction Register Commands

IR2:IR0 INSTRUCTION FUNCTION SERIAL DATA SHIFT
REGISTER SELECTION

0 0 0 Extest No operation Unchanged (retain previous selection)
0 0 1 Sample/Preload No operation Unchanged (retain previous selection)
0 1 0 Debug In-circuit debug mode 10-bit shift register
0 1 1 Bypass No operation (default) 1-bit shift register
1 0 0 System Programming Bootstrap function 3-bit shift register
1 0 1 Bypass No operation (default) 1-bit shift register
1 1 0 Reserved
1 1 1 Bypass No operation (default) 1-bit shift register

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-9

Figure 10-3. TAP Controller Debug Mode—IR-Scan Example

NEW INSTRUCTION

INSTRUCTION REGISTER

TCK

TMS

TDI

TDO

CONTROL
STATE

IR SHIFT
REGISTER

IR PARALLEL
OUTPUT

REGISTER
SELECTED

TDO
ENABLE

BYPASS

DON'T CARE OR UNDEFINEDDON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-IR

SHIFT-IR

SHIFT-IR

EXIT1-IR

EXIT1-IR

UPDATE-IR

RUN-TEST/IDLE

EXIT2-IR

PAUSE-IR

10.4.5.1 TAP Communication Examples IR-Scans and DR-Scans
Figures 10-3 and 10-4 illustrate examples of communication between the host JTAG controller and the TAP of the MAXQ7665/
MAXQ7666. The host controls the TCK and TMS signals to move through the desired TAP states while accessing the selected shift reg-
ister through the TDI input and TDO output pair.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

10-10

Figure 10-4. TAP Controller Debug Mode—DR-Scan Example

OLD DATA NEW DATA

DATA REGISTER

TCK

TMS

TDI

TDO

CONTROL
STATE

SHIFT
REGISTER

PARALLEL
OUTPUT

INSTRUCTION
REGISTER

TDO
ENABLE

DON'T CARE OR UNDEFINED DON'T CARE OR UNDEFINED

DON'T CARE OR UNDEFINED

TEST-LOGIC-RESET

RUN-TEST/IDLE

SELECT-DR-SCAN

SELECT-DR-SCAN

SELECT-IR-SCAN

CAPTURE-DR

SHIFT-DR

SHIFT-DR

EXIT1-DR

EXIT1-DR

UPDATE-DR

RUN-TEST/IDLE

EXIT2-DR

PAUSE-DR

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

__11-1

SECTION 11: IN-CIRCUIT DEBUG MODE

This section contains the following information:

11.1 Architecture .11-3

11.2 In-Circuit Debug Peripheral Registers .11-4

11.2.1 In-Circuit Debug Temporary 0 Register (ICDT0) .11-4

11.2.2 In-Circuit Debug Temporary 1 Register (ICDT1) .11-5

11.2.3 In-Circuit Debug Control Register (ICDC) .11-5

11.2.4 In-Circuit Debug Flag Register (ICDF) .11-7

11.2.5 In-Circuit Debug Buffer Register (ICDB) .11-7

11.2.6 In-Circuit Debug Address Register (ICDA) .11-8

11.2.7 In-Circuit Debug Data Register (ICDD). .11-8

11.2.8 System Control Register (SC) .11-9

11.3 Debug Engine Operation .11-10

11.3.1 Background Mode Operation .11-10

11.3.2 Breakpoint Registers .11-12

11.3.2.1 Breakpoint Registers 0 to 3 (BP0 to BP3) .11-12

11.3.2.2 Breakpoint Register 4 (BP4) .11-13

11.3.2.3 Breakpoint Register 5 (BP5) .11-14

11.3.3 Using Breakpoints .11-14

11.3.4 Debug Mode .11-15

11.3.5 Debug Mode Commands .11-15

11.3.6 Read-Register Map Command Host-ROM Instruction .11-17

11.3.7 Single-Step (Trace) Operation .11-17

11.3.8 Return .11-17

11.3.9 Debug Mode Special Considerations .11-18

11.3.10 Debug Command Operation .11-18

11.3.10.1 Register Read and Write Commands .11-18

11.3.10.2 Data Memory Read Command .11-18

11.3.10.3 Data Memory Write Command .11-19

11.3.10.4 Program Stack Read Command .11-19

11.3.10.5 Read Register Map Command .11-19

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

11-2

Figure 11-1. In-Circuit Debugger .11-3

LIST OF FIGURES

Table 11-1. Background Mode Commands .11-11

Table 11-2. Background Mode Debug Commands .11-16

Table 11-3. Output from DebugReadMap Command .11-19

LIST OF TABLES

Maxim Integrated

SECTION 11: IN-CIRCUIT DEBUG MODE
The MAXQ7665/MAXQ7666 are equipped with embedded debug hardware and embedded ROM firmware developed for the purpose
of providing in-circuit debugging capability to the user application. The in-circuit debug mode uses the JTAG-compatible TAP as its
means of communication between the host and MAXQ7665/MAXQ7666 microcontrollers. The in-circuit debug hardware and software
features include the following:

• A debug engine

• A set of registers providing the ability to set breakpoints on register, code, or data

• A set of debug service routines stored in a ROM

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

• Background mode allows the host to configure and set up the in-circuit debugger while the CPU continues to execute the normal
program. Debug mode can be invoked from background mode.

• Debug mode allows the debug engine to take control of the CPU, providing read-write access to internal registers and memory,
and single-step trace operation.

11.1 Architecture
Figure 11-1 shows a simplified functional block diagram of the MAXQ7665/MAXQ7666 in-circuit debugger. The embedded hardware
debug engine is implemented as a stand-alone hardware block in the MAXQ7665/MAXQ7666 microcontrollers. The debug engine can
be enabled for monitoring internal activities and interacting with selected internal registers while the CPU is executing user code. This
capability allows the user to employ the embedded debug engine to debug the actual system, in place of the in-circuit emulator that
uses external hardware to duplicate operation of the microcontroller outside of the real application environment.

The embedded debug engine is a state machine that takes commands from the host device and performs the necessary tasks to com-
plete the debug function. While the TAP is running at the TCK clock frequency, the debug engine and all its associated hardware are
clocked by the system clock. The debug engine is not operated in stop mode.

All debug engine activities are originated by the external host through 8-bit commands. The debug engine decodes the command in
the ICDB register directly, and provides the following functions for use in debugging application software:

• Single-step (trace) execution

• Four program address breakpoints

• Two breakpoints configurable as data address or register address break points

• Register read and write

• Program stack read

• Data memory read and write

• Optional password protection

MAXQ7665/MAXQ7666 User’s Guide

11-3

Figure 11-1. In-Circuit Debugger

TMS

TDO
TDI

TCK

CPU

ROM

DEBUG
ENGINE

BREAKPOINT

BREAK

ICDB

ICDF

ICDC

COMPARATOR

COMPARATOR

COMPARATOR

CODE ADDR

DATA ADDR

REG DATA

IP

IR DATA

ADDR

ENABLE

ICDA

ICDD

TAP
CONTROLLER

Maxim Integrated

The debug engine is supported by five functional registers:

• ICDB: The ICDB register is an 8-bit data register that supports exchanging command/data between the host system and the in-
circuit debugger. The register functions as an 8-bit parallel buffer for the debug shift register in the TAP. The ICDB register is
mapped to the peripheral register space and is read/write accessible by the CPU and the debug engine.

• ICDC: The ICDC register is an 8-bit control register for the in-circuit debugger. All bits in this register are set/reset by the debug
engine. It is mapped to the peripheral register space and is read only by the CPU.

• ICDF: The ICDF register is an 8-bit register and is used to provide system status to the host system, the debug engine, and the
CPU during debug operation. This register is mapped to the peripheral register space and read/write accessible by the CPU and
the debug engine.

• ICDA: The ICDA register is a 16-bit register that is primarily used to specify an address for ROM assisted operations. The ICDA
is mapped to the peripheral register space and is read only by the CPU. It is read/write accessible by the debug engine. The
ICDA may also be used as a bit mask for register access breakpoints (REGE = 1).

• ICDD: The ICDD register is a 16-bit register that is used to store data for ROM assisted operations. The ICDD is mapped to the
peripheral register space and is read only by the CPU. It is read/write accessible by the debug engine. The ICDD may also be
used as the bit compare match data for register access breakpoints (REGE = 1).

11.2 In-Circuit Debug Peripheral Registers
The MAXQ7665/MAXQ7666 in-circuit debug peripheral registers are described here. All the in-circuit debug peripheral registers are
directly accessible by the microcontroller through the module/index address.

11.2.1 In-Circuit Debug Temporary 0 Register (ICDT0)
The ICDT0 register is read/write accessible by the CPU only in background mode or debug mode. This register is intended for use by
the utility ROM routine as temporary storage to save registers that might otherwise have to be placed in the stack. This register is
cleared after a power-on reset or by a test-logic-reset TAP state.

Register Description: In-Circuit Debug Temporary 0 Register
Register Name: ICDT0
Register Address: Module 02h, Index 18h

Bits 15 to 0: In-Circuit Debug Temporary 0 Register Bits 15 to 0 (ICDT0.15 to ICDT0.0)

MAXQ7665/MAXQ7666 User’s Guide

11-4

Bit # 15 14 13 12 11 10 9 8

Name ICDT0.15 ICDT0.14 ICDT0.13 ICDT0.12 ICDT0.11 ICDT0.10 ICDT0.9 ICDT0.8

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name ICDT0.7 ICDT0.6 ICDT0.5 ICDT0.4 ICDT0.3 ICDT0.2 ICDT0.1 ICDT0.0

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

s = special (read/write access only in background or debug mode)

Maxim Integrated

11.2.2 In-Circuit Debug Temporary 1 Register (ICDT1)
The ICDT1 register is read/write accessible by the CPU only in background mode or debug mode. This register is intended for use by
the utility ROM routines as temporary storage to save registers that might otherwise have to be placed in the stack. This register is
cleared after a power-on reset or by a test-logic-reset TAP state.

Register Description: In-Circuit Debug Temporary 1 Register
Register Name: ICDT1
Register Address: Module 02h, Index 19h

Bits 15 to 0: In-Circuit Debug Temporary 1 Register Bits 15 to 0 (ICDT1.15 to ICDT1.0)

11.2.3 In-Circuit Debug Control Register (ICDC)
The ICDC register is read/write accessible by the debug engine and is read only by the CPU. This register is cleared after a power-on
reset or by a test-logic-reset TAP state.

Register Description: In-Circuit Debug Control Register
Register Name: ICDC
Register Address: Module 02h, Index 1Ah

Bit 7: Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands can be executed but breakpoints are
disabled. When this bit is set to 1, breakpoints are enabled while background mode commands can still be entered. This bit can only
be set or cleared from background debug mode. This bit has no meaning for the ROM code.

Bits 6 and 4: Reserved. Read 0, write ignored.

MAXQ7665/MAXQ7666 User’s Guide

11-5

s = special (read/write access only in background or debug mode)

Bit # 15 14 13 12 11 10 9 8

Name ICDT1.15 ICDT1.14 ICDT1.13 ICDT1.12 ICDT1.11 ICDT1.10 ICDT1.9 ICDT1.8

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name ICDT1.7 ICDT1.6 ICDT1.5 ICDT1.4 ICDT1.3 ICDT1.2 ICDT1.1 ICDT1.0

Reset 0 0 0 0 0 0 0 0

Access s s s s s s s s

r = read, s = special (write only by debug engine)

Bit # 7 6 5 4 3 2 1 0

Name DME — REGE — CMD.3 CMD.2 CMD.1 CMD.0

Reset 0 0 0 0 0 0 0 0

Access rs r rs r rs rs rs rs

Maxim Integrated

Bit 5: Break-On Register Enable (REGE). The REGE bit is used to enable the break-on register function. When the REGE bit is set to
1, BP4 and BP5 are used as register breakpoints. A break occurs when the content of BP4 is matched with the destination address of
the current instruction. For BP5, a break occurs only on a selected data pattern for a selected destination register addressed by BP5.
The data pattern is determined by the contents in the ICDA and ICDD register. The REGE bit alone does not enable register breakpoints,
but simply changes the manner in which BP4 and BP5 are used. The DME bit still must be set to logic 1 for any breakpoint to occur. This
bit has no meaning for the ROM code.

Bits 3 to 0: Command Bits 3 to 0 (CMD.3 to CMD.0). These bits reflect the current host command in debug mode. These bits are set
by the debug engine and allow the ROM code to determine the course of action.

MAXQ7665/MAXQ7666 User’s Guide

11-6

CMD.3 CMD.2 CMD.1 CMD.0 ACTION

0 0 0 0 No Operation

0 0 0 1 Read Register Map

0 0 1 0 Read Data Memory

0 0 1 1 Read Stack Memory

0 1 0 0 Write Register

0 1 0 1 Write Data Memory

0 1 1 0 Trace, Single-Step the CPU

1 0 0 0 Unlock Password

1 0 0 1 Read Register

X X X X Reserved

Maxim Integrated

11.2.4 In-Circuit Debug Flag Register (ICDF)
Register Description: In-Circuit Debug Flag Register
Register Name: ICDF
Register Address: Module 02h, Index 1Bh

Bits 7 to 4: Reserved. Read 0, write ignored.

Bits 3 and 2: Programming Source Select Bits 1 and 0 (PSS1 and PSS0). See Section 12 for information on these bits.

Bit 1: System Program Enable (SPE). See Section 12 for information on this bit.

Bit 0: Serial Transfer Enable (TXC). This bit is set by hardware at the end of a transfer cycle at the TAP communication link. The TXC
bit helps the debug engine to recognize host requests, either command or data. This bit is normally set by ROM code to signify or
request the sending or receiving of data. Once set, the debug engine clears the TXC bit. CPU writes to the TXC bit result in the clear-
ing of the JTAG PSS1 and PSS0 bits.

11.2.5 In-Circuit Debug Buffer Register (ICDB)
The ICDB register serves as the parallel holding buffer for the debug shift register of the TAP. Data is read from or written to ICDB for
serial communication between the debug routines and the external host. This register is cleared to 00h after a power-on reset or a test-
logic-reset TAP state.

Register Description: In-Circuit Debug Buffer Register
Register Name: ICDB
Register Address: Module 02, Index 1Ch

Bits 7 to 0: In-Circuit Debug Buffer Register Bits 7 to 0 (ICDB.7 to ICDB.0)

MAXQ7665/MAXQ7666 User’s Guide

11-7

Bit # 7 6 5 4 3 2 1 0

Name — — — — PSS1 PSS0 SPE TXC

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

r = read, w = write

Bit # 7 6 5 4 3 2 1 0

Name ICDB.7 ICDB.6 ICDB.5 ICDB.4 ICDB.3 ICDB.2 ICDB.1 ICDB.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write

Maxim Integrated

11.2.6 In-Circuit Debug Address Register (ICDA)
The debug engine uses the ICDA register to store addresses so that ROM code may view that information. This register is also used
by the debug engine as a mask register to mask out don’t care bits in the ICDD register when BP5 is used as a register breakpoint.
When a bit in this register is set to 1, the corresponding bit location in the ICDD register is compared to the data being written to the
destination register to determine if a break should be generated. When a bit in this register is cleared, the corresponding bit in the
ICDD register are don’t cares and are not compared against the data being written. When all bits in this register are cleared, any updat-
ed data pattern causes a break when the BP5 register matches the destination register address of the current instruction. This regis-
ter is cleared to 0000h after a power-on reset or a test-logic-reset TAP state.

Register Description: In-Circuit Debug Address Register
Register Name: ICDA
Register Address: Module 02h, Index 1Dh

Bits 15 to 0: In-Circuit Debug Address Register Bits 15 to 0 (ICDA.15 to ICDA.0)

11.2.7 In-Circuit Debug Data Register (ICDD)
The debug engines uses the ICDD register to store data/read count so that ROM code can view that information. The debug engine also
uses this register as a data register for content matching when BP5 is used as a register breakpoint. In this case, only data bits in this
register with their corresponding mask bits in the ICDA register set are compared with the updated destination data to determine if a
break should be generated. This register is cleared to 0000h after a power-on reset and or a test-logic-reset sequence TAP state.

Register Description: In-Circuit Debug Data Register
Register Name: ICDD
Register Address: Module 02h, Index 1Eh

Bits 15 to 0: In-Circuit Debug Data Register Bits 15 to 0 (ICDD.15 to ICDD.0)

MAXQ7665/MAXQ7666 User’s Guide

11-8

Bit # 15 14 13 12 11 10 9 8

Name ICDA.15 ICDA.14 ICDA.13 ICDA.12 ICDA.11 ICDA.10 ICDA.9 ICDA.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ICDA.7 ICDA.6 ICDA.5 ICDA.4 ICDA.3 ICDA.2 ICDA.1 ICDA.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Bit # 15 14 13 12 11 10 9 8

Name ICDD.15 ICDD.14 ICDD.13 ICDD.12 ICDD.11 ICDD.10 ICDD.9 ICDD.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name ICDD.7 ICDD.6 ICDD.5 ICDD.4 ICDD.3 ICDD.2 ICDD.1 ICDD.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read

Maxim Integrated

11.2.8 System Control Register (SC)
Register Description: System Control Register
Register Name: SC
Register Address: Module 08h, Index 08h

Bit 7: Test Access (JTAG) Port Enable (TAP). This bit controls whether the TAP special function pins are enabled. The TAP defaults
to being enabled. See Section 10 for more information on this bit.

0 = JTAG/TAP functions are disabled and P0.0–P0.3 can be used as general-purpose I/O pins
1 = TAP special function pins P0.0–P0.3 are enabled to act as JTAG inputs and outputs

Bits 6 and 0: Reserved

Bits 5 and 4: Code Data Access Bits 1 and 0 (CDA1:CDA0). See Section 1 for more information on these bits.

Bit 3: Upper Program Access (UPA). See Section 1 for more information on this bit.

Bit 2: ROM Operation Done (ROD). This bit is used to signify completion of a ROM operation sequence to the control units. This allows
the debug engine to determine the status of a ROM sequence. Setting this bit to logic 1 causes an internal system reset if the SPE bit
is also set. Setting the ROD bit will clear the SPE bit if it is set and the ROD bit will be automatically cleared by hardware once the con-
trol unit acknowledges the done indication.

Bit 1: Password Lock (PWL). This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte password to be
matched with the password in the program space before allowing access to the password protected in-circuit debug or bootstrap
loader ROM routines. Clearing this bit to 0 disables the password protection for these ROM routines. See Section 12 for more infor-
mation on this bit.

MAXQ7665/MAXQ7666 User’s Guide

11-9

Bit # 7 6 5 4 3 2 1 0

Name TAP — CDA1 CDA0 UPA ROD PWL —

Reset 1 0 0 0 0 0 1* 0

Access rw r rw rw rw rw rw r

r = read, w = write
*This register defaults to 80h on all forms of reset except after power-on reset. After power-on reset, the PWL bit is also set and this register defaults to 82h.

Maxim Integrated

11.3 Debug Engine Operation
To enable a communication link between the host and the MAXQ7665/MAXQ7666 debug engine, the debug instruction (010b) must
be loaded into the TAP instruction register using the IR-scan sequence. Once the instruction is latched in the instruction parallel buffer
(IR2:IR0) and is recognized by the TAP controller in the update-IR state, the 10-bit data shift register is activated as the communica-
tion channel for DR-scan sequences. The TAP instruction register retains the debug instruction until a new instruction is shifted via an
IR-scan or the TAP controller returns to the test-logic-reset state.

The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI input and TDO out-
put during DR-scan sequences. All background and debug mode communication (commands, data input/output, and status) occurs
via this serial channel. Each 10-bit exchange of data between the host and the MAXQ7665/MAXQ7666 internal hardware is composed
of two status bits and a single byte of command or data. The 10-bit word is always transmitted least significant bit first according to
the following format.

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register. The ICDB register functions as the hold-
ing data register for both transmit and receive operations. On the falling edge of TCK in the update-DR state, the outgoing data is loaded
from the ICDB parallel register to the debug shift register, and the incoming shift register data is latched in the ICDB parallel register.

11.3.1 Background Mode Operation
When the instruction register is loaded with the debug instruction (IR2:IR0 = 010b), the host can communicate with the MAXQ7665/
MAXQ7666 in a background mode using TAP DR-scan sequences without disturbing CPU operation. Note, however, that JTAG in-sys-
tem programming also requires use of the 10-bit debug shift register and, if enabled (SPE, PSS1:PSS0 = 100b), takes precedence over
background mode communication. When operating in background mode, the status bits are always cleared to 00b (nondebug), which
indicates that the MAXQ7665/MAXQ7666 are ready to receive background mode commands. The host can perform the following oper-
ations from background mode:

• Read/write internal breakpoint registers (BP0–BP5).

• Read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD).

• Monitor to determine when a breakpoint match has occurred.

• Directly invoke debug mode.

MAXQ7665/MAXQ7666 User’s Guide

11-10

HOST COMMAND/DATA INPUT

TDI TDO

MAXQ DATA OUTPUT

00

01

10

11

MAXQ

09

X X

09

s1:s0 STATUS/CONDITION

NONDEBUG. DEFAULT CONDITION,
BACKGROUND MODE, OR DEBUG
ENGINE INACTIVE.

DEBUG IDLE. DEBUG ENGINE IS
READY TO RECEIVE DATA FROM THE
HOST (COMMAND, DATA).

DEBUG BUSY. DEBUG ENGINE IS
BUSY WITHOUT VALID DATA (i.e., ROM
CODE EXECUTION, TRACE OPERATIONS).

DEBUG VALID. DEBUG ENGINE IS
BUSY WITH VALID DATA.

Maxim Integrated

Table 11-1 shows the background mode commands supported by the MAXQ7665/MAXQ7666. Encodings not listed in this table are
not supported in background mode and are treated as no operations.

A command can consist of multiple-byte transactions between the external host and the debug engine via the TAP. However, a com-
mand code is always 8 bits and is always transmitted first, followed by address and/or data when needed.

MAXQ7665/MAXQ7666 User’s Guide

11-11

Table 11-1. Background Mode Commands
OP CODE COMMAND OPERATION
0000-0000 No Operation No Operation. Default state for Debug Shift register.

0000-0001 Read ICDC Read Control Data from the ICDC. The contents of the ICDC register are loaded into the Debug Shift Register via the
ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0010 Read ICDF Read Flags from the ICDF. The contents of the ICDF register (one byte) are loaded into the Debug Shift Register via the
ICDB register for host read. This command requires one follow-on transfer cycle.

0000-0011 Read ICDA Read Data from the ICDA. The contents of the ICDA register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0100 Read ICDD Read Data from the ICDD. The contents of the ICDD register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0101 Read BP0 Read Data from the BP0. The contents of the BP0 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0110 Read BP1 Read Data from the BP1. The contents of the BP1 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-0111 Read BP2 Read Data from the BP2. The contents of the BP2 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1000 Read BP3 Read Data from the BP3. The contents of the BP3 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1001 Read BP4 Read Data from the BP4. The contents of the BP4 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0000-1010 Read BP5 Read Data from the BP5. The contents of the BP5 register are loaded into the Debug Shift Register via the ICDB
register for host read. This command requires two follow-on transfer cycles with the least significant byte first.

0001-0001 Write ICDC Write Control Data to the ICDC. The contents of ICDB are loaded into the ICDC register by the debug engine at the
end of the data transfer cycle.

0001-0011 Write ICDA Write Data to the ICDA. The contents of ICDB are loaded into the ICDA register by the debug engine at the end
of the data transfer cycles. Data is transferred with the least significant byte first.

0001-0100 Write ICDD Write Data to the ICDD. The contents of ICDB are loaded into the ICDD register by the debug engine at the end
of data transfer cycles. Data is transferred with the least significant byte first.

0001-0101 Write BP0 Write Data to the BP0. The contents of ICDB are loaded into the BP0 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-0110 Write BP1 Write Data to the BP1. The contents of ICDB are loaded into the BP1 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-0111 Write BP2 Write Data to the BP2. The contents of ICDB are loaded into the BP2 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-1000 Write BP3 Write Data to the BP3. The contents of ICDB are loaded into the BP3 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-1001 Write BP4 Write Data to the BP4. The contents of ICDB are loaded into the BP4 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-1010 Write BP5 Write Data to the BP5. The contents of ICDB are loaded into the BP5 register by the debug engine at the end of data
transfer cycles. Data is transferred with the least significant byte first.

0001-1111 Debug Debug Command. This command forces the debug engine into debug mode and halts the CPU operation at the
completion of the current instruction after the debug engine recognizes the debug command.

Maxim Integrated

11.3.2 Breakpoint Registers
The MAXQ7665/MAXQ7666 incorporate six host-configurable breakpoint registers (BP0–BP5) for establishing different types of break-
point mechanisms. The first four breakpoint registers (BP0–BP3) are 16-bit registers that are configurable as program memory address
breakpoints. When enabled, the debug engine forces a break when a match between the breakpoint register and the program mem-
ory execution address occurs. The final two 16-bit breakpoint registers (BP4 and BP5) are configurable in one of two ways. They can
be configured as data memory address breakpoints or can be configured to support register-access breakpoints. In either case, if
breakpoints are enabled and the defined breakpoint match occurs, the debug engine generates a break condition. The six breakpoint
registers are detailed in the following sections.

11.3.2.1 Breakpoint Registers 0 to 3 (BP0 to BP3)

The BP0 to BP3 registers are accessible only via background mode read/write debug commands. These four registers serve as pro-
gram memory address breakpoints. When the DME bit is set, the debug engine monitors the program address bus activity while the
CPU is executing the user program. A break occurs when the address pattern matches with the contents of these registers, allowing
the debug engine to take control of the CPU and enter debug mode.

Register Description: Breakpoint Register x (where x = 0, 1, 2, 3)
Register Name: BPx

Bits 15 to 0: Breakpoint Register x Bits 15 to 0 (BPx.15 to BPx.0). These registers default to FFFFh after a power-on reset or test-
logic-reset TAP state.

MAXQ7665/MAXQ7666 User’s Guide

11-12

Bit # 15 14 13 12 11 10 9 8

Name BPx.15 BPx.14 BPx.13 BPx.12 BPx.11 BPx.10 BPx.9 BPx.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BPx.7 BPx.6 BPx.5 BPx.4 BPx.3 BPx.2 BPx.1 BPx.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

s = special (accessible only by background mode read/write commands)

Maxim Integrated

11.3.2.2 Breakpoint Register 4 (BP4)

Register Description: Breakpoint Register 4
Register Name: BP4

This register is accessible only via background mode read/write commands.

When (REGE = 0): This register serves as one of the two data memory address breakpoints. When DME is set in background mode,
the debug engine monitors the data memory address bus activity while the CPU is executing the user program. If an address match
is detected, a break occurs, allowing the debug engine to take over control of the CPU and enter debug mode.

When (REGE = 1): This register serves as one of the two register breakpoints. A break occurs when the destination register address
for the executed instruction matches with the specified module and index. When used as register breakpoint, the bits BP4.3:BP4.0 are
recognized as module specifier and bits BP4.8:BP4.4 are recognized as the register index within the module. The bits BP4.15:BP4.9
are ignored.

This register defaults to FFFFh after a power-on reset or test-logic-reset TAP state.

Bits 15 to 0: Breakpoint Register 4 Bits 15 to 0 (BP4.15 to BP4.0)

MAXQ7665/MAXQ7666 User’s Guide

11-13

Bit # 15 14 13 12 11 10 9 8

Name BP4.15 BP4.14 BP4.13 BP4.12 BP4.11 BP4.10 BP4.9 BP4.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP4.7 BP4.6 BP4. 5 BP4.4 BP4.3 BP4.2 BP4.1 BP4.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

s = special (accessible only by background mode read/write commands)

Maxim Integrated

11.3.2.3 Breakpoint Register 5 (BP5)
This register is accessible only through background mode read/write commands.

When (REGE = 0): This register serves as one of the two data memory address breakpoints. When DME is set in background mode,
the debug engine monitors the data memory address bus activity while the CPU is executing the user program. If an address match
is detected, a break occurs, allowing the debug engine to take control of the CPU and enter debug mode.

When (REGE = 1): This register serves as one of the two register breakpoints. A break occurs when the following two conditions are
met:

• Condition 1: The destination register address for the executed instruction matches with the specified module and index. When
used as register breakpoint, the bits BP5.3:BP5.0 are recognized as module specifier and bits BP5.8:BP5.4 are recognized as
the register index within the module. Bits BP5.15:BP5.9 are ignored.

• Condition 2: The bit pattern written to the destination register matches those bits specified for comparison by the ICDD data reg-
ister and ICDA mask register. Only those ICDD data bits with their corresponding ICDA mask bits will be compared. When all bits
in the ICDA register are cleared, Condition 2 becomes a don’t care.

This register defaults to FFFFh after a power-on reset or test-logic-reset TAP state.

Register Description: Breakpoint Register 5
Register Name: BP5

Bits 15 to 0: Breakpoint Register 5 Bits 15 to 0 (BP5.15 to BP5.0)

11.3.3 Using Breakpoints
All breakpoint registers (BP0–BP5) default to the FFFFh state on power-on reset or when the test-logic-reset TAP state is entered. The
breakpoint registers are accessible only with background mode read/write commands issued over the TAP communication link. The
breakpoint registers are not read/write accessible to the CPU.

Setting the debug-mode enable (DME) bit in the ICDC register to logic 1 enables all six breakpoint registers for breakpoint match com-
parison. The state of the break-on register enable (REGE) bit in the ICDC register determines whether the BP4 and BP5 breakpoints
should be used as data memory address breakpoints (REGE = 0) or as register breakpoints (REGE = 1).

When using the register matching breakpoints, it is important to realize that debug mode operations (e.g., read data memory, write
data memory, etc.) require the use of ICDA and ICDD for passing information between the host and MAXQ7665/MAXQ7666 ROM rou-
tines. It is advised that these registers be saved and restored, or be reconfigured before returning to the background mode if register
breakpoints are to remain enabled.

When a breakpoint match occurs, the debug engine forces a break and the MAXQ7665/MAXQ7666 enter debug mode. If a breakpoint
match occurs on an instruction that activates the PFX register, the break is held off until the prefixed operation completes. The host can
assess whether debug mode has been entered by monitoring the status bits of the 10-bit word shifted out of the TDO pin. The status
bits change from the nondebug (00b) state associated with background mode to the debug-idle (01b) state when debug mode is
entered. Debug mode can also be manually invoked by host issuance of the debug background command.

MAXQ7665/MAXQ7666 User’s Guide

11-14

Bit # 15 14 13 12 11 10 9 8

Name BP5.15 BP5.14 BP5.13 BP5.12 BP5.11 BP5.10 BP5.9 BP5.8

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

Bit # 7 6 5 4 3 2 1 0

Name BP5.7 BP5.6 BP5.5 BP5.4 BP5.3 BP5.2 BP5.1 BP5.0

Reset 1 1 1 1 1 1 1 1

Access s s s s s s s s

s = special (accessible only by background mode read/write commands)

Maxim Integrated

11.3.4 Debug Mode
There are two ways to enter debug mode from background mode: 1) issuance of the debug command directly by the host through the
TAP communication port, or 2) the breakpoint matching mechanism.

The host can issue the debug background command to the debug engine. This direct debug mode entry is unstable. The response
time varies dependent on system conditions when the command is issued. The breakpoint mechanism provides a more controllable
response, but requires that the breakpoints be initially configured in background mode. No matter the method of entry, the debug
engine takes control of the CPU in the same manner. Debug mode entry is similar to the state machine flow of an interrupt except that
the target execution address is 8010h, which resides in the utility ROM instead of the address specified by the IV register that is used
for interrupts. On debug mode entry, the following actions occur:

1) Block the next instruction fetch from program memory.

2) Push the return address onto the stack.

3) Set the contents of IP to 8010h.

4) Clear the IGE bit to 0 to disable interrupt handler if it is not already clear.

5) Halt CPU operation.

Once in debug mode, further breakpoint matches or host issuance of the debug command are treated as no operations and do not
disturb debug engine operation. Entering debug mode also stops the clocks to all timers, including the watchdog timer. Temporarily
disabling these functions allows debug mode operations without disrupting the relationship between the original user program code
and hardware-timed functions. No interrupt request can be granted because the interrupt handler is also halted as a result of IGE = 0.

11.3.5 Debug Mode Commands
The debug engine sets the data shift-register status bits to 01b (debug-idle) to indicate that it is ready to accept debug commands
from the host. The host can perform the following operations from debug mode:

• Read register map

• Read program stack

• Read/write register

• Read/write data memory

• Single step of CPU (trace)

• Return to background mode

• Unlock password

The only operations directly controlled by the debug engine are single step and return. All other operations are assisted by debug ser-
vice routines contained in the utility ROM. These operations require that multiple bytes be transmitted and/or received by the host; how-
ever, each operation always begins with host transmission of a command byte. The debug engine decodes the command byte to deter-
mine the quantity, sequence, and destination for follow-on bytes received from the host. Even though there is no timing window spec-
ified for receiving the complete command and follow-on data, the debug engine must receive the correct number of bytes for a par-
ticular command before executing that command. If command and follow-on data are transmitted out of byte order or proper sequence,
the only way to resolve this situation is to disable the debug engine by changing the instruction register (IR2:IR0) and reloading the
debug instruction. Once the debug engine has received the proper number of command and follow-on bytes for a given ROM assist-
ed operation, it responds with the following actions:

• Update the command bits (CMD3:CMD0) in the ICDC register to reflect the host request.

• Enable the ROM if it is not been enabled.

• Force a jump to ROM address 8010h.

• Set the data shift register status bits to 10b (debug-busy).

The ROM code performs a read to the ICDC register CMD3:CMD0 bits to determine its course of action. The ROM can process some
commands without receiving data from the host beyond the initially supplied follow-on bytes, while others (e.g., unlock password)
require additional data from the host. Some commands need only to provide an indication of completion to the host, while others (read
register map) need to supply multiple bytes of output data. To accomplish data flow control between the host and ROM, the status bits
should be used by the host to assess when the ROM is ready for additional data and/or when the ROM is providing valid data output.

MAXQ7665/MAXQ7666 User’s Guide

11-15 Maxim Integrated

Internally, the ROM can ascertain when new data is available or when it can output the next data byte via the TXC flag. The TXC flag
is an important indicator between the debug engine and the utility ROM debug routines. The utility ROM firmware sets the TXC flag to
1 to indicate that valid data has been loaded to the ICDB register. The debug engine clears the TXC flag to 0 to indicate completion
of a data shift cycle, thus allowing the ROM to continue execution of a requested task that is still in progress. The utility ROM signals
that it has completed a requested task by setting the ROM operation done (ROD) bit of the SC register to logic 1. The ROD bit is reset
by the debug engine when it recognizes the done condition. Table 11-2 shows the debug mode commands supported by the
MAXQ7665/MAXQ7666. Note that background mode commands are supported inside debug mode. Encodings not listed in this table
are not supported in debug mode and are treated as no operations.

MAXQ7665/MAXQ7666 User’s Guide

11-16

Table 11-2. Background Mode Debug Commands
OP CODE COMMAND OPERATION

0010-0000 No Operation No Operation

0010-0001 Read Register Map

Read Data from Internal Registers. This command forces the debug engine to update the CMD3:0 bits in the
ICDC to 0001b and perform a jump to ROM code at 8010h. The ROM debug service routine will load register data to
ICDB for host capture/read, starting at the lowest register location in module 0, one byte at a time in a successive
order until all internal registers are read and output to the host.

0010-0010 Read Data Memory

Read Data from Data Memory. This command requires four follow-on transfer cycles, two for the starting address
and two for the word read count, starting with the LSB address and ending with the MSB read count. The address is
moved to the ICDA register and the word read count is moved to the ICDD register by the debug engine. This
information is directly accessible by the ROM code. At the completion of this command period, the debug engine
updates the CMD3:CMD0 bits to 0010b and performs a jump to ROM code at 8010h. The ROM debug service
routine will load ICDB from data memory according to address and count information provided by the host.

0010-0011 Read Program Stack

Read Data from Program Stack. This command requires four follow-on transfer cycles, two for the starting address
and two for the read count, starting with the LSB address and ending with the MSB read count. The address is
moved to the ICDA register and the read count is moved to the ICDD register by the debug engine. This information
is directly accessible by the ROM code. At the completion of this command period, the debug engine updates the
CMD3:CMD0 bits to 0011b and performs a jump to ROM code at 8010h. The ROM Debug service routine will pop
data out from the stack according to the information received in the ICDA and ICDD register. The stack pointer is
pre-decremented for each pop operation.

0010-0100 Write Register

Write Data to a Selected Register. This command requires four follow-on transfer cycles, two for the register
address and two for the data, starting with the LSB address and ending with the MSB data. The address is moved to
the ICDA register and the data is moved to the ICDD register by the debug engine. This information
is directly accessible by the ROM code. At the completion of this command period, the debug engine updates the
CMD3:CMD0 bits to 0100b and performs a jump to ROM code at 8010h. The ROM Debug service routine will
update the select register according to the information received in the ICDA and ICDD registers.

0010-0101 Write Data Memory

Write Data to a Selected Data Memory Location. This command requires four follow-on transfer cycles, two for
the memory address and two for the data, starting with the LSB address and ending with the MSB data. The address
is moved to the ICDA register and the data is moved to the ICDD register by the debug engine. This information is
directly accessible by the ROM code. At the completion of this command period, the debug engine updates the
CMD3:CMD0 bits to 0101b and performs a jump to ROM code at 8010h. The ROM Debug service routine will
update the selected data memory location according to the information received in the |CDA and ICDD registers.

0010-0110 Trace Trace Command. This command allows single stepping the CPU and requires no follow-on transfer cycle. The
trace operation is a ‘debug mode exit, one cycle CPU execution, debug mode entry’ sequence.

0010-0111 Return Return Command. This command terminates the debug mode and returns the debug engine to background mode.
This allows the CPU to resume its normal operation at the point where it has been last interrupted.

0010-1000 Unlock Password

Unlock the Password Lock. This command requires 32 follow-on transfer cycles each containing a byte value
to be compared with the program memory password for the purpose of clearing the PWL bit and granting access to
protected debug and loader functions. When this command is received, the debug engine updates the
CMD3:CMD0 bits to 1000b and performs a jump to ROM code at 8010h. Data is loaded to the ICDB register when
each byte of data is received, beginning with the LSB of the least significant word first and end with the MSB of the
most significant word.

0010-1001 Read Register

Read from a Selected Internal Register. This command requires two follow-on transfer cycles, starting with the
LSB address and ending with the MSB address. The address is moved to ICDA register by the debug engine. This
information is directly accessible by the ROM code. At the completion of this command period, the debug engine
updates the CMD3:CMD0 bits to 1001b and performs a jump to ROM code at 8010h. The ROM Debug service
routine will always assume a 16-bit register length and return the requested data LSB first.

Maxim Integrated

11.3.6 Read-Register Map Command Host-ROM Instruction
A read-register map command reads out data contents for all implemented system and peripheral registers. The host does not specify
a target register but instead should expect register data output in successive order, starting with the lowest order register in register mod-
ule 0. Data is loaded by the ROM to the 8-bit ICDB register and is output one byte per transfer cycle. Thus, for a 16-bit register, two trans-
fer cycles are necessary. The host initiates each transfer cycle to shift out the data bytes and will find valid data output tagged with a
debug-valid (status = 11b). At the end of each transfer cycle, the debug engine clears the TXC flag to signal the ROM service routine
that another byte can be loaded to ICDB. The ROM service routine sets the TXC flag each time after loading data to the ICDB register.
This process is repeated until all registers have been read and output to the host. The host system recognizes the completion of the reg-
ister read when the status debug-idle is presented. This indicates that the debug engine is ready for another operation.

11.3.7 Single-Step (Trace) Operation
The debug engine supports single-step operation in debug mode by executing a trace command from the host. The debug engine
allows the CPU to return to its normal program execution for one cycle and then forces a debug mode re-entry:

1) Set status to 10b (debug-busy).

2) Pop the return address from the stack.

3) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

4) Supply the CPU with an instruction addressed by the return address.

5) Stall the CPU at the end of the instruction execution.

6) Block the next instruction fetch from program memory.

7) Push the return address onto the stack.

8) Set the contents of IP to 8010h.

9) Clear the IGE bit to 0 to disable the interrupt handler.

10) Halt CPU operation.

11) Set the status to debug-idle.

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The host must main-
tain consistency of program flow during the debug process. The instruction pointer is automatically incremented after each trace oper-
ation, thus a new return address is pushed onto the stack before returning the control to the debug engine. Also, note that the inter-
rupt handler is an essential part of the CPU and a pending interrupt could be granted during single-step operation since the IGE bit
state present on debug mode entry is restored for the single step.

11.3.8 Return
To terminate the debug mode and return the debug engine to background mode, the host must issue a return command to the debug
engine. This command causes the following actions:

1) Pop the return address from the stack.

2) Set the IGE bit to logic 1 if debug mode was activated when IGE = 1.

3) Supply the CPU with an instruction addressed by the return address.

4) Allow the CPU to execute the normal user program.

5) Set the status to 00b (nondebug).

To prevent a possible endless-breakpoint matching loop, no break occurs for a breakpoint match on the first instruction after returning
from debug mode to background mode. Returning to background mode also enables all internal timer functions.

MAXQ7665/MAXQ7666 User’s Guide

11-17 Maxim Integrated

11.3.9 Debug Mode Special Considerations
The following are special considerations when using debug mode.

The debug engine cannot be operated reliably when the CPU is configured in the power management mode (divide-by-256 system
clock mode). To allow for proper execution of debug mode commands when invoked during PMM, the switchback enable (SWB) bit
should be configured to logic 1. With SWB = 1, entering active debug mode (whether by breakpoint match or issuance of the debug
command) forces a switchback to the divide-by-1 system clock mode and allows the debug engine to function correctly. This allows
user code to configure breakpoints that occur inside PMM, thus providing reliable use of debug commands. However, it does not allow
a good means for re-entering PMM.

• Special caution should be exercised when using the write-register command on register bits that globally affect system operation
(e.g., IGE, STOP). If the write-register command is used to invoke STOP mode (setting STOP = 1), the RST pin can be asserted
to reset the debug engine and return to the background mode of operation.

• Single stepping (trace) through any IGE bit change operation results in the debug engine overriding the bit change since it retains
the IGE bit setting captured when active debug mode was entered.

• Single stepping (trace) into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts normally capable
of causing exit from STOP mode to do so.

• Single stepping (trace) through any memory read instruction that reads from the utility ROM (such as "move Acc," @DP[0] with
DP[0] set to 8000h) causes the memory read to return an incorrect value.

• Single stepping (trace) cannot be used when executing code from the utility ROM.

• Data memory allocation is important during system development if in-circuit debug is planned. The top 32-byte memory location
can be used by the debug service routine during debug mode. The data contents in these locations can be altered and cannot
be recovered.

• One available stack location is needed for debug mode. If the stack is full when entering debug mode, the oldest data in the stack
will be overwritten.

• The crystal warmup counter is the only counter not disabled when active debug mode is entered. If the crystal warmup counter
completes while in active debug mode, a glitchless switch will be made to selected clock source, which was being counted. It is
important the user recognize that this action will occur as the TAP clock should be run no faster than 1/8th the system clock fre-
quency.

• Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since the system clock is
turned off inside active debug mode between debug mode commands.

• Power management mode cannot be invoked in the first instruction executed when returning from active debug mode. The PMME
bit is not set if such an attempt is made.

11.3.10 Debug Command Operation
The following sections provide specific notes on the MAXQ7665/MAXQ7666’s operation in debugging mode.

11.3.10.1 Register Read and Write Commands
Any register location can be read or written using these commands, including reserved locations and those used for op code support.
No protection is provided by the debugging interface, and avoiding side effects is the responsibility of the host system communicat-
ing with the MAXQ7665/MAXQ7666.

Writing to the IP register alters the address that execution resumes at once the debugging engine exits.

In general, reading a register through the debug interface returns the value that was in that register before the debugging engine was
invoked. An exception to this rule is the SP register. Reading the SP register through the debug interface actually returns the value (SP + 1).

11.3.10.2 Data Memory Read Command
When invoking this command, ICDA should be set to the word address of the starting location to read from, and ICDD should be set
to the number of words. The input address must be based on the utility ROM memory map, as shown in Section 1. Data memory words
returned by this command are output LSB first.

MAXQ7665/MAXQ7666 User’s Guide

11-18Maxim Integrated

11.3.10.3 Data Memory Write Command
When invoking this command, ICDA should be set to the word address of the location to write to, and ICDD should be set to the data
word to write. The input address must be based on the utility ROM memory map, as shown in Section 1.

11.3.10.4 Program Stack Read Command
When invoking this command, ICDA should be set to the address of the starting stack location (value of SP) to read from, and ICDD
should be set to the number of words. The address given in ICDA is the highest value that will be used, as words are popped off the
stack and returned in descending order. Stack words returned by this command are output LSB first.

11.3.10.5 Read Register Map Command
This command outputs all peripheral registers in the range M0[00h] to M5[0Dh], along with a fixed set of system registers. The follow-
ing formatting rules apply to the returned data.

• System registers are output as 8-bit or 16-bit, least significant byte first.

• All peripheral registers are output as 16-bit, least significant byte first. The top byte of 8-bit registers is returned as 00h.

• Non-implemented peripheral registers in the range M0[00h] to M5[0Dh] are returned as 0000h.

• The value of SBUF0, SPIB, C0S, C0DB, C0RMS, C0TMA, and ASR are not read, and this register is returned as 0000h.

The first byte output by this command is the value 174 (AEh), which represents the number of peripheral registers output. Table 11-3
lists the remaining 412 bytes output by this command.

MAXQ7665/MAXQ7666 User’s Guide

11-19

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x PO0 00 00 00 00 EIF0 00 00 00 00 00 00 00 00

1x PI0 00 00 00 00 EIE0 00 00 00 00 00 00 00 00

2x PD0 00 00 00 00 EIES0 00 00 00 00 00 00 00 00

3x 00 00 00 00 00 00 00 00 00 00 SCON0 SMD0 PR0

4x MCNT MA MB MC2 MC1 MC0 00 00 SPICN

5x SPICF SPICK FCNTL FDATA MC1R MC0R 00 00 00 00

6x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7x 00 00 00 00 00 00 00 00 FADDR 00 00 00 00 00 00

8x T2CNA0 T2H0 T2RH0 T2CH0 T2CNA1 T2H1 T2RH1 T2CH1

9x T2CNB0 T2V0 T2R0 T2C0 T2CNB1 T2V1 T2R1 T2C1

Ax T2CFG0 T2CFG1 00 00 00 00 00 00 00 00 00 00 00 00

Bx ICDT0 ICDT1 00 ICDC 00 ICDF 00 ICDB ICDA ICDD TM

Cx T2CNA2 T2H2 T2RH2 T2CH2 00 00 00 00 00 00 00 00

Dx T2CNB2 T2V2 T2R2 T2C2 00 00 00 00 00 00 00 00

Ex T2CFG2 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Fx 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10x C0C 00 00 C0IR C0TE C0RE COR C0DP 00 00

11x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

12x 00 00 C0M1C C0M2C C0M3C C0M4C C0M5C C0M6C C0M7C

13x C0M8C C0M9C C0M10C C0M11C C0M12C C0M13C C0M14C C0M15C

14x VMC APE ACNT DCNT DACI 00 00 DACO 00 00

15x ADCD TSO AIE 00 00 OSCC OTP AP APC PSF IC

16x IMR SC IIR CKCN WDCN 00 A[0] A[1] A[2] A[3] A[4]

17x A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12]

18x A[13] A[14] A[15] IP SP+1 IV LC[0] LC[1]

19x OFFS DPC GR BP DP[0] DP[1]

Table 11-3. Output from DebugReadMap Command

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

12-1

SECTION 12: IN-SYSTEM PROGRAMMING

This section contains the following information:

12.1 Bootstrap-Loader Mode .12-2

12.2 In-System Programming Peripheral Registers .12-3

12.2.1 In-Circuit Debug Flag Register (ICDF) .12-3

12.2.2 System Control Register (SC) .12-4

12.3 JTAG Bootloader Operation .12-5

12.4 Password-Protected Access. .12-5

12.4.1 Entering a Password .12-6

12.5 JTAG Bootloader Protocol .12-6

12.5.1 Family 0 Commands (Not Password Protected) .12-7

12.5.2 Family 1 Commands: Load Variable Length (Password Protected) 12-9

12.5.3 Family 2 Commands: Dump Variable Length (Password Protected)12-10

12.5.4 Family 3 Commands: CRC Variable Length (Password Protected)12-10

12.5.5 Family 4 Commands: Verify Variable Length (Password Protected) 12-11

12.5.6 Family 5 Commands: Load and Verify Variable Length (Password Protected) 12-11

12.5.7 Family 6 Commands: Erase Variable Length (Password Protected) 12-11

12.5.8 Family 9 Commands: Load Fixed Length (Password Protected) 12-12

12.5.9 Family D Commands: Load/Verify Fixed Length (Password Protected) 12-12

12.5.10 Family E Commands: Erase Fixed Length (Password Protected) 12-12

Table 12-1. Programming Source Select Decode .12-2

Table 12-2. JTAG Status Decode .12-5

Table 12-3. Bootloader Status Codes .12-6

Table 12-4. Bootloader Status Flags .12-8

LIST OF TABLES

Maxim Integrated

SECTION 12: IN-SYSTEM PROGRAMMING
The MAXQ7665/MAXQ7666 are equipped with a bootstrap loader as part of the utility ROM firmware. The main function of the boot-
strap loader is to provide in-system programming capability to the user application. The MAXQ7665/MAXQ7666 in-system program-
ming features include:

• Standard JTAG/TAP interface based communication

• Built-in JTAG bootstrap loader for flash programming and verifying

• Password lock protection to access bootstrap loader operations

12.1 Bootstrap-Loader Mode
Internal flash memory for the MAXQ7665/MAXQ7666 can be initialized through bootstrap-loader mode. To enable the bootstrap loader
and establish a desired communication channel, the system programming instruction (100b) must be loaded into the TAP instruction
register using the IR-scan sequence. Once the instruction is latched in the instruction parallel buffer (IR2:IR0) and is recognized by the
TAP controller in the update-IR state, a 3-bit data shift register is activated as the communication channel for DR-scan sequences. The
TAP retains the system programming instruction until a new instruction is shifted in or the TAP controller returns to the test-logic-reset
state. This 3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit serial programming buffer (SPB).
The SPB contains three bits with the following functions:

• SPB.0: System Programming Enable (SPE). Setting this bit to logic 1 denotes that system programming is desired upon exit-
ing reset. When it is cleared to logic 0, no system programming is needed. The reset vector examines the logic state of SPE in
the utility ROM to determine the program flow after a reset. When SPE = 1, the bootstrap loader selected by the PSS1:PSS0 bits
are activated to perform a bootstrap-loader function. When SPE = 0, the utility ROM transfers execution control to the normal user
program.

• SPB.2 and SPB.1: Programming Source Select (PSS1:PSS0). These bits allow the host to select programming interface
sources. The PSS bits have no functions when the SPE bit is cleared.

Note: The MAXQ7665/MAXQ7666 utility ROM bootstrap loader supports only JTAG as the programming source (see Table 12-1).

The DR-scan sequence is used to configure the SPB bits. The data content of the SPB register is reflected in the ICDF register and
allows read/write access by the CPU. These bits are cleared by power-on reset or test-logic-reset of the TAP controller.

MAXQ7665/MAXQ7666 User’s Guide

12-2

Table 12-1. Programming Source Select Decode

PSS1 PSS0 PROGRAMMING SOURCE

0 0 JTAG

0 1 Reserved

1 0 Reserved

1 1 Reserved

Maxim Integrated

12.2 In-System Programming Peripheral Registers
The MAXQ7665/MAXQ7666 in-system programming peripheral registers are described here. All the in-system programming peripher-
al registers are directly accessible by the microcontroller through the module/index address.

12.2.1 In-Circuit Debug Flag Register (ICDF)

Register Description: In-Circuit Debug Flag Register
Register Name: ICDF
Register Address: Module 02h, Index 1Bh

Bits 7 to 4: Reserved.

Bits 3 and 2: Programming Source Select Bits 1 and 0 (PSS1:PSS0). These bits are used to select a programming interface dur-
ing in-system programming when SPE is set to logic 1. Otherwise, the logic values of these bits have no meaning. The logical states
of these bits, when read by the CPU, reflect the logical-OR of the PSS bits that are write accessible by the CPU and those in the sys-
tem programming buffer register (SPB) of the TAP module (which are accessible via JTAG). These bits are read/write accessible for
the CPU and are cleared to 0 by a power-on reset or test-logic-reset. CPU writes to the PSS bits result in clearing of the JTAG
PSS1:PSS0 bits. See Table 12-1.

Bit 1: System Program Enable (SPE). This bit controls the behavior of the MAXQ7665/MAXQ7666 following a reset. The SPE bit is
used for in-system programming support, and its logical state, when read by the CPU, always reflects the logical-OR of the SPE bit
that is write accessible by the CPU and the SPE bit of the SPB register in the TAP module, which is accessible via JTAG. The logical
state of this bit determines the program flow after a reset.

0 = The MAXQ7665/MAXQ7666 jump to application code in flash at 0000h following a reset.
1 = The MAXQ7665/MAXQ7666 execute the in-system programming boot loader following a reset.

This bit allows read/write access by the CPU and is cleared to 0 only on a power-on reset or test-logic-reset. The JTAG SPE bit is
cleared by hardware when the ROD bit is set. CPU writes to the SPE bit result in clearing of the JTAG PSS1:PSS0 bits.

Bit 0: Serial Transfer Complete (TXC). See Section 11 for more information on this bit.

MAXQ7665/MAXQ7666 User’s Guide

12-3

Bit # 7 6 5 4 3 2 1 0

Name — — — — PSS1 PSS0 SPE TXC

Reset 0 0 0 0 0 0 0 0

Access r r r r rw rw rw rw

r = read, w = write

Maxim Integrated

12.2.2 System Control Register (SC)

Register Description: System Control Register
Register Name: SC
Register Address: Module 08h, Index 08h

Bit 7: Test Access (JTAG) Port Enable (TAP). This bit controls whether the TAP special function pins are enabled. The TAP defaults
to being enabled. See Section 10 for more information on this bit.

0 = JTAG/TAP functions are disabled and P0.0–P0.3 can be used as general-purpose I/O pins
1 = TAP special function pins P0.0–P0.3 are enabled to act as JTAG inputs and outputs

Bits 6 and 0: Reserved.

Bits 5 and 4: Code Data Access Bits 1 and 0 (CDA1:CDA0). See Section 1 for more information on these bits.

Bit 3: Upper Program Access (UPA). See Section 1 for more information on this bit.

Bit 2: ROM Operation Done (ROD). This bit is used to signify completion of a ROM operation sequence to the control units. This allows
the debug engine to determine the status of a ROM sequence. Setting this bit to logic 1 causes an internal system reset if the SPE bit
is also set. Setting the ROD bit will clear the SPE bit if it is set and the ROD bit will be automatically cleared by hardware once the con-
trol unit acknowledges the done indication. See Section 11 for more information on this bit.

Bit 1: Password Lock (PWL). This bit defaults to 1 on a power-on reset. When this bit is 1, it requires a 32-byte password to be
matched with the password in the program space before allowing access to the password protected in-circuit debug or bootstrap
loader ROM routines. Clearing this bit to 0 disables the password protection for these ROM routines.

The password is defined as the 16 words of physical program memory at addresses 0010h to 001Fh. A password value of all ones or
all zeros for all 16 words at addresses 0010h to 001Fh will also unlock the password lock, regardless of the state of the PWL bit.

MAXQ7665/MAXQ7666 User’s Guide

12-4

Bit # 7 6 5 4 3 2 1 0

Name TAP — CDA1 CDA0 UPA ROD PWL —

Reset 1 0 0 0 0 0 1* 0

Access rw r rw rw rw rw rw r

r = read, w = write
*This register defaults to 80h on all forms of reset except after power-on reset. After power-on resert, the PWL bit is also set and this register defaults to 82h.

Maxim Integrated

12.3 JTAG Bootloader Operation
The MAXQ7665/MAXQ7666 JTAG bootloader uses the same status bit handshaking hardware as is used for in-circuit debugging.
When the SPE bit of the system programming buffer (SPB) is set to 1 and JTAG is selected as the programming source (PSS1:PSS0 =
00b), the background and active-debug-mode state machines are disabled. Once the host loads the debug instruction into the TAP
instruction register (IR2:IR0), the 10-bit shift register interfaces to ICDB and the status bits becomes available for host-to-ROM boot-
loader communication. The status bits should be interpreted as noted in Table 12-2 for a JTAG bootloader operation.

When the using the JTAG bootloader option (SPE = 1, PSS1:PSS0 = 00b), the sole purpose of the debug hardware is to simultaneously
transfer the data byte shifted in from the host into the ICDB register and transfer the contents of an internal holding register (loaded by
ROM code writes of ICDB) into the shift register for output to the host. This transfer takes place on the falling edge of TCK at the update-
DR state. The debug hardware additionally clears the TXC bit at this point in the state diagram. The ROM-loader code controls the sta-
tus bit output to the host by asserting TXC = 1 when it has valid data to be shifted out. The ROM code can flexibly implement what-
ever communication protocol and command set it wishes within the data byte portion of the shifted 10-bit word. The communication
protocol implemented as part of the MAXQ7665/MAXQ7666 utility ROM JTAG bootloader is described in Section 12.5.

12.4 Password-Protected Access
Some applications require preventive measures to protect against simple access and viewing of program code memory. To address
this need for code protection, the MAXQ7665/MAXQ7666 utility ROM that manages in-system programming, in-application program-
ming, or in-circuit debugging grants full access to those utilities only after a password has been supplied. The password is defined as
the 16 words of physical program memory at addresses 0010h to 001Fh. Note that using these memory locations as a password does
not exclude their usage for general code space if a unique password is not needed. A single password-lock bit (PWL) is implement-
ed in the SC register. When the PWL is set to 1, a password is required to access the in-circuit debug and in-system programming
ROM routines that allow reading or writing of internal memory. When PWL is cleared to 0, these utilities are fully accessible through the
utility ROM without a password.

The PWL bit defaults to 1 by a power-on reset. To access the ROM utilities, a correct password is needed; otherwise, access to the
ROM utilities is denied. Once the user supplies the correct password, the ROM clears the password lock. The PWL remains clear until
either a power-on reset occurs or it is set to logic 1 by user software.

For the MAXQ7665/MAXQ7666, the password is always known for a fully erased device since the unprogrammed state of these mem-
ories is all ones. Password data set to all ones or all zeros for all 16 words at addresses 0010h to 001Fh will remove the password lock,
regardless of the state of the PWL bit. Once the memory has been programmed, a password is established and can be used for access
protection. The utility ROM code denies access to the protected routines when PWL indicates a locked state.

MAXQ7665/MAXQ7666 User’s Guide

12-5

Table 12-2. JTAG Status Decode

BITS (1:0) STATUS CONDITION

0 0 Reserved Invalid condition

0 1 Reserved Invalid condition

1 0 Loader-Busy ROM loader is busy executing code or
processing the current command.

1 1 Loader-Valid ROM loader is supplying valid output data to
the host in current shift operation.

Maxim Integrated

12.4.1 Entering a Password
A password can be entered via the TAP interface directly by issuing the unlock-password debug-mode command. The unlock-password
command requires 32 follow-on transfer cycles, each containing a byte value to be compared with the program memory password.

12.5 JTAG Bootloader Protocol
When communicating with the bootloader using the JTAG interface, the clock rate (TCK) must be kept below 1/8 the system clock rate.

All bootloader commands begin with a single command byte. The high four bits of this command byte define the command family (from 0
to 15), while the low four bits define the specific command within that family. All commands (except for those in Family 0) follow this format:

After each command has completed, the loader outputs a “prompt” byte to indicate that it has finished the operation. The prompt byte
is the single chararacter “>”.

Bootloader commands that fail for any reason set the bootloader status byte to an error code value describing the reason for the fail-
ure. See Table 12-3. This status byte can be read by means of the Get Status command (04h).

MAXQ7665/MAXQ7666 User’s Guide

12-6

BYTE 1 BYTE 2 BYTE 3 BYTE 4 (LENGTH) BYTES/WORDS

Command Length Param 1 Param 2 Data

STATUS VALUE FUNCTION

00 No Error. The last command completed successfully.

01 Family Not Supported. An attempt was made to use a command from a family the bootloader does not support.

02 Invalid Command. An attempt was made to use a nonexistent command within a supported command family.

03 No Password Match. An attempt was made to use a password-protected command without first matching a valid password.
Or, the Password Match command was called with an incorrect password value.

04 Bad Parameter. The parameter (address or otherwise) passed to the command was out of range or otherwise invalid.

05 Verify Failed. The verification step failed on a Load/Verify or Verify command.

06 Unknown Register. An attempt was made to read from or write to a nonexistent register.

07 Word Mode Not Supported. An attempt was made to set word mode access, but the bootloader supports byte mode access
only.

08 Master Erase Failed. The bootloader was unable to perform master erase.

Table 12-3. Bootloader Status Codes

Maxim Integrated

All commands in Family 0 can be executed without first matching the password. All other commands (in Families 1x through Fx) are
password protected; the password must first be matched before these commands can be executed.

A special case exists when the program memory has not been initialized (following master erase). If the password (stored in word locations
0010h to 001Fh in program memory) is all 0000h words or all FFFFh words, the bootloader treats the password as having been matched.
This allows access to password-protected commands following master erase (when no password has been set in program memory).

When providing addresses for code or data read or write to bootloader commands, all addresses run from 0000h to (memory size–1).

12.5.1 Family 0 Commands (Not Password Protected)
Command 00h—No Operation

Command 01h—Exit Loader

This command causes the bootloader command loop to exit, and execution jumps to the beginning of application code.

Command 02h—Master Erase

This command clears (programs to FFFFh) all words in the program flash memory.

Command 03h—Password Match

This command accepts a 32-byte password value, which is matched against the password in program memory (in byte mode) from
addresses 0020h to 003Fh. If the value matches, the password lock is cleared.

Command 04h—Get Status

The status code returned by this command is defined in Table 12-3. The flags byte contains the following bit status flags.

MAXQ7665/MAXQ7666 User’s Guide

12-7

I/O Byte 1

Input 00h

Output

I/O Byte 1

Input 01h

Output

I/O Byte 1

Input 02h

Output

I/O Byte 1 32 Bytes

Input 03h Password value

Output

I/O Byte 1 Byte 2

Input 04h

Output Flags Status Code

Maxim Integrated

Command 05h—Get Supported Commands

The SupportL (LSB) and SupportH (MSB) bytes form a 16-bit value that indicates which command families this bootloader supports.
If bit 0 is set to 1, it indicates that Family 0 is supported. If bit 1 is set to 1, it indicates that Family 1 is supported, and so on.

The CodeLen and DataLen bytes return the fixed block lengths used by the Load/Dump/Verify Fixed Length commands for code and
data space, respectively.

Command 06h—Get Code Size

This command returns SizeH:SizeL, which represents the size of available code memory in words minus 1. If this command is unsup-
ported, the return value will be 0000h meaning “unknown amount of memory.”

Command 07h—Get Data Size

This command returns SizeH:SizeL, which represents the size of available data memory in words minus 1. If this command is unsup-
ported, the return value will be 0000h meaning “unknown amount of memory.”

Command 08h—Get Loader Version

MAXQ7665/MAXQ7666 User’s Guide

12-8

FLAG BIT FUNCTION

0
Password Lock
0 = The password is unlocked or had a default value; password-protected commands can be used.
1 = The password is locked. Password-protected commands cannot be used.

1
Word/Byte Mode
0 = The bootloader is currently in byte mode for memory reads/writes.
1 = The bootloader is currently in word mode for memory reads/writes.

2
Word/Byte Mode Supported
0 = The bootloader supports byte mode only.
1 = The bootloader supports word mode as well as byte mode.

3 to 8 Reserved

Table 12-4. Bootloader Status Flags

I/O Byte 1 Byte 2 Byte 3 Byte 4

Input 05h

Output SupportL SupportH CodeLen DataLen

I/O Byte 1 Byte 2

Input 06h

Output SizeL SizeH

I/O Byte 1 Byte 2

Input 07h

Output SizeL SizeH

I/O Byte 1 Byte 2

Input 08h

Output VersionL VersionH

Maxim Integrated

Command 09h—Get Utility ROM Version

Command 0Ah—Set Word/Byte Mode Access

The Mode byte should be 0 to set byte access mode or 1 to set word access mode. The current access mode is returned in the sta-
tus flag byte by command 04h, as well as a flag to indicate whether word access mode is supported by this particular bootloader.

Command 0Dh—Get ID Information

For the MAXQ7665/MAXQ7666, the information returned by this command is a zero-terminated ROM banner string.

12.5.2 Family 1 Commands: Load Variable Length (Password Protected)
Command 10h—Load Code Variable Length

This command programs (Length) bytes/words of data into the program flash starting at address (AddressH:AddressL), with the fol-
lowing restrictions.

• In byte mode, if the starting address is on an odd word boundary (such as 0001), the low bit will be changed to zero to make it an
even word address.

• In byte mode, if an odd number of bytes is input, the data will be padded out with a 00 to make it an even number.

Command 11h—Load Data Variable Length

This command writes (Length) bytes/words of data into the data SRAM starting at address (AddressH:AddressL).

MAXQ7665/MAXQ7666 User’s Guide

12-9

I/O Byte 1 Byte 2

Input 09h

Output VersionL VersionH

I/O Byte 1 Byte 2

Input 0Ah Mode

Output

I/O Byte 1 (Variable)

Input 0Dh

Output Device dependent information

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 10h Length AddressL AddressH Data to load

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 11h Length AddressL AddressH Data to load

Output

Maxim Integrated

12.5.3 Family 2 Commands: Dump Variable Length (Password Protected)
Command 20h—Dump Code Variable Length

This command has a slightly different format depending on the length of the dump requested. It returns the contents of the application
flash/ROM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

Command 21h—Dump Data Variable Length

This command has a slightly different format depending on the length of the dump requested. It returns the contents of the data
SRAM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

12.5.4 Family 3 Commands: CRC Variable Length (Password Protected)
Command 30h—CRC Code Variable Length

This command has a slightly different format depending on the length of the CRC requested. It returns the CRC-16 value (CrcH:CrcL)
of the application flash/ROM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

Command 31h—CRC Data Variable Length

This command has a slightly different format depending on the length of the CRC requested. It returns the CRC-16 value (CrcH:CrcL)
of the data SRAM – (LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

MAXQ7665/MAXQ7666 User’s Guide

12-10

I/O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Input (to dump
< 256 bytes/words)

20h 1 AddressL AddressH LengthL

Input (to dump
256+ bytes/words)

20h 2 AddressL AddressH LengthL LengthH

Output CodeByte 1 CodeByte 2 • • • CodeByte N, where N = dump length

I/O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Input (to dump
< 256 bytes/words)

21h 1 AddressL AddressH LengthL

Input (to dump
256+ bytes/words)

21h 2 AddressL AddressH LengthL LengthH

Output DataByte 1 DataByte 2 • • • DataByte N, where N = dump length

I/O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Input (to CRC
< 256 bytes/words)

30h 1 AddressL AddressH LengthL

Input (to CRC
256+ bytes/words)

30h 2 AddressL AddressH LengthL LengthH

Output CrcH CrcL

I/O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Input (to CRC
< 256 bytes/words)

31h 1 AddressL AddressH LengthL

Input (to CRC
256+ bytes/words)

31h 2 AddressL AddressH LengthL LengthH

Output CrcH CrcL

Maxim Integrated

12.5.5 Family 4 Commands: Verify Variable Length (Password Protected)
Command 40h—Verify Code Variable Length

This command operates in the same manner as the “Load Code Variable Length” command, except that instead of programming the
input data into code flash, it verifies that the input data matches the data already in code space. If the data does not match, the sta-
tus code is set to reflect this failure.

Command 41h—Verify Data Variable Length

This command operates in the same manner as the “Load Data Variable Length” command, except that instead of writing the input
data into data SRAM, it verifies that the input data matches the data already in data space. If the data does not match, the status code
is set to reflect this failure.

12.5.6 Family 5 Commands: Load and Verify Variable Length (Password Protected)
Command 50h—Load and Verify Code Variable Length

This command combines the functionality of the “Load Code Variable Length” and “Verify Code Variable Length” commands.

Command 51h—Load and Verify Data Variable Length

This command combines the functionality of the “Load Data Variable Length” and “Verify Data Variable Length” commands.

12.5.7 Family 6 Commands: Erase Variable Length (Password Protected)
Command 60h—Erase Data Variable Length

This command has a slightly different format depending on the length of the erase requested. It clears (LengthL) or (LengthH:LengthL)
bytes/words in the data SRAM to zero starting at (AddressH:AddressL).

MAXQ7665/MAXQ7666 User’s Guide

12-11

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 40h Length AddressL AddressH Data to verify

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 41h Length AddressL AddressH Data to verify

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 50h Length AddressL AddressH Data to load/verify

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 (Length) Bytes/Words

Input 51h Length AddressL AddressH Data to load/verify

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Input (to erase
< 256 bytes/words)

60h 1 AddressL AddressH LengthL

Input (to erase
256+ bytes/words)

60h 2 AddressL AddressH LengthL LengthH

Maxim Integrated

12.5.8 Family 9 Commands: Load Fixed Length (Password Protected)
Command 90h—Load Code Fixed Length

This command loads a block of 128 bytes into the program memory (SRAM) starting at the specified address. The address is round-
ed down to the nearest block boundary (multiple of 64) before the data is loaded.

Command 91h—Load Data Fixed Length

This command loads a block of 2 bytes into the data memory (SRAM) starting at the specified address.

12.5.9 Family D Commands: Load/Verify Fixed Length (Password Protected)
Command D0h—Load/Verify Code Fixed Length

This command loads a block of 128 bytes into the program memory starting at the specified address and immediately verifies to make
sure the correct data was written. The address is rounded down to the nearest block boundary (multiple of 64) before the data is loaded.

Command D1h—Load/Verify Data Fixed Length

This command loads a block of 2 bytes into the data memory starting at the specified address and immediately verifies to make sure
the correct data was written.

12.5.10 Family E Commands: Erase Fixed Length (Password Protected)
Command E0h—Erase Code Fixed Length

This command erases (programs to FFFFh) a 64-byte block of the program flash memory. The address given should be located in the
block to be erased.

Command E1h—Erase Data Fixed Length

This command erases a single word/byte in data SRAM to zero at (AddressH:AddressL) to zero.

MAXQ7665/MAXQ7666 User’s Guide

12-12

I/O Byte 1 Byte 2 Byte 3 Byte 4

Input E1h 0 AddressL AddressH

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4

Input E0h 0 AddressL AddressH

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 128 Bytes

Input 90h 80h AddressL AddressH Data to load

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 2 Bytes

Input 91h 2h AddressL AddressH Data to load

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 128 Bytes

Input D0h 80h AddressL AddressH Data to load

Output

I/O Byte 1 Byte 2 Byte 3 Byte 4 2 Bytes

Input D1h 2h AddressL AddressH Data to load

Output

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

13-1

SECTION 13: HARDWARE MULTIPLIER MODULE

This section contains the following information:

13.1 Hardware Multiplier Organization .13-2

13.2 Hardware Multiplier Peripheral Registers .13-3

13.2.1 Hardware Multiplier Control Register (MCNT) .13-3

13.2.2 Multiplier Operand A Register (MA) .13-4

13.2.3 Multiplier Operand B Register (MB) .13-5

13.2.4 Multiplier Accumulator 2 Register (MC2) .13-5

13.2.5 Multiplier Accumulator 1 Register (MC1) .13-6

13.2.6 Multiplier Accumulator 0 Register (MC0) .13-6

13.2.7 Multiplier Read Register 1 (MC1R) .13-7

13.2.8 Multiplier Read Register 0 (MC0R) .13-7

13.3 Hardware Multiplier Controls .13-8

13.4 Register Output Selection .13-8

13.5 Signed-Unsigned Operand Selection .13-8

13.6 Operand Count Selection .13-8

13.7 Hardware Multiplier Operations .13-8

13.8 Accessing the Multiplier .13-9

13.9 MAXQ7665/MAXQ7666 Hardware Multiplier Examples .13-10

Figure 13-1. MAXQ7665/MAXQ7666 Multiplier Operation .13-2

LIST OF FIGURES

Table 13-1. MAXQ7665/MAXQ7666 Hardware Multiplier Operations .13-9

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

13-2

SECTION 13: HARDWARE MULTIPLIER MODULE
The MAXQ7665/MAXQ7666 microcontrollers include a hardware multiplier module to support high-speed multiplications. The hardware
multiplier module is equipped with two 16-bit operand registers, a 32-bit read-only result register, and an accumulator of 48-bit width.
The multiplier can complete a 16-bit x 16-bit multiply-and-accumulate/subtract operation in a single cycle. The hardware multiplier
module supports the following operations without interfering with the normal core functions:

• Signed or Unsigned Multiply (16 bit x 16 bit)

• Signed or Unsigned Multiply-Accumulate (16 bit x 16 bit)

• Signed or Unsigned Multiply-Subtract (16 bit x 16 bit)

• Signed Multiply and Negate (16 bit x 16 bit)

13.1 Hardware Multiplier Organization
The hardware multiplier consists of two 16-bit, parallel-load operand registers (MA, MB); a read-only result register formed by two par-
allel 16-bit registers (MC1R and MC0R); an accumulator, which is formed by three 16-bit parallel registers (MC2, MC1, and MC0); and
a status/control register (MCNT). Figure 13-1 shows a block diagram of the hardware multiplier.

The main arithmetic unit is the 16-bit x 16-bit multiplier that processes operands feeding from the MA and MB registers and generates
a 32-bit final product. The multiplier unit includes an adder that can be used to perform a final accumulate/subtract operation of the
multiplier output with the MC2:MC0 registers. The MCNT register must be configured to select the desired operation and operand count
prior to loading the operand(s) to trigger the multiplier operation.

MBMA

MC0MC1MC2

MULTIPLIER

0015 15

015015

OVERFLOW

SUS
MMAC

MSUB

OPCS

SQU

CLD
MCW

15015 150 0

MC1R MC0R

M
CN

T

Figure 13-1. MAXQ7665/MAXQ7666 Multiplier Organization

Maxim Integrated

13.2 Hardware Multiplier Peripheral Registers

13.2.1 Hardware Multiplier Control Register (MCNT)
Register Description: Hardware Multiplier Control Register
Register Name: MCNT
Register Address: Module 001, Index 00h

Bits 15 to 8: Reserved. Read returns 0, write ignored.

Bit 7: Overflow Flag (OF). This bit is set to logic 1 when an overflow occurred for the last operation. This bit can be set for accumu-
lation/subtraction operations or unsigned multiply-negate attempts. This bit is automatically cleared to 0 following a reset, starting a
multiplier operation, or setting of the CLD bit to 0.

Bit 6: MC Register Write Select (MCW). The state of the MCW bit determines if an operation result will be placed into the accumula-
tor registers (MC).

0 = The result is written to the MC registers.
1 = The result is not written to the MC registers (MC register content is unchanged).

Bit 5: Clear Data Registers (CLD). This bit initializes the operand registers and the accumulator of the multiplier. When it is set to 1,
the contents of all data registers and the OF bit are cleared to 0 and the operand load counter is reset immediately. This bit is cleared
by hardware automatically. Writing a 0 to this bit has no effect.

Bit 4: Square Function Enable (SQU). This bit supports the hardware square function. When this bit is set to logic 1, a square oper-
ation is initiated after an operand is written to either the MA or the MB register. Writing data to either of the operand registers writes to
both registers and triggers the specified square or square-accumulate/subtract operation. Setting this bit to 1 also overrides the OPCS
bit setting. When SQU is cleared to logic 0, the hardware square function is disabled.

0 = Square function disabled.
1 = Square function enabled.

MAXQ7665/MAXQ7666 User’s Guide

13-3

Bit # 15 14 13 12 11 10 9 8

Name — — — — — — — —

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name OF MCW CLD SQU OPCS MSUB MMAC SUS

Reset 0 0 0 0 0 0 0 0

Access r rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

Bit 3: Operand Count Select (OPCS). This bit defines how many operands must be loaded to trigger a multiply or multiply-accumu-
late/subtract operation (except when SQU = 1 since this implicitly specifies a single operand). When this bit is cleared to logic 0, both
operands (MA and MB) must be written to trigger the operation. When this bit is set to 1, the specified operation is triggered once either
operand is written.

0 = Both operands (MA and MB) must be written to trigger the multiplier operation.
1 = Loading one operand (MA or MB) triggers the multiplier operation.

Bit 2: Multiply Negate (MSUB). Configuring this bit to logic 1 enables negation of the product for signed multiply operations and sub-
traction of the product from the accumulator (MC2:MC0) when MMAC = 1. When MSUB is configured to logic 0, the product of multi-
ply operations will not be negated and accumulation is selected when MMAC = 1.

Bit 1: Multiply-Accumulate Enable (MMAC). This bit enables the accumulate or subtract operation (as per MSUB) for the hardware
multiplier. When this bit is cleared to logic 0, the multiplier will perform only multiply operations. When this bit is set to logic 1, the mul-
tiplier will perform a multiply-accumulate or multiply-subtract operation based upon the MSUB bit.

0 = Accumulate/subtract operation disabled.
1 = Accumulate/subtract operation enabled.

Bit 0: Signed-Unsigned Select (SUS). This bit determines the data type of the operands. When this bit is cleared to logic 0, the
operands are treated as two’s complement values and the multiplier performs a signed operation. When this bit is set to logic 1, the
operands are treated as absolute magnitudes and the multiplier performs an unsigned operation.

0 = Signed operands.
1 = Unsigned operands.

13.2.2 Multiplier Operand A Register (MA)
Register Description: Multiplier Operand A Register
Register Name: MA
Register Address: Module 001, Index 01h

Bits 15 to 0: Multiplier Operand A Register Bits 15 to 0 (MA.15 to MA.0). This operand A register is used by the application code
to load 16-bit values for multiplier operations.

MAXQ7665/MAXQ7666 User’s Guide

13-4

Bit # 15 14 13 12 11 10 9 8

Name MA.15 MA.14 MA.13 MA.12 MA.11 MA.10 MA.9 MA.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MA.7 MA.6 MA.5 MA.4 MA.3 MA.2 MA.1 MA.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

13.2.3 Multiplier Operand B Register (MB)
Register Description: Multiplier Operand B Register
Register Name: MB
Register Address: Module 001, Index 02h

Bits 15 to 0: Multiplier Operand B Register Bits 15 to 0 (MB.15 to MB.0). This operand B register is used by the application code
to load 16-bit values for multiplier operations.

13.2.4 Multiplier Accumulator 2 Register (MC2)
Register Description: Multiplier Accumulator 2 Register
Register Name: MC2
Register Address: Module 001, Index 03h

Bits 15 to 0: Multiplier Accumulator 2 Register Bits 15 to 0 (MC2.15 to MC2.0). The MC2 register represents the two most signifi-
cant bytes of the accumulator register. The 48-bit accumulator is formed by MC2, MC1, and MC0. For a signed operation, the most
significant bit of this register is the sign bit.

MAXQ7665/MAXQ7666 User’s Guide

13-5

Bit # 15 14 13 12 11 10 9 8

Name MB.15 MB.14 MB.13 MB.12 MB.11 MB.10 MB.9 MB.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MB.7 MB.6 MB.5 MB.4 MB.3 MB.2 MB.1 MB.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name MC2.15 MC2.14 MC2.13 MC2.12 MC2.11 MC2.10 MC2.9 MC2.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC2.7 MC2.6 MC2.5 MC2.4 MC2.3 MC2.2 MC2.1 MC2.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

13.2.5 Multiplier Accumulator 1 Register (MC1)
Register Description: Multiplier Accumulator 1 Register
Register Name: MC1
Register Address: Module 001, Index 04h

Bits 15 to 0: Multiplier Accumulator 1 Register Bits 15 to 0 (MC1.15 to MC1.0). The MC1 register represents bytes 3 and 2 of the
accumulator register. The 48-bit accumulator is formed by MC2, MC1, and MC0.

13.2.6 Multiplier Accumulator 0 Register (MC0)
Register Description: Multiplier Accumulator 0 Register
Register Name: MC0
Register Address: Module 001, Index 05h

Bits 15 to 0: Multiplier Accumulator 0 Register Bits 15 to 0 (MC0.15 to MC0.0). The MC0 register represents the two least signifi-
cant bytes of the accumulator register. The 48-bit accumulator is formed by MC2, MC1, and MC0.

MAXQ7665/MAXQ7666 User’s Guide

13-6

Bit # 15 14 13 12 11 10 9 8

Name MC1.15 MC1.14 MC1.13 MC1.12 MC1.11 MC1.10 MC1.9 MC1.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC1.7 MC1.6 MC1.5 MC1.4 MC1.3 MC1.2 MC1.1 MC1.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name MC0.15 MC0.14 MC0.13 MC0.12 MC0.11 MC0.10 MC0.9 MC0.8

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0

Name MC0.7 MC0.6 MC0.5 MC0.4 MC0.3 MC0.2 MC0.1 MC0.0

Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

r = read, w = write
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

13.2.7 Multiplier Read Register 1 (MC1R)
Register Description: Multiplier Read Register 1
Register Name: MC1R
Register Address: Module 001, Index 0Ch

Bits 15 to 0: Multiplier Read Register 1 Bits 15 to 0 (MC1R.15 to MC1R.0). The MC1R register represents bytes’ 3 and 2 result from
the last operation when MCW = 1 or the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a
multiply-accumulate/subtract, the contents of this register may or may not agree with the contents of MC1 due to the combinatorial
nature of the adder. The contents of this register may change if MCNT, MA, MB, or MC2:MC0 is changed.

13.2.8 Multiplier Read Register 0 (MC0R)
Register Description: Multiplier Read Register 0
Register Name: MC0R
Register Address: Module 001, Index 0Dh

Bits 15 to 0: Multiplier Read Register 0 Bits 15 to 0 (MC0R.15 to MC0R.0). The MC0R register represents bytes’ 1 and 0 result from
the last operation when MCW = 1 or the last operation was a multiply or multiply-negate. When MCW = 0 and the last operation was a
multiply-accumulate/subtract, the contents of this register may or may not agree with the contents of MC0 due to the combinatorial
nature of the adder. The contents of this register may change if MCNT, MA, MB, or MC2:MC0 is changed.

MAXQ7665/MAXQ7666 User’s Guide

13-7

Bit # 15 14 13 12 11 10 9 8

Name MC1R.15 MC1R.14 MC1R.13 MC1R.12 MC1R.11 MC1R.10 MC1R.9 MC1R.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MC1R.7 MC1R.6 MC1R.5 MC1R.4 MC1R.3 MC1R.2 MC1R.1 MC1R.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Bit # 15 14 13 12 11 10 9 8

Name MC0R.15 MC0R.14 MC0R.13 MC0R.12 MC0R.11 MC0R.10 MC0R.9 MC0R.8

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

Bit # 7 6 5 4 3 2 1 0

Name MC0R.7 MC0R.6 MC0R.5 MC0R.4 MC0R.3 MC0R.2 MC0R.1 MC0R.0

Reset 0 0 0 0 0 0 0 0

Access r r r r r r r r

r = read
Note: This register is cleared to 0000h on all forms of reset.

Maxim Integrated

13.3 Hardware Multiplier Controls
The selection of operation to be performed by the multiplier is determined by four control bits in the MCNT register: SUS, MSUB, MMAC,
and SQU. The number of operands that must be loaded to trigger the specified operation is dictated by the OPCS bit setting, except
when the square function is enabled (SQU = 1). Enabling the square function implicitly defines that only a single operand (either MA or
MB) needs to be loaded to trigger the square operation, independent of the OPCS bit setting. The MCNT register bits must be config-
ured to select the desired operation and operand count prior to loading the operand(s) to trigger the multiplier operation. Any write to
MCNT automatically resets the operand load counter of the multiplier, but does not affect the operand registers, unless such action is
requested using the clear data registers (CLD) control bit. Once the desired operation has been specified via the MCNT register bits,
loading the prescribed number of operands triggers the respective multiply, multiply-accumulate/subtract, or multiply-negate operation.

13.4 Register Output Selection
The hardware multiplier implements the MC register write select (MCW) control bit so that writing of the result to the MC2:MC0 regis-
ters can be blocked to preserve the MC registers (accumulator). When the MCW bit is configured to logic 1, the result for the given
operation is not written to the MC registers. When the MCW bit is configured to logic 0, the MC registers are updated with the result of
the operation. The MC1R, MC0R read-only register pair is updated independent of the MCW bit setting. This register pair always
reflects the output that would normally be placed in MC1:MC0, given that MCW = 1 or MMAC = 0. When MCW = 0 and MMAC = 1,
the MC1R:MC0R content may not match the MC1:MC0 register content, but it will be predictable and may be useful in certain situa-
tions. See Table 13-1 for details.

13.5 Signed-Unsigned Operand Selection
The operands can be either signed or unsigned numbers, but the data type must be defined by the user software via the signed-
unsigned (SUS) bit prior to triggering the operation. For an unsigned operation, the SUS bit in the MCNT register must be set to 1; for
a signed operation, the SUS bit must be cleared to 0. The multiplier treats unsigned numbers as absolute magnitude. For a 16-bit posi-
tional binary number, this represents a value in the range 0 to 216 - 1 (FFFFh). The signed number representation is a two’s comple-
ment value, where the most significant bit is defined as a sign bit. The range of a 16-bit two’s complement number is -2(16-1) (8000h)
to +2(16-1) - 1 (7FFFh). The product of any signed operation will be sign extended before being stored or accumulated/subtracted into
the MC registers. The SUS bit should always be configured to logic 0 (i.e., signed operands) for the multiply-negate operation.
Attempting an unsigned multiply-negate operation results in incorrect results and setting of the OF bit. Modifying the operand data type
selection via the SUS bit does not alter the contents of the MC registers. The MC registers are read/write accessible and can be mod-
ified by user code when necessary.

13.6 Operand Count Selection
The OPCS bit allows selection of single operand or two operands operation for the multiply and multiply-accumulate/subtract opera-
tions. When the OPCS bit is cleared to 0, the multiply or multiply-accumulate/subtract operation established by the SUS, MSUB, and
MMAC bits is triggered once two operands are loaded, one to each of the MA and MB registers. When OPCS is set to 1, the opera-
tion commences once data is loaded to either MA or MB. The OPCS bit is ignored when the square operation is enabled (SQU), since
loading of data to the MA or MB register actually writes to both registers.

13.7 Hardware Multiplier Operations
The control bits, which specify data type (SUS), operand count (OPCS or SQU), and destination control (MCW), have already been
described. However, there are two additional MCNT register bits that serve to define the hardware multiplier operation. The multiply-
accumulate/subtract and multiply-negate operations are enabled by the multiply-accumulate enable (MMAC) and multiply negate
(MSUB) bits in the MCNT register. When the MMAC bit is set to 1, the multiplier performs a multiply-accumulate (if MSUB = 0) or a mul-
tiply-subtract (if MSUB = 1). If MMAC is configured to 0, the multiplier result is not accumulated or subtracted, but can be stored direct-
ly (if MSUB = 0) or negated (if MSUB = 1) before storage. The multiply-negate operation (MMAC = 0, MSUB = 1) is only allowable for
signed data operands (SUS = 0). For unsigned multiply-accumulate/subtract operations, the OF bit is set when a carry-out/borrow-in
from the most significant bit of the MC register occurs. For a signed two’s complement multiply-accumulate/subtract operations, the
OF bit is set when the carry-out/borrow-in from the most significant magnitude position of the MC register is different from the carry-
out/borrow-in of the sign position of the MC register. Since there is no overflow condition for multiply and multiply-negate operations,
the OF bit is always cleared for these operations with one exception. The OF bit will be set to logic 1 if an unsigned multiply-negate
(invalid operation) is requested. Table 13-1 shows the operations supported by the multiplier and associated MCNT control bit settings.

MAXQ7665/MAXQ7666 User’s Guide

13-8Maxim Integrated

13.8 Accessing the Multiplier
There are no restrictions on how quickly data is entered into the operand registers or on the order of data entry. The only requirement
to do a calculation is to perform the loading of MA and/or MB registers having specified data type and operation in the MCNT regis-
ter. The multiplier keeps track of the writes to the MA and MB registers, and starts calculation immediately after the prescribed num-
ber of operands is loaded. If two operands are specified for the operation, the multiplier waits for the second operand to be loaded
into the other operand register before starting the actual calculation. If for any reason software needs to reload the first operand, it
should either reload that same operand register or use the CLD bit in the MCNT register to reinitialize the multiplier; otherwise, loading
data to another operand register triggers the calculation. The CLD bit is a self-clearing bit that can be used for multiplier initialization.
When it is set, it clears all data registers and the OF bit to zero and resets the multiplier operand write counter.

The specified hardware multiplier operation begins when the final operand(s) is loaded and will complete in a single cycle. The read-
only MC1R, MC0R result registers can be accessed in the very next cycle unless accumulation/subtraction with MC2:MC0 is request-
ed (MCW = 0 and MMAC = 1), in which case, one cycle is required so that stable data can be read. When MCW = 0, the MC2:MC0
registers always require one wait cycle before the operation result is accessible. The single wait cycle needed for updating the
MC2:MC0 registers with a calculated result does not prevent initiating another calculation. Back-to-back operations can be triggered
(independent of data type and operand count) without the need of wait state between loading of operands.

Table 13-1. MAXQ7665/MAXQ7666 Hardware Multiplier Operations

MAXQ7665/MAXQ7666 User’s Guide

13-9

MCW:MSUB:
MMAC OPERATION MC2 MC1 MC0 MC1R:MC0R OF STATUS

000 Multiply MA x MB MA x MB No

001 Multiply-Accumulate MC + (MA x MB) 32 LSb of
[MC + 2 x (MA x MB)] Yes

010 Multiply-Negate
(SUS = 0 Only) -(MA x MB) -(MA x MB) No

011 Multiply-Subtract MC - (MA x MB) 32 LSb of
[MC - 2 x (MA x MB)] Yes

100 Multiply MC2 MC1 MC0 MA x MB No

101 Multiply-Accumulate MC2 MC1 MC0 32 LSb of
[MC + (MA x MB)] No

110 Multiply-Negate
(SUS = 0 Only) MC2 MC1 MC0 -(MA x MB) No

111 Multiply-Subtract MC2 MC1 MC0 32 LSb of
[MC - (MA x MB)] No

Maxim Integrated

13.9 MAXQ7665/MAXQ7666 Hardware Multiplier Examples
The following are code examples of multiplier operations.

;Unsigned Multiply 16-bit x 16-bit
move MCNT, #21h ; CLD=1, SUS=1 (unsigned)
move MA, #0FFFh ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= 00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

;Signed Multiply 16-bit x 16-bit
move MCNT, #20h ; CLD=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R= FF00_0001h

; MC2:0=FFFF_FF00_0001h

;Unsigned Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #03h ; MMAC=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply-Accumulate 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #02h ; SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= FF00_0003h
; MC2:0=0000_0000_0002h

;Unsigned Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #07h ; MMAC=1, MSUB=1, SUS=1 (unsigned)
move MA, #0FFFh ;
move MB, #1001h ;

; MC1R:MC0R=FF00_0003h
; MC2:0=0000_0000_0002h

;Signed Multiply-Subtract 16-bit x 16-bit
; MC2:0=0000_0100_0001h

move MCNT, #06h ; MMAC=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ;
move MB, #1001h ;

; MC1R:MC0R= 02FF_FFFFh
; MC2:0=0000_0200_0000h

;Signed Multiply Negate 16-bit x 16-bit
move MCNT, #24h ; CLD=1, MSUB=1, SUS=0 (signed)
move MA, #F001h ; MC2:0=0000_0000_0000h
move MB, #1001h ; MC1R:MC0R =00FF_FFFFh

; MC2:0=0000_00FF_FFFFh

MAXQ7665/MAXQ7666 User’s Guide

13-10Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-1

SECTION 14: MAXQ7665/MAXQ7666 INSTRUCTION SET SUMMARY

This section contains the following information:

ADD/ADDC src .14-5

AND src .14-6

AND Acc. .14-6

{L/S}CALL src .14-7

CMP src .14-8

CPL .14-8

CPL C .14-9

{L/S}DJNZ LC[n], src .14-9

{L/S}JUMP src .14-10

{L/S}JUMP C/{L/S}JUMP NC, src, {L/S}JUMP Z/{L/S}JUMP NZ, src,
{L/S}JUMP E/{L/S}JUMP NE, src, {L/S}JUMP S, src .14-11

MOVE dst, src .14-13

MOVE Acc., C .14-15

MOVE C, Acc. .14-16

MOVE C, src .14-16

MOVE C,#0 .14-16

MOVE C,#1 .14-17

MOVE dst., #0 .14-17

MOVE dst., #1 .14-17

NEG .14-18

OR src .14-18

OR Acc. .14-19

POP dst .14-19

POPI dst .14-20

PUSH src .14-20

RET .14-21

RET C/RET NC, RET Z/RET NZ, RET S .14-21

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-2

RETI .14-23

RET C/RET NC, RETI Z/RETI NZ, RETI S .14-23

RL/RLC .14-25

RR/RRC .14-26

SLA/SLA2/SLA4 .14-27

SR/SRA/SRA2/SRA4 .14-28

SUB/SUBB src .14-30

XCH .14-31

XCHN .14-31

XOR src .14-32

XOR Acc. .14-32

Table 14-1. MAXQ7665/MAXQ7666 Instruction Set Summary .14-3

Table 14-2. Source Specifier Codes .14-13

Table 14-3. Destination Specifier Codes .14-14

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-3

SECTION 14: MAXQ7665/MAXQ7666 INSTRUCTION SET SUMMARY

MNEMONIC DESCRIPTION 16-BIT INSTRUCTION
WORD

STATUS BITS
AFFECTED

AP
INC/DEC

NOTES

AND src Acc Acc AND src f001 1010 ssss ssss S, Z Y 1
OR src Acc Acc OR src f010 1010 ssss ssss S, Z Y 1
XOR src Acc Acc XOR src f011 1010 ssss ssss S, Z Y 1
CPL Acc ~Acc 1000 1010 0001 1010 S, Z Y
NEG Acc ~Acc + 1 1000 1010 1001 1010 S, Z Y

SLA Shift Acc left arithmetically 1000 1010 0010 1010 C, S, Z Y
SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S, Z Y

SLA4 Shift Acc left arithmetically four times 1000 1010 0110 1010 C, S, Z Y
RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y
RLC Rotate Acc left (through C) 1000 1010 0101 1010 C, S, Z Y

SRA Shift Acc right arithmetically 1000 1010 1111 1010 C, Z Y
SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 C, Z Y

SRA4 Shift Acc right arithmetically four times 1000 1010 1011 1010 C, Z Y
SR Shift Acc right (0 msbit) 1000 1010 1010 1010 C, S, Z Y

RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y

L
O

G
IC

A
L

 O
P

E
R

A
T

IO
N

S

RRC Rotate Acc right (though C) 1000 1010 1101 1010 C, S, Z Y

MOVE C, Acc. C Acc. 1110 1010 bbbb 1010 C
MOVE C, #0 C 0 1101 1010 0000 1010 C
MOVE C, #1 C 1 1101 1010 0001 1010 C
CPL C C ~C 1101 1010 0010 1010 C
MOVE Acc., C Acc. C 1111 1010 bbbb 1010 S, Z
AND Acc. C C AND Acc. 1001 1010 bbbb 1010 C
OR Acc. C C OR Acc. 1010 1010 bbbb 1010 C
XOR Acc. C C XOR Acc. 1011 1010 bbbb 1010 C
MOVE dst., #1 dst. 1 1ddd dddd 1bbb 0111 C, S, E, Z 2
MOVE dst., #0 dst. 0 1ddd dddd 0bbb 0111 C, S, E, Z 2

B
IT

 O
P

E
R

A
T

IO
N

S

MOVE C, src. C src. fbbb 0111 ssss ssss C
ADD src Acc Acc + src f100 1010 ssss ssss C, S, Z, OV Y 1
ADDC src Acc Acc + (src + C) f110 1010 ssss ssss C, S, Z, OV Y 1
SUB src Acc Acc – src f101 1010 ssss ssss C, S, Z, OV Y 1M

A
T

H

SUBB src Acc Acc – (src + C) f111 1010 ssss ssss C, S, Z, OV Y 1

Table 14-1. MAXQ7665/MAXQ7666 Instruction Set Summary

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-4

MNEMONIC DESCRIPTION 16-BIT INSTRUCTION
WORD

STATUS BITS
AFFECTED

AP
INC/DEC NOTES

{L/S}JUMP src IP IP + src or src f000 1100 ssss ssss 6
{L/S}JUMP C, src If C=1, IP (IP + src) or src f010 1100 ssss ssss 6
{L/S}JUMP NC, src If C=0, IP (IP + src) or src f110 1100 ssss ssss 6
{L/S}JUMP Z, src If Z=1, IP (IP + src) or src f001 1100 ssss ssss 6
{L/S}JUMP NZ, src If Z=0, IP (IP + src) or src f101 1100 ssss ssss 6
{L/S}JUMP E, src If E=1, IP (IP + src) or src 0011 1100 ssss ssss 6
{L/S}JUMP NE, src If E=0, IP (IP + src) or src 0111 1100 ssss ssss 6
{L/S}JUMP S, src If S=1, IP (IP + src) or src f100 1100 ssss ssss 6
{L/S}DJNZ LC[n], src If --LC[n] <> 0, IP (IP + src) or src f10n 1101 ssss ssss 6
{L/S}CALL src @++SP IP+1; IP (IP+src) or src f011 1101 ssss ssss 6,7
RET IP @SP-- 1000 1100 0000 1101
RET C If C=1, IP @SP-- 1010 1100 0000 1101
RET NC If C=0, IP @SP-- 1110 1100 0000 1101
RET Z If Z=1, IP @SP-- 1001 1100 0000 1101
RET NZ If Z=0, IP @SP-- 1101 1100 0000 1101
RET S If S=1, IP @SP-- 1100 1100 0000 1101
RETI IP @SP-- ; INS 0 1000 1100 1000 1101
RETI C If C=1, IP @SP-- ; INS 0 1010 1100 1000 1101
RETI NC If C=0, IP @SP-- ; INS 0 1110 1100 1000 1101
RETI Z If Z=1, IP @SP-- ; INS 0 1001 1100 1000 1101
RETI NZ If Z=0, IP @SP-- ; INS 0 1101 1100 1000 1101

B
R

A
N

C
H

IN
G

RETI S If S=1, IP @SP-- ; INS 0 1100 1100 1000 1101
XCH Swap Acc bytes 1000 1010 1000 1010 S Y

XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y
MOVE dst, src dst src fddd dddd ssss ssss C, S, Z, E (Note 8) 7, 8
PUSH src @++SP src f000 1101 ssss ssss 7
POP dst dst @SP-- 1ddd dddd 0000 1101 C, S, Z, E 7

D
A

T
A

T
R

A
N

S
F

E
R

POPI dst dst @SP-- ; INS 0 1ddd dddd 1000 1101 C, S, Z, E 7
CMP src E (Acc = src) f111 1000 ssss ssss E
NOP No operation 1101 1010 0011 1010

Table 14-1. MAXQ7665/MAXQ7666 Instruction Set Summary (continued)

Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination.

Note 2: Only module 8 and modules 0-5 (when implemented for a given product) are supported by these single-cycle bit operations.
Potentially affects C or E if PSF register is the destination. Potentially affects S and/or Z if AP or APC is the destination.

Note 3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator.
Note 4: Any index represented by or found inside [] brackets is considered variable, but required.
Note 5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src.
Note 6: The '{L/S}' prefix is optional.
Note 7: Instructions that attempt to simultaneously push/pop the stack (e.g. PUSH @SP--, PUSH @SPI--, POP @++SP, POPI @++SP)

or modify SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.

Note 8: Special cases: If ‘MOVE APC, Acc’ sets the APC.CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo operation
specified for AP. If ‘MOVE AP, Acc’ causes an auto-inc/dec/modulo operation on AP, this overrides the specified data transfer
(i.e., Acc will not be transferred to AP).

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-5

ADD/ADDC src Add/Add with Carry

Description: The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data and stores the result
back to the active accumulator. The ADDC instruction additionally includes the Carry (C) Status Flag in the sum-
mation. For the complete list of src specifiers, reference the MOVE instruction. The MAXQ7665/MAXQ7666 may use
the PFX[n] register to supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV

ADD Operation: Acc ← Acc + src

Encoding: 15 0

Example(s): ;Acc = 2345h for each example

ADD A[3] ; A[3]=FF0Fh

; → Acc =2254h,C=1, Z=0, S=0, OV=0

ADD #0C0h ; → Acc =2405h,C=0, Z=0, S=0, OV=0

ADD A[4] ; A[4]=C000h

; → Acc = E345h, C=0, Z=0, S=1, OV=0

ADD A[5] ; A[5]=6789h

; → Acc = 8ACEh, C=0, Z=0, S=1, OV=0

ADDC Operation: Acc ← Acc + C + src

Encoding: 15 0

Example(s): ; Acc = 2345h for each example

ADDC A[3] ; A[3] = DCBAh, C=1

; → Acc = 0000h, C=1, Z=1, S=0, OV=0

ADDC @DP[0]-- ; @DP[0] = 00EEh, C=1

; → Acc = 2434h, C=0, Z=0, S=0, OV=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

f100 1010 ssss ssss

f110 1010 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-6

AND src Logical AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data. For the complete list of
src specifiers, reference the MOVE instruction. The MAXQ7665/MAXQ7666 may use the PFX[n] register to supply
the high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc AND src

Encoding: 15 0

Example(s): ; Acc = 2345h for each example

AND A[3] ; A[3]=0F0Fh

; → Acc = 0305h, S=0, Z=0

AND #33h ; → Acc = 0001h

AND #2233h ; generates object code below

; MOVE PFX[0], #22h (smart-prefixing)

; AND #33h

; → Acc = 2201h

MOVE PFX[0], #0Fh

AND M0[8] ; M0[8]=0Fh (assume M0[8] is an 8-bit register)

; → Acc = 0305h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

AND Acc. Logical AND Carry Flag with Accumulator Bit

Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C AND Acc.

Encoding: 15 0

Example(s): ; Acc = 2345h, C=1 at start

AND Acc.0 ; Acc.0=1 → C=1

AND Acc.1 ; Acc.1=0 → C=0

AND C, Acc.8 ; Acc.8=1 → C=0

f001 1010 ssss ssss

1001 1010 bbbb 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-7

{L/S}CALL src {Long/Short} Call to Subroutine

Description: Performs a call to the subroutine destination specified by src. The CALL instruction uses an 8-bit immediate src to
perform a relative short call (IP +127/-128 words). The CALL instruction uses a 16-bit immediate src to perform an
absolute long CALL to the specified 16-bit address. The PFX[0] register is used to supply the high byte of a 16-bit
immediate address for the absolute long CALL. Using the optional 'L' prefix (i.e., LCALL) results in an absolute long
call and use of the PFX[0] register. Using the optional 'S' prefix (i.e., SCALL) attempts to generate a relative short call,
but is flagged by the assembler if the destination is out of range. Specifying an internal register src (no matter whether
8-bit or 16-bit) always produces an absolute CALL to a 16-bit address, thus the 'L' and 'S' prefixes should not be
used. The PFX[n] register value is used to supply the high address byte when an 8-bit register src is specified.

Status Flags: None

Operation: @++SP ← IP + 1 PUSH

IP ← src Absolute CALL

IP ← IP + src Relative CALL

Encoding: 15 0

Example(s): CALL label1 ; relative call to label1 (must be within IP +127/ -

; 128 address range)

CALL label1 ; absolute call to label1 = 0120h

; MOVE PFX[0], #01h

; CALL #20h.

CALL DP[0] ; DP[0] holds 16-bit address of subroutine

CALL M0[0] ; assume M0[0] is an 8-bit register

; absolute call to addr16

; high(addr16)=00h (PFX[0])

; low (addr16)=M0[0]

MOVE PFX[0], #22h ;

CALL M0[0] ; assume M0[0] is an 8-bit register

; high(addr16)=22h (PFX[0])

; low (addr16)=M0[0]

LCALL label1 ; label=0120h and is relative to this instruction

; absolute call is forced by use of 'L' prefix

; MOVE PFX[0], #01h

; CALL #20h

SCALL label1 ; relative offset for label1 calculated and used

; if label1 is not relative, assembler will generate an error

SCALL #10h ; relative offset of #10h is used directly by the CALL

f011 1101 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-8

CMP src Compare Accumulator

Description: Compare for equality between the active accumulator and the least significant byte of the specified src. The
MAXQ7665/MAXQ7666 may use the PFX[n] register to supply the high byte of data for 8-bit sources.

Status Flags: E

Operation: Acc = src: E ← 1

Acc <> src: E ← 0

Encoding: 15 0

Example(s): CMP #45h ; Acc = 0145h, E=0

CMP #145h ; PFX[0] register used

; MOVE PFX[0], #01h (smart-prefixing)

; CMP #45h E=1

CPL Complement Acc

Description: Performs a logical bitwise complement (1's complement) on the active accumulator (Acc or A[AP]) and returns the
result to the active accumulator.

Status Flags: S, Z

Operation: Acc ← ~Acc

Encoding: 15 0

Example(s): ; Acc = FFFFh, S=1, Z=0

CPL ; Acc ← 0000h, S=0, Z=1

; Acc = 0990h, S=0, Z=0

CPL ; Acc ← F66Fh, S=1, Z=0

f111 1000 ssss ssss

1000 1010 0001 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-9

CPL C Complement Carry Flag

Description: Logically complements the Carry (C) Flag.

Status Flags: C

Operation: C ← ~C

Encoding: 15 0

Example(s): ; C = 0

CPL C ; C ← 1

{L/S}DJNZ LC[n], src Decrement Counter, {Long/Short} Jump Not Zero

Description: The DJNZ LC[n], src instruction performs a conditional branch based upon the associated Loop Counter (LC[n]) reg-
ister. The DJNZ LC[n], src instruction decrements the LC[n] loop counter and branches to the address defined by
src if the decremented counter has not reached 0000h. Program branches can be relative or absolute depending
upon the src specifier and may be qualified by using the 'L' or 'S' prefixes as documented in the JUMP src op code.

Status Flags: None

Operation: LC[n] ← LC[n] -1

LC[n] <> 0: IP ← IP + src (relative) -or- src (absolute)

LC[n] = 0: IP ← IP + 1

Encoding: 15 0

Example(s): MOVE LC[1], #10h ; counter = 10h

Loop:

ADD @DP[0]++ ; add data memory contents to Acc, post-inc DP[0]

DJNZ LC[1], Loop ; 16 times before falling through

1101 1010 0010 1010

f10n 1101 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-10

{L/S}JUMP src Unconditional {Long/Short} Jump

Description: Performs an unconditional jump as determined by the src specifier. The JUMP instruction uses an 8-bit immediate src
to perform a relative jump (IP +127/-128 words). The JUMP instruction uses a 16-bit immediate src to perform an
absolute JUMP to the specified 16-bit address. The PFX[0] register is used to supply the high byte of a 16-bit imme-
diate address for the absolute JUMP. Using the optional 'L' prefix (i.e., LJUMP) results in an absolute long jump and
use of the PFX[0] register. Using the optional 'S' prefix (i.e., SJUMP) attempts to generate a relative short jump, but is
flagged by the assembler if the destination is out of range. Specifying an internal register src (no matter whether 8-
bit or 16-bit) always produces an absolute JUMP to a 16-bit address, thus the 'L' and 'S' prefixes should not be used.
The PFX[n] register value is used to supply the high address byte when an 8-bit register src is specified.

Status Flags: None

Operation: IP ← src Absolute JUMP

IP ← IP + src Relative JUMP

Encoding: 15 0

Example(s): JUMP label1 ; relative jump to label1 (must be within range

; IP +127/-128 words)

JUMP label1 ; absolute jump to label1= 0400h

; MOVE PFX[0], #04h

; JUMP #00h

JUMP DP[0] ; absolute jump to addr16 DP[0]

JUMP M0[0] ; assume M0[0] is an 8-bit register

; absolute jump to addr16

; high(addr16)=00h (PFX[0])

; low (addr16)=M0[0]

LJUMP label1 ; label=0120h and is relative to this instruction

; absolute jump is forced by use of 'L' prefix

; MOVE PFX[0], #01h

; JUMP #20h

SJUMP label1 ; relative offset for label1 calculated and used

; if label1 is not relative, assembler will generate an error

SJUMP #10h ; relative offset of #10h is used directly by the JUMP

f000 1100 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-11

{L/S}JUMP C/{L/S}JUMP NC, src Conditional {Long/Short} Jump on Status Flag
L/S}JUMP Z/{L/S}JUMP NZ, src
{{L/S}JUMP E/{L/S}JUMP NE, src
{L/S}JUMP S, src

Description: Performs conditional branching based upon the state of a specific processor status flag. JUMP C results in a branch
if the Carry flag is set while JUMP NC branches if the Carry flag is clear. JUMP Z results in a branch if the Zero flag
is set while JUMP NZ branches if the Zero flag is clear. JUMP E results in a branch if the Equal flag is set while JUMP
NE branches if the Equal flag is clear. JUMP S results in a branch if the Sign flag is set. Program branches can be
relative or absolute depending upon the src specifier and may be qualified by using the 'L' or 'S' prefixes as docu-
mented in the JUMP src op code. Special src restrictions apply to JUMP E and JUMP NE.

Status Flags: None

JUMP C C=1: IP ← IP + src (relative) -or- src (absolute)

Operation: C=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP C, label1 ; C=0, branch not taken

JUMP NC C=0: IP ← IP + src (relative) -or- src (absolute)

Operation: C=1: IP ← IP +1

Encoding: 15 0

Example(s): JUMP NC, label1 ; C=0, branch taken

JUMP Z Z=1: IP ← IP + src

Operation: Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP Z, label1 ; Z=1, branch taken

f010 1100 ssss ssss

f110 1100 ssss ssss

f001 1100 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-12

JUMP NZ Z=0: IP ← IP + src (relative) -or- src (absolute)

Operation: Z=1: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP NZ, label1 ; Z=1, branch taken

JUMP E E=1: IP ← IP + src (relative) -or- src (absolute)

Operation: E=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP E, label1 ; E=1, branch taken

Special Notes: The src specifier must be immediate data.

JUMP NE

Operation: E=0: IP ← IP + src (relative) -or- src (absolute)

E=1: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP NE, label1 ; E=0, branch taken

Special Notes: The src specifier must be immediate data.

JUMP S S=1: IP ← IP + src (relative) -or- src (absolute)

Operation: S=0: IP ← IP + 1

Encoding: 15 0

Example(s): JUMP S, label1 ; S=0, branch not taken

f101 1100 ssss ssss

0011 1100 ssss ssss

0111 1100 ssss ssss

f100 1100 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-13

MOVE dst, src Move Data

Description: Moves data from a specified source (src) to a specified destination (dst). A list of defined source, destination spec-
ifiers is given in the table below. Also, since src can be either 8-bit (byte) or 16-bit (word) data, the rules governing
data transfer are also explained below in the encoding section.

Status Flags: S, Z (if dst is Acc or AP or APC)

C, E (if dst is PSF)

Operation: dst ← src

Encoding: 15 0

Table 14-2. Source Specifier Codes

fddd dddd ssss ssss

src src BIT ENCODING
(f ssssssss)

WIDTH
(16 or 8)

DESCRIPTION

#k 0 kkkk kkkk 8 kkkkkkkk = Immediate (Literal) Data

MN[n] 1 nnnn 0NNN 8/16 nnnn Selects One of First 16 Registers in Module NNN;
where NNN= 0 to 5. Access to Second 16 Using PFX[n].

AP 1 0000 1000 8 Accumulator Pointer
APC 1 0001 1000 8 Accumulator Pointer Control
PSF 1 0100 1000 8 Processor Status Flag Register
IC 1 0101 1000 8 Interrupt and Control Register

IMR 1 0110 1000 8 Interrupt Mask Register
SC 1 1000 1000 8 System Control Register
IIR 1 1011 1000 8 Interrupt Identification Register

CKCN 1 1110 1000 8 Clock Control Register
WDCN 1 1111 1000 8 Watchdog Control Register

A[n] 1 nnnn 1001 8/16 nnnn Selects One of 16 Accumulators
Acc 1 0000 1010 8/16 Active Accumulator = A[AP]. Update AP per APC

A[AP] 1 0001 1010 8/16 Active Accumulator = A[AP]. No change to AP
IP 1 0000 1100 16 Instruction Pointer

@SP-- 1 0000 1101 16 16-Bit Word @SP, Post-Decrement SP
SP 1 0001 1101 16 Stack Pointer
IV 1 0010 1101 16 Interrupt Vector

LC[n] 1 011n 1101 16 n Selects 1 of 2 Loop Counter Registers
@SPI-- 1 1000 1101 16 16-bit word @SP, Post-Decrement SP, INS=0

@BP[OFFS] 1 0000 1110 8/16 Data Memory @BP[OFFS]
@BP[OFFS++] 1 0001 1110 8/16 Data memory @BP[OFFS]; Post Increment OFFS
@BP[OFFS--] 1 0010 1110 8/16 Data Memory @BP[OFFS]; Post Decrement OFFS

OFFS 1 0011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 1 0100 1110 16 Data Pointer Control Register
GR 1 0101 1110 16 General Register
GRL 1 0110 1110 8 Low Byte of GR Register
BP 1 0111 1110 16 Frame Pointer Base Pointer (BP)

GRS 1 1000 1110 16 Byte-Swapped GR Register
GRH 1 1001 1110 8 High Byte of GR Register
GRXL 1 1010 1110 16 Sign Extended Low Byte of GR Register

FP 1 1011 1110 16 Frame Pointer (BP[OFFS])
@DP[n] 1 0n00 1111 8/16 Data Memory @DP[n]

@DP[n]++ 1 0n01 1111 8/16 Data Memory @DP[n], Post-Increment DP[n]
@DP[n]-- 1 0n10 1111 8/16 Data Memory @DP[n], Post-Decrement DP[n]

DP[n] 1 0n11 1111 16 n Selects 1 of 2 Data Pointers

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-14

MOVE dst, src Move Data

Table 14-3. Destination Specifier Codes

Data Transfer dst (16-bit) ← src (16-bit): dst[15:0] ← src[15:0]

Rules dst (8-bit) ← src (8-bit): dst[7:0] ← src[7:0]

dst (16-bit) ← src (8-bit): dst[15:8] ← 00h *

dst[7:0] ← src[7:0]

dst (8-bit) ← src (16-bit): dst[7:0] ← src[7:0]

*Note: The PFX[0] register may be used to supply a separate high-order data byte for this type of transfer.

dst dst BIT ENCODING
(ddd dddd)

WIDTH
(16 OR 8)

DESCRIPTION

NUL 111 0110 8/16 Null (Virtual) Destination. Intended as a bit bucket to assist
software with pointer increments/decrements.

MN[n] nnn 0NNN 8/16 nnnn Selects One of First 8 Registers in Module NNN; where
NNN= 0 to 5. Access to Next 24 Using PFX[n].

AP 000 1000 8 Accumulator Pointer
APC 001 1000 8 Accumulator Pointer Control
PSF 100 1000 8 Processor Status Flag Register
IC 101 1000 8 Interrupt and Control Register

IMR 110 1000 8 Interrupt Mask Register
A[n] nnn 1001 8/16 nnn Selects 1 of First 8 Accumulators: A[0]..A[7]
Acc 000 1010 8/16 Active Accumulator = A[AP]

PFX[n] nnn 1011 8 nnn Selects One of 8 Prefix Registers
@++SP 000 1101 16 16-Bit Word @SP, Pre-Increment SP

SP 001 1101 16 Stack Pointer
IV 010 1101 16 Interrupt Vector

LC[n] 11n 1101 16 n Selects 1 of 2 Loop Counter Registers
@BP[OFFS] 000 1110 8/16 Data Memory @BP[OFFS]

@BP[++OFFS] 001 1110 8/16 Data Memory @BP[OFFS]; Pre-Increment OFFS
@BP[--OFFS] 010 1110 8/16 Data Memory @BP[OFFS]; Pre-Decrement OFFS

OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 100 1110 16 Data Pointer Control Register
GR 101 1110 16 General Register
GRL 110 1110 8 Low Byte of GR Register
BP 111 1110 16 Frame Pointer Base Pointer (BP)

@DP[n] n00 1111 8/16 Data Memory @DP[n]
@++DP[n] n01 1111 8/16 Data Memory @DP[n], Pre-Increment DP[n]
@--DP[n] n10 1111 8/16 Data Memory @DP[n], Pre-Decrement DP[n]

DP[n] n11 1111 16 n Selects 1 of 2 Data Pointers
2-CYCLE DESTINATION ACCESS USING PFX[n] REGISTER (See Special Notes)

SC 000 1000 8 System Control Register
CKCN 110 1000 8 Clock Control Register
WDCN 111 1000 8 Watchdog Control Register

A[n] nnn 1001 16 nnn Selects 1 of Second 8 Accumulators A[8]..A[15]
GRH 001 1110 8 High Byte of GR Register

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-15

Example(s): MOVE A[0], A[3] ; A[0] ← A[3]

MOVE DP[0], #110h ; DP[0] ← #0110h (PFX[0] register used)

; MOVE PFX[0], #01h (smart-prefixing)

; MOVE DP[0], #10h

MOVE DP[0], #80h ; DP[0] ← #0080h (PFX[0] register not needed)

Special Notes: Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate data or accessing 2-cycle
destinations, is handled automatically by the assembler and is therefore an optional step for the user when writing
assembly source code. Examples of the automatic PFX[n] code insertion by the assembler are demonstrated below.

Initial Assembly Code Assembler Output

MOVE DP[0], #0100h MOVE PFX[0], #01h

MOVE A[15], A[7] MOVE PFX[2], anysrc

MOVE A[7], A[7]

MOVE A[8], #3040h

MOVE PFX[2], #30h MOVE A[0], #40h

MOVE Acc., C Move Carry Flag to Accumulator Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit.

Status Flags: S, Z

Operation: Acc. ← C

Encoding: 15 0

Example(s): ; Acc = 8000h, S=1, Z=0, C=0

MOVE Acc.15, C ; Acc = 0000h, S=0, Z=1

1111 1010 bbbb 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-16

MOVE C, Acc. Move Accumulator Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit.

Status Flags: C

Operation: C ← Acc.

Encoding: 15 0

Example(s): ; Acc = 01C0h, C=0

MOVE C, Acc.8 ; C =1

MOVE C, src. Move Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified source bit src..

Status Flags: C

Operation: C ← src.

Encoding: 15 0

Example(s): ; M0[0] = FEh; C=1 (assume M0[0] is an 8-bit register)

MOVE C, M0[0].0 ; C=0

MOVE C, #0 Clear Carry Flag

Description: Clears the Carry (C) processor status flag.

Status Flag: C ← 0

Operation: C ← 0

Encoding: 15 0

Example(s): ; C = 1

MOVE C, #0 ; C ← 0

fbbb 0111 ssss ssss

1101 1010 0000 1010

1110 1010 bbbb 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-17

MOVE C, #1 Set Carry Flag

Description: Sets the Carry (C) processor status flag.

Status Flag: C ← 1

Operation: C ← 1

Encoding: 15 0

Example(s): ; C = 0

MOVE C, #1 ; C ← 1

MOVE dst., #0 Clear Bit

Description: Clears the bit specified by dst..

Status Flags: C, E (if dst is PSF), S, Z

Operation: dst. ← 0

Encoding: 15 0

Example(s): ; M0[0] = FEh

MOVE M0[0].1, #0 ; M0[0] = FCh

MOVE M0[0].7, #0 ; M0[0] = 7Ch

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #0.

MOVE dst., #1 Set Bit

Description: Sets the bit specified by dst..

Status Flags: C, E (if dst is PSF), S, Z

Operation: dst. ← 1

Encoding: 15 0

Example(s): ; M0[0] = 00h

MOVE M0[0].1, #1 ; M0[0] = 02h

MOVE M0[0].7, #1 ; M0[0] = 82h

Special Notes: Only system module 8 and peripheral modules (0-5) are supported by MOVE dst., #1.

1101 1010 0001 1010

1ddd dddd 0bbb 0111

1ddd dddd 1bbb 0111

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-18

NEG Negate Accumulator

Description: Performs a negation (2's complement) of the active accumulator and returns the result back to the active accumulator.

Status Flags: S, Z

Operation: Acc ← ~Acc + 1

Encoding: 15 0

Example(s): ; Acc = FEEDh, S=1, Z=0

NEG ; Acc = 0113h, S=0, Z=0

OR src Logical OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src data. For the complete
list of src specifiers, reference the MOVE instruction. The MAXQ7665/MAXQ7666 may use the PFX[n] register to
supply the high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc OR src

Encoding: 15 0

Example(s): ; Acc = 2345h for each example

OR A[3] ; A[3]= 0F0Fh → Acc = 2F4Fh

OR #1133h ; MOVE PFX[0], #11h (smart-prefixing)

; OR #33h → Acc = 3377h

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

1000 1010 1001 1010

f010 1010 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-19

OR Acc. Logical OR Carry Flag with Accumulator Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C OR Acc.

Encoding: 15 0

Example(s): ; Acc = 2345h, C=0 at start

OR Acc.1 ; Acc.1=0 → C=0

OR Acc.2 ; Acc.2=1 → C=1

POP dst Pop Word from the Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer (SP).

Status Flags: S, Z (if dst = Acc or AP or APC)

C, E (if dst = PSF)

Operation: dst ← @ SP--

Encoding: 15 0

Example(s): ; GR ← 1234h

POP GR ; @DP[0] ← 76h (WBS0=0)

POP @DP[0] ; @DP[0] ← 0876h (WBS0=1)

Stack Data:

← SP (initial)
← SP (after POP GR)
← SP (after POP @DP[0])

1ddd dddd 0000 1101

xxxxh
1234h
0876h
xxxxh
xxxxh

1010 1010 bbbb 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-20

POPI dst Pop Word from the Stack Enable Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decrements the stack pointer (SP). Additionally,
POPI returns the interrupt logic to a state in which it can acknowledge additional interrupts.

Status Flags: S, Z (if dst = Acc or AP or APC)

C, E (if dst = PSF)

Operation: dst ← @ SP--

INS ← 0

Encoding: 15 0

Example(s): See POP

PUSH src Push Word to the Stack

Description: Increments the stack pointer (SP) and pushes a single word specified by src to the stack (@SP).

Status Flags: None

Operation: SP ← ++SP

Encoding: 15 0

Example(s): PUSH GR ; GR=0F3Fh

PUSH #40h

Stack Data:

← SP (after PUSH #40h)
← SP (after PUSH GR)
← SP (initial)

1ddd dddd 1000 1101

f000 1101 ssss ssss

xxxxh
0040h
0F3Fh
xxxxh
xxxxh

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-21

RET Return from Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the stack pointer (SP).
The decremented SP is saved as the new stack pointer (SP).

Status Flags: None

Operation: IP ← @ SP--

Encoding: 15 0

Example(s): RET

Code Execution:

Stack Data:

← SP (before RET)
← SP (after RET)

RET C/RET NC Conditional Return on Status Flag
RET Z/RET NZ
RET S

Description: Performs conditional return (RET) based upon the state of a specific processor status flag. RET C returns if the Carry
flag is set while RET NC returns if the Carry flag is clear. RET Z returns if the Zero flag is set while RET NZ returns if
the Zero flag is clear. RET S returns if the Sign flag is set. See RET for additional information on the return operation.

Status Flags: None

RET C C=1: IP ← @SP--

Operation: C=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET C ; C=1, return (RET) is performed

1010 1100 0000 1101

1000 1100 0000 1101

Addr (IP) Op Code
0311h • • •

0312h RET
0103h • • •

xxxxh
xxxxh
0103h
xxxxh
xxxxh

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-22

RET NC

Operation: C=0: IP ← @SP--

C=1: IP ← IP +1

Encoding: 15 0

Example(s): RET NC ; C=1, return (RET) does not occur

RET Z

Operation: Z=1: IP ← @SP--

Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET Z ; Z=0, return (RET) does not occur

RET NZ

Operation: Z=0: IP ← @SP--

Z=1: IP ← IP +1

Encoding: 15 0

Example(s): RET NZ ; Z=0, return (RET) is performed

RET S

Operation: S=1: IP ← @SP--

S=0: IP ← IP + 1

Encoding: 15 0

Example(s): RET S ; S=0, return (RET) does not occur

1110 1100 0000 1101

1001 1100 0000 1101

1101 1100 0000 1101

1100 1100 0000 1101

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-23

RETI Return from Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the stack pointer (SP).
Additionally, RETI returns the interrupt logic to a state in which it can acknowledge additional interrupts.

Status Flags: None

Operation: IP ← @SP--

INS ← 0

Encoding: 15 0

Example(s): See RETI

RETI C/RETI NC Conditional Return from Interrupt on Status Flag
RETI Z/RETI NZ
RETI S

Description: Performs conditional return (RETI) based upon the state of a specific processor status flag. RETI C returns if the Carry
flag is set while RETI NC returns if the Carry flag is clear. RETI Z returns if the Zero flag is set while RETI NZ returns if
the Zero flag is clear. RETI S returns if the Sign flag is set. See RETI for additional information on the return operation.

Status Flags: None

RETI C

Operation: C=1: IP ← @SP--

INS ← 0

C=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI C ; C=1, return from interrupt (RETI) is performed

RETI NC

Operation: C=0: IP ← @SP--

INS ← 0

C=1: IP ← IP +1

Encoding: 15 0

Example(s): RETI NC ; C=1, return from interrupt (RETI) does not occur

1000 1100 1000 1101

1010 1100 1000 1101

1110 1100 1000 1101

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-24

RETI Z

Operation: Z=1: IP ← @SP--

INS ← 0

Z=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI Z ; Z=0, return from interrupt (RETI) does not occur

RETI NZ

Operation: Z=0: IP ← @SP--

INS ← 0

Z=1: IP ← IP +1

Encoding: 15 0

Example(s): RETI NZ ; Z=0, return from interrupt (RETI) is performed

RETI S

Operation: S=1: IP ← @SP--

INS ← 0

S=0: IP ← IP + 1

Encoding: 15 0

Example(s): RETI S ; S=0, return from interrupt (RETI) does not occur

1001 1100 1000 1101

1101 1100 1000 1101

1100 1100 1000 1101

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-25

RL/RLC Rotate Left Accumulator
Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator left by a single bit position. The RL instruction circulates the msb of the accumula-
tor (bit 15) back to the lsb (bit 0) while the RLC instruction includes the Carry (C) flag in the circular left shift.

Status Flags: C (for RLC only), S, Z (for RLC only)

RL Operation: 15 Active Accumulator (Acc) 0

Acc.[15:1]← Acc.[14:0]; Acc.0 ← Acc.15

Encoding: 15 0

Example(s): ; Acc = A345h, S=1, Z=0

RL ; Acc = 468Bh, S=0, Z=0

RL ; Acc = 8D16h, S=1, Z=0

RLC Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[15:1]← Acc.[14:0]; Acc.0 ← C; C ← Acc.15

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RLC ; Acc = 468Bh, C=1, S=0, Z=0

RLC ; Acc = 8D17h, C=0, S=1, Z=0

1000 1010 0100 1010

1000 1010 0101 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-26

RR/RRC Rotate Right Accumulator
Carry Flag (Ex/In)clusive

Description: Rotates the active accumulator right by a single bit position. The RR instruction circulates the lsb of the accumula-
tor (bit 0) back to the msb (bit 15) while the RRC instruction includes the Carry (C) flag in the circular right shift.

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 15 Active Accumulator (Acc) 0

Acc.[14:0]← Acc.[15:1]; Acc.15 ← Acc.0

Encoding: 15 0

Example(s): ;Acc = A345h, S=1, Z=0

RR ; Acc = D1A2h, S=1, Z=0

RR ; Acc = 68D1h, S=0, Z=0

RRC Operation: 15 Active Acc (Acc) 0 Carry Flag

Acc.[14:0]← Acc.[15:1]; Acc.15 ← C; C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

RRC ; Acc = D1A2h, C=1, S=1, Z=0

RRC ; Acc = E8D1h, C=0, S=1, Z=0

1000 1010 1100 1010

1000 1010 1101 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-27

SLA/SLA2/SLA4 Shift Accumulator Left Arithmetically
One, Two, or Four Times

Description: Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4. For each shift iter-
ation, a 0 is shifted into the lsb, and the msb is shifted into the Carry (C) flag. For signed data, this shifting process
effectively retains the sign orientation of the data to the point at which overflow/underflow would occur.

Status Flags: C, S, Z

SLA Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.15; Acc.[15:1]← Acc.[14:0]; Acc.0 ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA ; Acc = C68h, C=1, S=1, Z=0

SLA ; Acc = 8D14h, C=1, S=1, Z=0

SLA2 Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.14 ; Acc.[15:2]← Acc.[13:0] ; Acc.[1:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA2 ; Acc = 8D14h, C=1, S=1, Z=0

SLA4 Operation: Carry Flag 15 Active Accumulator (Acc) 0

C ← Acc.12; Acc.[15:4]← Acc.[11:0]; Acc.[3:0] ← 0

Encoding: 15 0

Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA4 ; Acc = 3450h, C=0, S=0, Z=0

0

1000 1010 0010 1010

1000 1010 0011 1010

0

1000 1010 0110 1010

0

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-28

SR/SRA/SRA2/SRA4 Shift Accumulator Right/
Shift Accumulator Right Arithmetically

One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times, respectively, for the SRA2,
SRA4 instructions. The SR instruction shifts a 0 into the accumulator msb while the SRA, SRA2, and SRA4 instruc-
tions effectively shift a copy of the current msb into the accumulator, thereby preserving any sign orientation. For
each shift iteration, the accumulator lsb is shifted into the Carry (C) flag.

Status Flags: C, S (changes for SR only), Z

SR Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.15 ← 0; Acc.[14:0]← Acc.[15:1]; C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = A345h, C=1, S=1, Z=0

SR ; Acc = 51A2h, C=1, S=0, Z=0

SR ; Acc = 28D1h, C=0, S=0, Z=0

SRA Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[14:0]← Acc.[15:1]

Acc.15 ← Acc.15

C ← Acc.0

Encoding: 15 0

Example(s): ; Acc = 0003h, C=0, Z=0

SRA ; Acc = 0001h, C=1, Z=0

SRA ; Acc = 0000h, C=1, Z=1

1000 1010 1010 1010

1000 1010 1111 1010

0

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-29

SRA2 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[13:0] ← Acc.[15:2]

Acc.[15:14] ← Acc.15

C ← Acc.1

Encoding: 15 0

Example(s): ; Acc = 0003h, C=0, Z=0

SRA2 ; Acc = 0000h, C=1, Z=1

SRA4 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

Acc.[11:0] ← Acc.[15:4]

Acc.[15:12] ← Acc.15

C ← Acc.3

Encoding: 15 0

Example(s): ; Acc = 9878h, C=0, Z=0

SRA4 ; Acc = F987h, C=1, Z=0

SRA4 ; Acc = FF98h, C=0, Z=0

1000 1010 1110 1010

1000 1010 1011 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-30

SUB/SUBB src Subtract /Subtract with Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to the active accumula-
tor. The SUBB additionally subtracts the borrow (Carry Flag), which may have resulted from previous subtraction.
For the complete list of src specifiers, reference the MOVE instruction. The MAXQ7665/MAXQ7666 may use the
PFX[n] register to supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV

SUB Operation: Acc ← Acc - src

Encoding: 15 0

Example(s): ; Acc = 2345h to start, A[1]= 1250h

SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0

SUB A[1] ; Acc = FEA5h, C=1, S=1, Z=0, OV=0

SUB A[2] ; A[2] =7FFFh

; → Acc = 7EA6h; C=0, S=0, Z=0, OV=1

SUBB Operation: Acc ← Acc - (src + C)

Encoding: 15 0

Example(s): ; Acc = 2345h, A[1]= 1250h, C=1

SUBB A[1] ; Acc = 10F4h, C=0, S=0, Z=0

SUBB A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

f101 1010 ssss ssss

f111 1010 ssss ssss

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-31

XCH Exchange Accumulator Bytes

Description: Exchanges the upper and lower bytes of the active accumulator.

Status Flags: S

Operation: Acc.[15:8] ← Acc.[7:0]

Acc.[7:0] ← Acc.[15:8]

Encoding: 15 0

Example(s): ; Acc = 2345h

XCHN ; Acc = 4523h

XCHN Exchange Accumulator Nibbles

Description: Exchanges the upper and lower nibbles in the active accumulator byte(s).

Status Flags: S

Operation: Acc.[7:4] ← Acc.[3:0]

Acc.[3:0] ← Acc.[7:4]

Acc.[15:12] ← Acc.[11:8]

Acc.[11:8] ← Acc.[15:12]

Encoding: 15 0

Example(s): ; Acc = 2345h

XCHN ; Acc = 3254h

1000 1010 0111 1010

1000 1010 1000 1010

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

14-32

XOR src Logical XOR

Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src data. For the com-
plete list of src specifiers, reference the MOVE instruction. The MAXQ7665/MAXQ7666 may use the PFX[n] register
to supply the high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc ← Acc XOR src

Encoding: 15 0

Example(s): ; Acc = 2345h

XOR A[2] ; A[2]=0F0Fh; Acc ← 2C4Ah

Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

XOR Acc. Logical XOR Carry Flag with Accumulator Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active accumulator (Acc.)
and returns the result to the Carry.

Status Flags: C

Operation: C ← C XOR Acc.

Encoding: 15 0

Example(s): ; Acc = 2345h, C=1 at start

XOR Acc.1 ; Acc.1=0 → C=1

XOR Acc.2 ; Acc.2=1 → C=0

f011 1010 ssss ssss

1011 1010 bbbb 1010

Maxim Integrated

SECTION 15: UTILITY ROM (SPECIFIC TO
MAXQ7665A–MAXQ7665D WITH TYPE A FLASH)

MAXQ7665/MAXQ7666 User’s Guide

15-1

This section contains the following information:

15.1 In-Application Programming Functions .15-3

15.2 Data Transfer Functions .15-3

15.3 Temperature Conversion Function .15-6

15.4 ROM Example 1: Calling A MAXQ7665 Utility ROM Function Directly 15-7

15.5 ROM Example 2: Calling A MAXQ7665 Utility ROM Function Indirectly 15-8

Table 15-1. Utility ROM User Functions (for Utility ROM Version 1.01) .15-2

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

15-2

SECTION 15: UTILITY ROM (SPECIFIC TO MAXQ7665A–MAXQ7665D
WITH TYPE A FLASH)
The MAXQ7665 utility ROM includes routines that provide the following functions to application software:

• In-application programming routines for Type A flash memory (program, erase, mass erase)

• Single word/byte copy and buffer copy routines for use with lookup tables

• Temperature conversion routine to perform internal/remote diode-connected transistor based temperature measurement

The MAXQ7665 flash type is identified by bit 4 of the read-only OTP register (Module 5, Index 0Dh). For devices with Type A flash, OTP
register bit 4 (OTP.4) = 1. In the MAXQ7665x family, only MAXQ7665A–MAXQ7665D devices support Type A flash.

To provide backward compatibility among different versions of the utility ROM, a function address table is included that contains the
entry points for all user-callable functions. With this table, user code can determine the entry point for a given function as follows:

1) Read the location of the function address table from address 0800Dh in the utility ROM.

2) The entry points for each function listed in Table 15-1 are contained in the function address table, one word per function, in the
order given by their function numbers.

For example, the entry point for the flashEraseAll function can be accessed and called by the following procedure.

get_urom_table_entry:
move dpc, #1Ch //all data pointers in word mode
move dp[0], #0800Dh //initialize dp[0]
move bp, @dp[0] //load function address table location in bp
move offs, #2 //load function number in offs
call @bp[offs] //call flashEraseAll

It is also possible to call utility ROM functions directly, using the entry points given in Table 15-1. Standard include files are provided
for this purpose with the MAXQ7665 development tool set. This method calls functions more quickly, but the application may need to
be recompiled in order to run properly with a different version of the utility ROM.

Table 15-1. Utility ROM User Functions (for Utility ROM Version 1.01)
FUNCTION NUMBER FUNCTION NAME ENTRY POINT SUMMARY

0 — — Reserved.

1 flashEraseSector 08836h Erases (programs to FFFFh) a sector of flash memory.

2 flashEraseAll 0885Dh Erases (programs to FFFFh) all flash memory.

3 moveDP0 0886Bh Reads a byte/word at DP[0].

4 moveDP0inc 0886Eh Reads a byte/word at DP[0], then increments DP[0].

5 moveDP0dec 08871h Reads a byte/word at DP[0], then decrements DP[0].

6 moveDP1 08874h Reads a byte/word at DP[1].

7 moveDP1inc 08877h Reads a byte/word at DP[1], then increments DP[1].

8 moveDP1dec 0887Ah Reads a byte/word at DP[1], then decrements DP[1].

9 moveFP 0887Dh Reads a byte/word at BP[OFFS].

10 moveFPinc 08880h Reads a byte/word at BP[OFFS], then increments OFFS.

11 moveFPdec 08883h Reads a byte/word at BP[OFFS], then decrements OFFS.

12 copyBuffer 08886h Copies LC[0] values from DP[0] to BP[OFFS].

13 tempConv 0888Ch Performs temperature conversion.

14 flashWriteA 088DBh Writes a word to the flash memory.

Maxim Integrated

15.1 In-Application Programming Functions
Function: flashEraseSector
Summary: Erases (programs to FFFFh) a sector of flash memory.
Inputs: A[0]: Word address located in the sector to be erased.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1: Failure due to software timeout.
2: Failure reported by hardware (FERR).
3: Failure due to trying to erase current page.

Destroys: PSF, LC[1], GR, ACC, AP, APC (AP = APC = 0)

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) When calling this function from flash, care should be taken that the return address is not in the sector that is being erased.

Function: flashEraseAll
Summary: Erases (programs to FFFFh) all locations in flash memory.
Inputs: None.
Outputs: Carry: Set on error and cleared on success.
Destroys: PSF, GR, LC[0], LC[1], APC, AP, A[0] (AP, APC set to 0)

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) This function can only be called by code running from the RAM. An attempt to call this function while running from the flash results
in an error.

Function: flashWriteA
Summary: Writes a single word to the flash memory.
Inputs: A[0]: Word address in code flash memory to write to.

A[1]: Word value to write to flash memory.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1: Failure due to software timeout.
2: Failure reported by hardware (DQ5).
4: Command not supported.

Destroys: LC[1], A[2], AP

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry set). To reprogram
a flash sector, it must first be erased by calling flashEraseSector or flashEraseAll.

15.2 Data Transfer Functions
Function: moveDP0
Summary: Reads the byte/word value pointed to by DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

MAXQ7665/MAXQ7666 User’s Guide

15-3 Maxim Integrated

Function: moveDP0inc
Summary: Reads the byte/word value pointed to by DP[0], then increments DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.

DP[0] is incremented.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP0dec
Summary: Reads the byte/word value pointed to by DP[0], then decrements DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.

DP[0] is decremented.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP1
Summary: Reads the byte/word value pointed to by DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP1inc
Summary: Reads the byte/word value pointed to by DP[1], then increments DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.

DP[1] is incremented.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

MAXQ7665/MAXQ7666 User’s Guide

15-4Maxim Integrated

Function: moveDP1dec
Summary: Reads the byte/word value pointed to by DP[1], then decrements DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.

DP[1] is decremented.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveFP
Summary: Reads the byte/word value pointed to by BP[OFFS].
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveFPinc
Summary: Reads the byte/word value pointed to by BP[OFFS] then increments OFFS.
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.

OFFS is incremented.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveFPdec
Summary: Reads the byte/word value pointed to by BP[OFFS] then decrements OFFS.
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.

OFFS is decremented.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

MAXQ7665/MAXQ7666 User’s Guide

15-5 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

15-6

Function: copyBuffer
Summary: Copies LC[0] bytes/words from DP[0] to BP[OFFS].
Inputs: DP[0]: Address to copy from.

BP[OFFS]: Address to copy to.
LC[0]: Number of bytes or words to copy.

Outputs: OFFS is incremented by LC[0].
DP[0] is incremented by LC[0].

Destroys: LC[0]

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or word mode. Both DP[0]
and BP[OFFS] should be configured to the same mode (byte or word) for correct buffer copying.

2) The addresses passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointers before reading the byte/word values.

15.3 Temperature Conversion Function
Function: tempConv
Summary: Performs internal/remote diode-connected transistor-based temperature measurements.
Inputs: GR: Sensor source (SS) code.

A[0]: Single-ended or differential configuration, SEDIF. Set to 1 for differential or 0 for singled-ended.
Outputs: GR: Temperature conversion result in degree Celsius.

Carry: Set on error or illegal SS code.
Destroys: A[0], A[1], PSW; AP, APC set to 0

Notes:

1) Valid sensor source (SS) code identifiers:

SS = 0x00 Internal diode-connected transistor-based temperature measurement.

SS = 0x01 Remote diode-connected transistor-based temperature measurement on AIN0.

SS = 0x02 Remote diode-connected transistor-based temperature measurement on AIN2.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

15-7

15.4 ROM Example 1: Calling A MAXQ7665 Utility ROM Function Directly
This example shows the direct addressing method for calling MAXQ7665 utility functions, using the function moveDP1inc to read a
static string from code space. Note the equate UROM_MOVEDP1INC.

UROM_MOVEDP1INC EQU 08877h

Text:
DB “Hello World!”,0 ; Define a string in code space.

;;;
;; Function: PrintText
;; Description: Prints the string stored at the “Text” label.
;; Returns: N/A
;; Destroys: ACC, DP[1], DP[0], and GR.
;; Notes: This function assumes that DP[0] is set to word mode, and
;; DP[1] is in byte mode.
;;;

PrintText:
move DP[1], #Text ; Point to the string to display.
move ACC, DP[1] ; “Text” is a word address and we need a
sla ; byte address, so shift left 1 bit.
or #08000h ; Code space is mapped to 8000h when running
move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:
call UROM_MOVEDP1INC ; Fetch the byte from code space.
move ACC, GR
jump Z, PrintText_Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
jump PrintText_Loop ; Process the next byte.

PrintText_Done:
ret

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

15-8

15.5 ROM Example 2: Calling A MAXQ7665 Utility ROM Function Indirectly
The second example shows the indirect addressing method (lookup table) for calling MAXQ7665 utility functions. We use the same
function (UROM_MoveDP1Inc) to read our static string, but this time we must figure out the address we want dynamically. Note the
inserted code where we before had a direct call to the function. Also note that the function index of moveDP1inc is 7.

Text:
DB “Hello World!”,0 ; Define a string in code space.

;;;
;; Function: PrintText
;; Description: Prints the string stored at the “Text” label.
;; Returns: N/A
;; Destroys: ACC, DP[1], DP[0], and GR.
;; Notes: This function assumes that DP[0] is set to word mode, and
;; DP[1] is in byte mode.
;;;

PrintText:
move DP[1], #Text ; Point to the string to display.
move ACC, DP[1] ; “Text” is a word address and we need a
sla ; byte address, so shift left 1 bit.
or #08000h ; Code space is mapped to 8000h when running
move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:
;
; Fetch the byte from code space.
;
move DP[0], #0800Dh ; This is where the address of the table is stored.
move ACC, @DP[0] ; Get the location of the function table.
add #7 ; Add the index to the moveDP1inc function.
move DP[0], ACC ; Point to where the address of moveDP1 is stored.
move ACC, @DP[0] ; Retrieve the address of the function.
call ACC ; Execute the function.

move ACC, GR
jump Z, PrintText_Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
jump PrintText_Loop ; Process the next byte.

PrintText_Done:
ret

Maxim Integrated

SECTION 16: UTILITY ROM (SPECIFIC TO MAXQ7666 WITH
TYPE F FLASH)

MAXQ7665/MAXQ7666 User’s Guide

16-1

This section contains the following information:

16.1 In-Application Programming Functions .16-3

16.2 Data Transfer Functions .16-6

16.3 Temperature Conversion Function .16-8

Table 16-1. Utility ROM User Functions (for Utility ROM Version 1.01) .16-2

LIST OF TABLES

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

16-2

SECTION 16: UTILITY ROM (SPECIFIC TO MAXQ7666 WITH TYPE F
FLASH)
The MAXQ7666 utility ROM includes routines that provide the following functions to application software:

• In-application programming routines for Type F flash memory (program, erase, mass erase)

• Single word/byte copy and buffer copy routines for use with lookup tables

• Temperature conversion routine to perform internal/remote diode-connected transistor based temperature measurement

The MAXQ7666 flash type is identified by bit 4 of the read-only OTP register (Module 5, Index 0Dh). For devices with Type F flash, OTP
register bit 4 (OTP.4) = 0. Only the MAXQ7666 supports Type F flash.

To provide backward compatibility among different versions of the utility ROM, a function address table is included that contains the
entry points for all user-callable functions. With this table, user code can determine the entry point for a given function as follows:

1) Read the location of the function address table from address 0800Dh in the utility ROM.

2) The entry points for each function listed in Table 16-1 are contained in the function address table, one word per function, in the
order given by their function numbers.

For example, the entry point for the programFlashEraseAll function can be accessed and called by the following procedure.

get_urom_table_entry:
move dpc, #1Ch //all data pointers in word mode
move dp[0], #0800Dh //initialize dp[0]
move bp, @dp[0] //load function address table location in bp
move offs, #2 //load function number in offs
call @bp[offs] //call flashEraseAll

It is also possible to call utility ROM functions directly, using the entry points given in Table 16-1. Standard include files are provided
for this purpose with the MAXQ7666 development tool set. This method calls functions more quickly, but the application may need to
be recompiled in order to run properly with a different version of the utility ROM.

Table 16-1. Utility ROM User Functions (for Utility ROM Version 1.01)

FUNCTION NUMBER FUNCTION NAME ENTRY POINT SUMMARY

0 programFlashWritePage 0882Ah Writes an entire 32-word/64-byte program flash page.

1 programFlashErasePage 0883Fh Erases (programs to FFFFh) two pages of program flash.

2 programFlashEraseAll 08866h Erases (programs to FFFFh) the entire program flash
memory.

3 moveDP0 08874h Reads a byte/word at DP[0]

4 moveDP0inc 08877h Reads a byte/word at DP[0], then increments DP[0].

5 moveDP0dec 0887Ah Reads a byte/word at DP[0], then decrements DP[0].

6 moveDP1 0887Dh Reads a byte/word at DP[1].

7 moveDP1inc 08880h Reads a byte/word at DP[1], then increments DP[1].

8 moveDP1dec 08883h Reads a byte/word at DP[1], then decrements DP[1].

9 moveFP 08886h Reads a byte/word at BP[OFFS].

10 moveFPinc 08889h Reads a byte/word at BP[OFFS], then increments OFFS.

11 moveFPdec 0888Ch Reads a byte/word at BP[OFFS], then decrements OFFS.

12 copyBuffer 0888Fh Copies LC[0] values from DP[0] to BP[OFFS].

13 tempConv 08895h Performs temperature conversion.

14 — — Reserved.

15 — — Reserved.

Maxim Integrated

16.1 In-Application Programming Functions
Function: programFlashWritePage
Summary: Writes an entire 32-word/64-byte program flash page.
Inputs: DP[0]: Word address in program flash page to write to.

DP[1]: Word address in data space pointing to the 32 words in SRAM that will be written into the program flash page.
Word mode assumed.

Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:
1: Failure due to software timeout.
2: Failure reported by hardware (FERR).
4: Command not supported.

Destroys: PSF, LC[1], ACC, AP

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry set). To reprogram
a flash page, it must first be erased by calling programFlashErasePage or programFlashEraseAll.

Function: programFlashErasePage
Summary: Erases (programs to FFFFh) two pages (1 page = 32 words) of the program flash memory.
Inputs: A[0]: Word address located in the page to be erased. The specified even page and the next sequential odd page

will be erased.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1. Failure due to software timeout.
2. Failure reported by hardware (FERR).
3. Failure due to trying to erase current page.

Destroys: PSF, LC[1], GR, ACC, AP, APC (AP = APC = 0)

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) When calling this function from flash, care should be taken that the return address is not in the page that is being erased.

MAXQ7665/MAXQ7666 User’s Guide

16-3

Table 16-1. Utility ROM User Functions (for Utility ROM Version 1.01) (continued)

FUNCTION NUMBER FUNCTION NAME ENTRY POINT SUMMARY

16 dataFlashWrite 08906h Writes a word to the data flash memory.

17 dataFlashWriteEven 08920h Writes a word to the data flash memory even address.

18 dataFlashErasePage 08929h Erases two pages of data flash.

19 — — Reserved.

20 dataFlashEraseAll 08937h Erases the entire data flash.

21 dataFlashReadEven 0893Eh Reads a word from the data flash memory even address.

Maxim Integrated

Function: programFlashEraseAll
Summary: Erases (programs to FFFFh) all locations in program flash memory.
Inputs: None.
Outputs: Carry: Set on error and cleared on success.
Destroys: PSF, GR, LC[0], LC[1], APC, AP, A[0] (AP, APC set to 0)

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) This function can only be called by code running from the RAM. An attempt to call this function while running from the flash results
in an error.

Function: dataFlashWrite
Summary: Write a word (2 bytes) to the data flash page (1 page = 1 word).
Inputs: A[0]: Word address in data flash page to write to.

A[1]: Word value (2 bytes) to write to data flash.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1. Failure due to software timeout.
2. Failure reported by hardware (FERR).
3. Failure due to trying to erase current page.
4. Command not supported.

Destroys: A[0], LC[1]

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry set). To reprogram
a flash page, it must first be erased by calling dataFlashErasePage or dataFlashEraseAll.

3) The function “dataFlashWrite” has no entry in the utility ROM functions table and can be called only directly using the entry point
(088F5h) given in Table 16-1.

Function: dataFlashWriteEven
Summary: Write a word (2 bytes) to an even address data flash page (1 page = 1 word).
Inputs: A[0]: Word address in data flash page to write to. Addresses are translated ((A[0] << 1) | C000h) to map even

address only. Only word addresses 0–3Fh are valid.
A[1]: Word value (2 bytes) to write to data flash.

Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:
1. Failure due to software timeout.
2. Failure reported by hardware (FERR).
3. Failure due to invalid address.
4. Command not supported.

Destroys: A[0], LC[1], AP, APC

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry set). To reprogram
a flash page, it must first be erased by calling dataFlashErasePage or dataFlashEraseAll.

3) The even functions make it possible to work around the asymmetric “erase two, write one” page behavior by writing to or reading
from only even addresses. By putting data only into even locations, the intrinsic two-page erase function is made to look like a sin-
gle word erase at the cost of halving the available storage.

MAXQ7665/MAXQ7666 User’s Guide

16-4Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

16-5

Function: dataFlashErasePage
Summary: Erases (programs to FFFFh) two pages (1 page = 1 word) of the data flash memory.
Inputs: A[0]: Word address located in the page to be erased. The specified even page and the next sequential odd page

will be erased.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1. Failure due to software timeout.
2. Failure reported by hardware (FERR).
3. Failure due to invalid address.
4. Command not supported.

Destroys: LC[1], DPC, ACC, APC, AP

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) The location will be aligned to even address before erase.

Function: dataFlashEraseAll
Summary: Erases (programs to FFFFh) all locations in data flash memory.
Inputs: None.
Outputs: Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:

1. Failure due to software timeout.
2. Failure reported by hardware (FERR).
4. Command not supported.

Destroys: LC[0], LC[1], A[0]

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

Function: dataFlashReadEven
Summary: Read a word (2 bytes) from an even address data flash page (1 page = 1 word).
Inputs: A[0]: Word address in data flash page to read from. Addresses are translated ((A[0] << 1) | C000h) to map even

address only. Only word addresses 0–3Fh are valid.
Outputs: A[0]: Word value (2 bytes) read from data flash.

Carry: Set on error and cleared on success. If set, then A[0] contains one of the following error codes:
4. Command not supported.

Destroys: A[0], DP[0], DPC, APC

Notes:

1) If the watchdog reset is enabled, user code should disable it before calling this function. Also, disable interrupts globally (IGE = 0).

2) The even functions make it possible to work around the asymmetric “erase two, write one” page behavior by writing to or reading
from only even addresses. By putting data only into even locations, the intrinsic two-page erase function is made to look like a sin-
gle word erase at the cost of halving the available storage.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

16-6

16.2 Data Transfer Functions
Function: moveDP0
Summary: Reads the byte/word value pointed to by DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP0inc
Summary: Reads the byte/word value pointed to by DP[0], then increments DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.

DP[0] is incremented.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP0dec
Summary: Reads the byte/word value pointed to by DP[0], then decrements DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.

DP[0] is decremented.
Destroys: Selects DP[0] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP1
Summary: Reads the byte/word value pointed to by DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Maxim Integrated

Function: moveDP1inc
Summary: Reads the byte/word value pointed to by DP[1], then increments DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.

DP[1] is incremented.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveDP1dec
Summary: Reads the byte/word value pointed to by DP[1], then decrements DP[1].
Inputs: DP[1]: Address to read from.
Outputs: GR: Data byte/word read.

DP[1] is decremented.
Destroys: Selects DP[1] in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveFP
Summary: Reads the byte/word value pointed to by BP[OFFS].
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: moveFPinc
Summary: Reads the byte/word value pointed to by BP[OFFS] then increments OFFS.
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.

OFFS is incremented.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

MAXQ7665/MAXQ7666 User’s Guide

16-7 Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

16-8

Function: moveFPdec
Summary: Reads the byte/word value pointed to by BP[OFFS] then decrements OFFS.
Inputs: BP[OFFS]: Address to read from.
Outputs: GR: Data byte/word read.

OFFS is decremented.
Destroys: Selects BP in DPC.

Notes:

1) Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

2) The address passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointer before reading the byte/word value.

Function: copyBuffer
Summary: Copies LC[0] bytes/words from DP[0] to BP[OFFS].
Inputs: DP[0]: Address to copy from.

BP[OFFS]: Address to copy to.
LC[0]: Number of bytes or words to copy.

Outputs: OFFS is incremented by LC[0].
DP[0] is incremented by LC[0].

Destroys: LC[0]

Notes:

1) Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or word mode. Both DP[0]
and BP[OFFS] should be configured to the same mode (byte or word) for correct buffer copying.

2) The addresses passed to this function should be based on the data memory mapping for the utility ROM, as explained in Section 1.
The CDA0 and CDA1 bits must be set appropriately to access either the upper or lower half of program flash memory.

3) This function automatically refreshes the data pointers before reading the byte/word values.

16.3 Temperature Conversion Function
Function: tempConv
Summary: Performs internal/remote diode-connected transistor-based temperature measurements.
Inputs: GR: Sensor source (SS) code.

A[0]: Single-ended or differential configuration, SEDIF. Set to 1 for differential or 0 for singled-ended.
Outputs: GR: Temperature conversion result in degree Celsius.

Carry: Set on error or illegal SS code.
Destroys: A[0], A[1], PSW; AP, APC set to 0

Notes:

1) Valid sensor source (SS) code identifiers:

SS = 0x00 Internal diode-connected transistor-based temperature measurement.

SS = 0x01 Remote diode-connected transistor-based temperature measurement on AIN0.

SS = 0x02 Remote diode-connected transistor-based temperature measurement on AIN2.

Maxim Integrated

MAXQ7665/MAXQ7666 User’s Guide

REVISION
NUMBER

REVISION
DATE

DESCRIPTION
PAGES

CHANGED

0 12/07 Initial release. —

REVISION HISTORY

386 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

© 2007 Maxim Integrated The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.

	SECTION 1: MAXQ7665/MAXQ7666 Core Architecture
	SECTION 2: Power-Supply/Supervisory Monitoring Module
	SECTION 3: Analog I/O Module
	SECTION 4: Controller Area Network (CAN) Module
	SECTION 5: Oscillator/Clock Generation Module
	SECTION 6: Serial I/O Module
	SECTION 7: Type 2 Timer/Counter Module
	SECTION 8: General-Purpose I/O Module
	SECTION 9: Serial Peripheral Interface (SPI) Module
	SECTION 10: Test Access Port (TAP)
	SECTION 11: In-Circuit Debug Mode
	SECTION 12: In-System Programming
	SECTION 13: Hardware Multiplier Module
	SECTION 14: MAXQ7665/MAXQ7666 Instruction Set Summary
	SECTION 15: Utility ROM (Specific to MAXQ7665A-MAXQ7665D with Type A Flash)
	SECTION 16: Utility ROM (Specific to MAXQ7666 with Type F Flash)
	REVISION HISTORY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

