

This document is provided as a supplement to the MAXQ Family User's Guide, covering new or modified features specific to the MAXQ2000. **This document must be used in conjunction with the MAXQ Family User's Guide, available from Dallas Semiconductor.** Addenda are arranged by section number, which correspond to sections in the MAXQ Family User's Guide. Additions and changes, with respect to the MAXQ Family User's Guide, are contained in this document. This document is a work in progress, and updates/additions are added when available.

DDENDUM TO SECTION 1: OVERVIEW	7
References	7
DDENDUM TO SECTION 2: ARCHITECTURE	7
Instruction Set	7
Harvard Memory Architecture	7
Register Space	7
Memory Organization	9
Register Space	9
Program Stack	9
Data SRAM	9
Program Flash	9
Program and Data Memory Mapping	9
Clock Generation	11
External High-Frequency Oscillator Circuit or Clock	12
Internal Ring Oscillator	12
External 32kHz Crystal Oscillator Circuit or Clock	13
Interrupts	13
Reset Conditions	16
Power-On Reset	16
Watchdog Timer Reset	16
External Reset	16

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Power Management Features	17
Divide-by-256 Mode (PMM1) 32kHz Mode (PMM2)	17 18
Switchback Mode	18
Stop Mode	18
ADDENDUM TO SECTION 3: PROGRAMMING	19
ADDENDUM TO SECTION 4: SYSTEM REGISTER DESCRIPTIONS	19
ADDENDUM TO SECTION 5: PERIPHERAL REGISTER MODULES	26
ADDENDUM TO SECTION 6: GENERAL-PURPOSE I/O MODULE	
(GPIO AND EXTERNAL INTERRUPTS)	33
ADDENDUM TO SECTION 7: TIMER/COUNTER 0 MODULE	49
ADDENDUM TO SECTION 8: TIMER/COUNTER 1 MODULE	49
ADDENDUM TO SECTION 9: TIMER/COUNTER 2 MODULE	49
Using the 32kHz Alternate Timer Clock Source	49
Timer 2 Example: Triggering a Periodic Interrupt	50
ADDENDUM TO SECTION 10: SERIAL I/O (UART) MODULE	51
Serial UART Example: Asynchronous 10-Bit Output at 115,200 Baud	51
ADDENDUM TO SECTION 11: SERIAL PERIPHERAL	
INTERFACE (SPI) MODULE	52
SPI Example: Enabling Master Mode	52
ADDENDUM TO SECTION 12: HARDWARE MULTIPLIER MODULE	53
Multiplier Example: 16-Bit Unsigned Multiplication	53
ADDENDUM TO SECTION 13: 1-WIRE BUS MASTER	54
1-Wire Example: Reset and Presence Detect	55
ADDENDUM TO SECTION 14: REAL-TIME CLOCK MODULE	55
Real-Time Clock Example: Starting and Setting the Clock	55
ADDENDUM TO SECTION 15: TEST ACCESS PORT (TAP)	56
ADDENDUM TO SECTION 16: IN-CIRCUIT DEBUG MODE	56
Register Read and Write Commands	56
Data Memory Read Command	56
Data Memory Write Command Program Stack Read Command	56 56
Read Register Map Command	56

ADDENDUM TO SECTION 17: IN-SYSTEM PROGRAMMING (JTA) Bootloader Protocol	G) 57 58
Family 0 Commands (Not Password Protected)	59
Family 1 Commands: Load Variable Length (Password Protected)	61
Family 2 Commands: Dump Variable Length (Password Protected)	62
Family 3 Commands: CRC Variable Length (Password Protected)	62
Family 4 Commands: Verify Variable Length (Password Protected)	63
Family 5 Commands: Load and Verify Variable Length (Password Protected)	63
Family 6 Commands: Erase Variable Length (Password Protected)	63
Family E Commands: Erase Fixed Length (Password Protected)	64
ADDENDUM TO SECTION 18: MAXQ FAMILY INSTRUCTION	
SET SUMMARY	64
LCD CONTROLLER (SPECIFIC TO MAXQ2000)	66
LCD Controller Features	66
LCD Controller Operation Modes	73
LCD Drive Voltages	73
Selecting the LCD Mode	73
Segment Pin Configuration	74
LCD Internal Adjustable Contrast Resistor	74
LCD Frame Frequency	75
LCD Display Memory	75
Display Waveform Generation	80
LCD Controller Static Drive Example	80 82
LCD Controller 1/2 Duty Cycle Drive Example	82 83
LCD Controller 1/3 Duty Cycle Drive Example LCD Controller 1/4 Duty Cycle Drive Example	85
LCD Controller Example: Initializing the LCD Controller	86
UTILITY ROM (SPECIFIC TO MAXQ2000)	87
In-Application Programming Features	87
Data Transfer Functions	88
ROM Example 1: Calling a Utility ROM Function Directly	91
ROM Example 2: Calling a Utility ROM Function Indirectly	92
REVISION HISTORY	93

LIST OF FIGURES

Figure 1. MAXQ2000 System and Peripheral Register Map	8
Figure 2. Memory Map When Executing from Application Flash/ROM	10
Figure 3. Memory Map When Executing from Utility ROM	10
Figure 4. Memory Map When Executing from Data SRAM	11
Figure 5. MAXQ2000 Clock Sources	12
Figure 6. MAXQ2000 Power-On Reset	16
Figure 7. MAXQ2000 External Reset	17
Figure 8. LCD Controller Block Diagram	66
Figure 9. LCD Drive Voltage Generation	73
Figure 10. LCD Internal and External Display Contrast Adjustment	74
Figure 11. Sample 7-Segment LCD Display	80
Figure 12. Static Drive Example Display Connection	80
Figure 13. Static Drive Example Waveform Timing	81
Figure 14. 1/2 Duty Drive Example Display Connection	82
Figure 15. 1/2 Duty Drive Example Waveform Timing	83
Figure 16. 1/3 Drive Example Display Connection	83
Figure 17. 1/3 Duty Drive Example Waveform Timing	84
Figure 18. 1/4 Duty Drive Example Display Connection	85
Figure 19. 1/4 Duty Drive Example Waveform Timing	86

LIST OF TABLES

Table 1. System Clock Generation and Control Registers	12
Table 2. MAXQ2000 Interrupt Sources and Control Bits	14
Table 3. System Power Management Registers	17
Table 4. System Register Map	19
Table 5. System Register Bit Functions	20
Table 6. System Register Reset Values	21
Table 7. Peripheral Register Map	26
Table 8. Peripheral Register Bit Functions	27
Table 9. Peripheral Register Bit Reset Values	30
Table 10. Port Pin Special Functions (68-Pin Package)	33
Table 11. Port Pin Special Functions (56-Pin Package)	35
Table 12. MAXQ2000 Port Pin Input/Output States	36
Table 13. Type 2 Timer/Counter Input and Output Pins	49
Table 14. Type 2 Timer/Counter Control Registers	49
Table 15. Serial UART Input and Output Pins	51
Table 16. Serial UART Control Registers	51
Table 17. SPI Input and Output Pins	52
Table 18. SPI Interface Control Registers	52
Table 19. Hardware Multiplier Control Registers	53
Table 20. 1-Wire Master Input and Output Pins	54
Table 21. 1-Wire Interface Control Registers	54
Table 22. 1-Wire Master Register Bit Functions	54
Table 23. 1-Wire Master Register Bit Reset Values	54
Table 24. Real-Time Clock Control Registers	55
Table 25. Output From DebugReadMap Command	57
Table 26. Bootloader Status Codes	58
Table 27. Bootloader Status Flags	60
Table 28. PCFn Bit Functions for 68-Pin Package	67
Table 29. PCFn Bit Functions for 56-Pin Package	67
Table 30. LCD Display Modes	73
Table 31. LCD Frame Frequencies (Hz)	75

Table 32. LCD Display Memory Map (Static, 56-Pin Package)	76
Table 33. LCD Display Memory Map (1/2 Duty, 56-Pin Package)	76
Table 34. LCD Display Memory Map (1/3 Duty, 56-Pin Package)	77
Table 35. LCD Display Memory Map (1/4 Duty, 56-Pin Package)	77
Table 36. LCD Display Memory Map (Static, 68-Pin Package)	78
Table 37. LCD Display Memory Map (1/2 Duty, 68-Pin Package)	78
Table 38. LCD Display Memory Map (1/3 Duty, 68-Pin Package)	79
Table 39. LCD Display Memory Map (1/4 Duty, 68-Pin Package)	79
Table 40. Static Drive Example Common Signal Selection	81
Table 41. Static Drive Example Register Content	81
Table 42. 1/2 Duty Drive Example Common Signal Selection	82
Table 43. 1/2 Duty Drive Example Register Content	82
Table 44. 1/3 Duty Drive Example Common Signal Selection	84
Table 45. 1/3 Duty Drive Example Register Content	84
Table 46. 1/4 Duty Drive Example Common Signal Selection	85
Table 47. 1/4 Duty Drive Example Register Content	85
Table 48. Utility ROM User Functions (for Utility ROM Version 1.01)	87

ADDENDUM TO SECTION 1: OVERVIEW

The MAXQ2000 is a low-power, high-performance 16-bit RISC microcontroller based on the MAXQ[™] architecture. It includes support for integrated, in-system-programmable flash memory and a wide range of peripherals including an LCD driver supporting up to x4 multiplexed displays. The MAXQ2000 is ideally suited for battery-powered, portable applications such as blood glucose monitoring, medical instrumentation, environmental data logging, and industrial control.

References

Refer to the MAXQ Family User's Guide (www.maxim-ic.com/user guides) for the following information.

- Description of the core architecture, instruction set, and memory mapping common to all MAXQ microcontrollers.
- Definitions and functions of the common system register set, including accumulators, data pointers, loop counters, and general-purpose registers.
- Descriptions of common clock generation, interrupt handling, and reset/power management modes.
- Descriptions and programming examples for common peripherals including Timer/Counter types 0/1/2, serial UART, SPI™ interface, hardware multiplier, 1-Wire[®] bus master, and the real-time clock.
- Description of the Test Access Port (TAP) and in-circuit debug interface.
- Description of the in-system programming mode.

The online MAXQ2000 QuickView page contains information and data sheet links for all parts in the MAXQ2000 family.

For more information on other MAXQ microcontrollers, development hardware and software, frequently asked questions and software examples, visit the MAXQ home page at www.maxim-ic.com/MAXQ.

For general questions and discussion of the MAXQ platform, visit our discussion board at http://discuss.dalsemi.com.

ADDENDUM TO SECTION 2: ARCHITECTURE

The MAXQ2000 shares the following common architectural features with other members of the MAXQ microcontroller family.

Instruction Set

The MAXQ2000 uses the standard 16-bit MAXQ instruction set as described in the MAXQ Family User's Guide.

Harvard Memory Architecture

Program memory, data memory, and register space on the MAXQ2000 follow the Harvard architecture model. Each type of memory is kept separate and is accessed by a separate bus, allowing different word lengths for different types of memory. Registers may be either 8 or 16 bits in width. Program memory is 16 bits in width to accommodate the standard MAXQ 16-bit instruction set. Data memory is also 16 bits in width but can be accessed in 8-bit or 16-bit modes for maximum flexibility.

The MAXQ2000 includes a flexible memory management unit (MMU), which allows code to be executed from either the program flash/ROM, the utility ROM, or the internal data SRAM. Any of these three memory spaces may also be accessed in data space at any time, with the single restriction that whichever physical memory area is currently being used as program space cannot be read from in data space.

Register Space

The MAXQ2000 contains the standard set of system registers as described in the MAXQ Family User's Guide; differences are noted in this guide where they exist. Peripheral register space (modules 0 through 4) on the MAXQ2000 contains registers that are used to access the following peripherals:

- General-purpose 8-bit I/O ports (P0 through P7)
- External interrupts (up to 14)
- Three programmable Type 2 timer/counters
- Serial UART interfaces (2) and SPI
- Hardware Multiplier
- Real-Time Clock

MAXQ is a trademark of Maxim Integrated Products, Inc. SPI is a trademark of Motorola, Inc. 1-Wire is a registered trademark of Dallas Semiconductor Corp.

• 1-Wire Interface Master

• LCD Controller (up to 132 segments)

The lower 8 bits of all registers in modules 0 through 4 (as well as the AP module M8) are bit addressable.

						REGISTER	RMODUL					
	M0	M1	M2	M3	M4	M8	M9	M11	M12	M13	M14	M15
00h	P00	P04	MCNT	T2CNA0	T2CNA1	AP	A[0]		IP			
01h	P01	P05	MA	T2H0	T2H1	APC	A[1]	-		SP		
02h	P02	P06	MB	T2RH0	T2RH1		A[2]			IV		
03h	P03	P07	MC2	T2CH0	T2CH1		A[3]	PFX			OFFS	DPO
04h			MC1		T2CNA2	PSF	A[4]				DPC	
05h			MCO	SPIB	T2H2	IC	A[5]				GR	
06h	EIFO	EIF1	SCONO	SCON1	T2RH2	IMR	A[6]			LCO	GRL	
07h	EIEO	EIE1	SBUF0	SBUF1	T2CH2		A[7]			LC1	BP	DP1
08h	PIO	PI4	SMD0	SMD1	T2CNB1	SC	A[8]				GRS	
09h	PI1	PI5	PRO	PR1	T2V1		A[9]				GRH	
0Ah	PI2	PI6	MOID		T2R1	110	A[10]				GRXL	
0Bh	PI3	PI7	MC1R	TOONDO	T2C1	IIR	A[11]				BP[offs]	
0Ch 0Dh	EIESO	EIES1	MCOR LCRA	T2CNB0	T2CNB2		A[12]					
			LCFG	T2V0	T2V2	OKON	A[13]					
OEh OFh			LCD16	T2R0 T2C0	T2R2 T2C2	CKCN	A[14]					
UCH OFH OFH OFH OFH OFH OFH OFH OFH OFH OF	PD0	PD4	LCDIO	T2CFG0	T2CFG1	WDCN	A[15]					
ILS 11h	PD1	PD5	LCD1	120100	T2CFG2							
12h	PD2	PD6	LCD2		TEOTOE							
13h	PD3	PD7	LCD3	OWA								
14h			LCD4	OWD								
15h			LCD5	SPICN								
16h			LCD6	SPICF								
17h			LCD7	SPICK								
18h			LCD8									
19h	RCNT		LCD9									
1Ah	RTSS		LCD10									
1Bh	RTSH		LCD11									
1Ch	RTSL		LCD12									
1Dh	RSSA		LCD13									
1Eh	RASH		LCD14									
1Fh	RASL		LCD15									
RESERVE OR OP COD	PURI	PINS PIO)	REAL-TIME CLOCK	INTERRUP CONTROL		DWARE FIPLIER	SERIAL AND SPI	LCD CONTROLL	ER	MERS	ACC ARRAY, CONTROL	OTHER FUNCTION

Figure 1. MAXQ2000 System and Peripheral Register Map

Memory Organization

As with all MAXQ microcontrollers, the MAXQ2000 contains logically separate program and data memory spaces. All memory is internal, and physical memory segments (other than the stack and register memories) can be accessed as either program memory or as data memory, but not both at once. The MAXQ2000 contains the following physical memory segments.

Register Space

As described in the MAXQ Family User's Guide, register space on MAXQ microcontrollers consists of 16 register modules, each of which can contain up to 32 registers. Of these possible 16 register modules, only 12 are used on the MAXQ2000—seven for system registers and five for peripheral registers.

Program Stack

The MAXQ2000 provides a 16 x 16 hardware stack to support subroutine calls and system interrupts. This stack is used automatically by CALL and RET instructions, and can also be accessed indirectly through the SP register as described in the MAXQ Family User's Guide.

When using the in-circuit debugging features of the MAXQ2000, one word of the stack must be reserved to store the return location when execution branches into the debugging routines in the utility ROM. If in-circuit debug will not be used, the entire stack is available for application use.

Data SRAM

The MAXQ2000 contains 1024 words (2kBytes) of on-chip data SRAM that can be mapped into either program or data space. The contents of this SRAM are indeterminate after power-on reset, but are maintained during Stop mode and across non-POR resets, as long as the V_{DD} supply stays within the acceptable range.

When using the in-circuit debugging features of the MAXQ2000, the top 19 bytes (bytes 0x7ED to 0x7FF) of the SRAM must be reserved for saved state storage and working space for the debugging routines in the utility ROM. If in-circuit debug will not be used, the entire SRAM is available for application use.

Program Flash

The MAXQ2000 contains 32k x 16 of flash memory, which normally serves as program memory. When executing from the data SRAM or utility ROM, this memory is mapped to data space (as 32kWords or 64kBytes) and can be used for lookup tables and similar functions.

Flash memory mapped into data space can be read from directly, like any other type of data memory. However, writing to flash memory must be done indirectly by calling the in-application functions provided by the utility ROM. See the *Utility ROM* section for more details.

Program and Data Memory Mapping

Figures 2, 3, and 4 show the mapping of physical memory segments into the program and data memory space. The mapping of memory segments into program space is always the same. The mapping of memory segments into data space varies depending on which memory segment is currently being executed from.

In all cases, whichever memory segment is currently being executed from in program space cannot be accessed in data space.

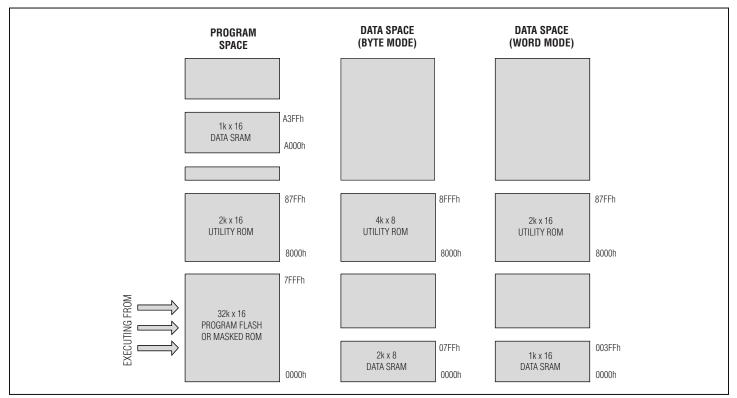


Figure 2. Memory Map When Executing from Application Flash/ROM

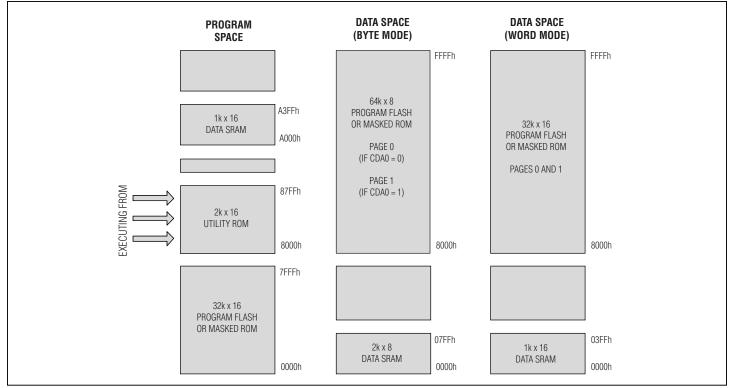


Figure 3. Memory Map When Executing from Utility ROM

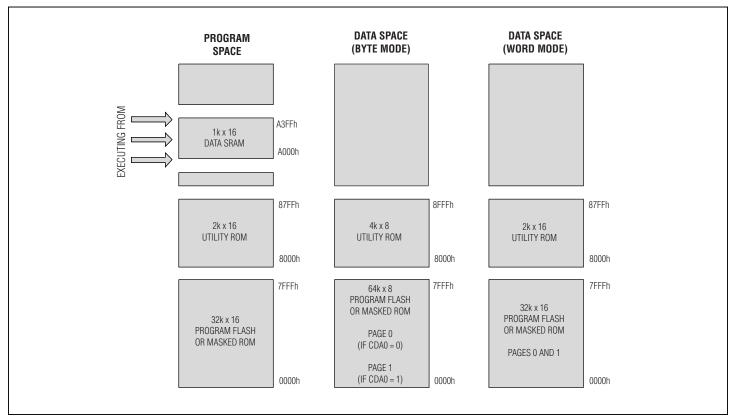


Figure 4. Memory Map When Executing from Data SRAM

Clock Generation

All functional modules in the MAXQ2000 are synchronized to a single system clock. This system clock can be generated from one of five possible sources (Figure 5):

- Internal ring oscillator
- Internal high-frequency oscillator using external crystal or resonator circuit
- External high-frequency clock signal
- Internal 32kHz oscillator using external crystal or resonator circuit
- External 32kHz clock signal

The MAXQ2000 does not provide the option for an external RC relaxation oscillator circuit.

Table 1 shows the registers and bits used to control clock generation and selection. For more information, see the register descriptions in this guide and the MAXQ Family User's Guide.

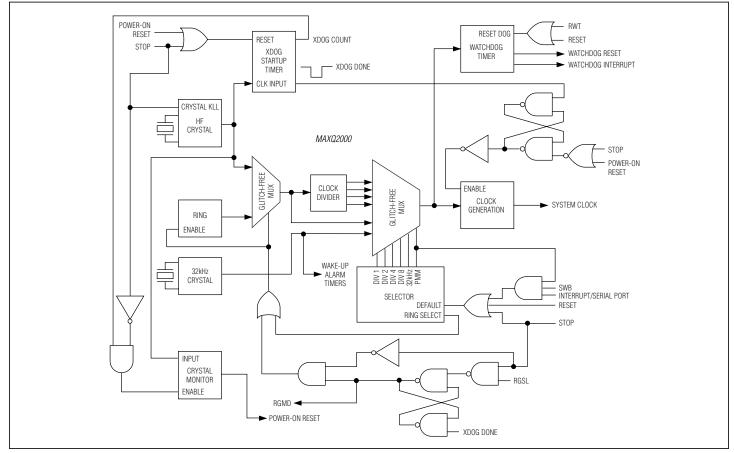


Figure 5. MAXQ2000 Clock Sources

Table 1. System Clock Generation and Control Registers

REGISTER	ADDRESS	BIT	FUNCTION
CKCN	M8[0Eh]	[1:0] to CD[1:0]	Selects clock divide-by-1 (00), -2 (01), -4 (10), or -8 (11) mode.
CKCN	M8[0Eh]	2 (PMME)	If set to 0, selects normal clock divide mode (as determined by CD[1:0]). If set to 1, selects either divide-by-256 mode (when CD[1:0]=00) or 32kHz mode (when CD[1:0]=11).
CKCN	M8[0Eh]	5 (RGMD)	Read-only. Indicates if ring oscillator (1) or external crystal/clock (0) is being used to provide the system clock.
CKCN	M8[0Eh]	6 (RGSL)	Selects ring oscillator (1) or external crystal/clock (0) as the clock source.
RCNT	M0[19h]	14 (X32D)	Disables (1) or enables (0) the internal 32kHz oscillator. If the 32kHz oscillator is disabled, the RTC can be driven externally by a 32kHz clock input signal.

External High-Frequency Oscillator Circuit or Clock

The high-frequency oscillator is the default source for system clock generation. This oscillator operates as described in the "Clock Generation" section of *Section 2: Architecture* in the *MAXQ Family User's Guide*. When using an external crystal or resonator circuit, the circuit should be connected between the HFXIN and HFXOUT. When using an external clock signal to drive the high-frequency clock, the external clock signal should be connected to the HFXIN pin, and the HFXOUT pin should be left unconnected.

Internal Ring Oscillator

The MAXQ2000 provides an internal ring oscillator that can be used as an alternate source for the system clock. This oscillator, which requires no external components, typically runs at an 8MHz frequency. The exact frequency of the ring oscillator is not fixed and will vary from part to part due to process variations, as well as over temperature and supply voltage for any given part.

To select the ring oscillator as the system clock source, the RGSL bit (CKCN.6) must be set to 1. Setting this bit immediately switches over the system clock source to the ring oscillator. The RGMD (CKCN.5) bit indicates the current system clock source. If the ring oscillator is currently providing the system clock, RGMD equals 1; otherwise, RGMD equals 0.

Because the RGSL bit is cleared by power-on reset only, if this bit is set before entering Stop mode, the ring oscillator will still be used as the system clock source when Stop mode is exited. In this case, a 4-cycle warmup delay is required when exiting Stop mode before execution resumes using the ring oscillator as the system clock source.

When the system clock source is switched back from the ring oscillator to the high-frequency oscillator by clearing RGSL to zero, the ring oscillator will still be used as the system clock source until the warmup period has completed for the high-frequency oscillator. This will be reflected by the value of the RGMD bit, which remains at 1 until the warmup for the high-frequency oscillator has completed and the clock switches over, at which point RGMD switches to 0.

External 32kHz Crystal Oscillator Circuit or Clock

The MAXQ2000 provides a 32kHz clock for use by the real-time clock module. This clock can be generated either by the internal 32kHz crystal oscillator (using an external crystal) or by an external source. The 32kHz clock is also usable as a system clock source, a clock for the LCD controller, and as an alternate Timer 2 clock.

The 32kHz crystal amplifier is switched off by default on power-on reset. With this crystal amplifier disabled, the 32kHz clock must be provided directly by an external source. To use the 32kHz crystal amplifier to generate the 32kHz clock, the amplifier must be turned on by setting the X32D (RCNT.14) bit to 0 and a 32.768kHz, 6pF crystal should be connected between the 32KIN and 32KOUT pins.

To use the 32kHz clock as a source for the system clock, Power Management Mode 2 must be entered by setting PMME, CD1, and CD0 to 1. See the *Power Management Features* section for more details.

Interrupts

In general, interrupt handling on the MAXQ2000 operates as described in the MAXQ Family User's Guide. All interrupt sources have the same priority, and all interrupts cause program execution to branch to the location specified by the Interrupt Vector (IV) register, which defaults to 0000h.

Table 2 lists all possible interrupt sources for the MAXQ2000, along with their corresponding module interrupt enable bits, local interrupt enable bits, and interrupt flags.

- Each module interrupt enable bit, when cleared to 0, will block interrupts originating in that module from being acknowledged. When the module interrupt enable bit is set to 1, interrupts from that module are acknowledged (unless the interrupts have been disabled globally).
- Each local interrupt enable bit, when cleared to 0, will disable the corresponding interrupt. When the local interrupt enable bit is set to 1, the interrupt will be triggered whenever the interrupt flag is set to 1 (either by software or hardware).
- All interrupt flag bits cause the corresponding interrupt to trigger when the bit is set to 1. These bits are typically set by hardware and must be cleared by software (generally in the interrupt handler routine).

Note that for an interrupt to fire, the following five conditions must exist:

- Interrupts must be enabled globally by setting IGE (IC.0) to 1.
- The module interrupt enable bit for that interrupt source's module must be set to 1.
- The local interrupt enable bit for that specific interrupt source must be set to 1.
- The interrupt flag for that interrupt source must be set to 1. Typically, this is done by hardware when the condition that requires interrupt service occurs.
- The Interrupt In Service (INS) bit must be cleared to 0. This bit is set automatically upon vectoring to the interrupt handler (IV) address and cleared automatically upon exit (RETI/POPI), so the only reason to clear this bit manually (inside the interrupt handler routine) is to allow nested interrupt handling.

Table 2. MAXQ2000 Interrupt Sources and Control Bits

INTERRUPT	MODULE ENABLE BIT	LOCAL ENABLE BIT	INTERRUPT FLAG
Watchdog Interrupt	IMS (IMR.7)	EWDI (WDCN.6)	WDIF (WDCN.3)
External Interrupt 0	IM0 (IMR.0)	EX0 (EIE0.0)	IE0 (EIF0.0)
External Interrupt 1	IM0 (IMR.0)	EX1 (EIE0.1)	IE1 (EIF0.1)
External Interrupt 2	IM0 (IMR.0)	EX2 (EIE0.2)	IE2 (EIF0.2)
External Interrupt 3	IM0 (IMR.0)	EX3 (EIE0.3)	IE3 (EIF0.3)
External Interrupt 4	IM0 (IMR.0)	EX4 (EIE0.4)	IE4 (EIF0.4)
External Interrupt 5	IM0 (IMR.0)	EX5 (EIE0.5)	IE5 (EIF0.5)
External Interrupt 6	IM0 (IMR.0)	EX6 (EIE0.6)	IE6 (EIF0.6)
External Interrupt 7	IM0 (IMR.0)	EX7 (EIE0.7)	IE7 (EIF0.7)
External Interrupt 8	IM1 (IMR.1)	EX8 (EIE1.0)	IE8 (EIF1.0)
External Interrupt 9	IM1 (IMR.1)	EX9 (EIE1.1)	IE9 (EIF1.1)
External Interrupt 10*	IM1 (IMR.1)	EX10 (EIE1.2)	IE10 (EIF1.2)
External Interrupt 11*	IM1 (IMR.1)	EX11 (EIE1.3)	IE11 (EIF1.3)
External Interrupt 12	IM1 (IMR.1)	EX12 (EIE1.4)	IE12 (EIF1.4)
External Interrupt 13	IM1 (IMR.1)	EX13 (EIE1.5)	IE13 (EIF1.5)
External Interrupt 14	IM1 (IMR.1)	EX14 (EIE1.6)	IE14 (EIF1.6)
External Interrupt 15	IM1 (IMR.1)	EX15 (EIE1.7)	IE15 (EIF1.7)
RTC Time-of-Day Alarm	IM0 (IMR.0)	ADE (RCNT.1)	ALDF (RCNT.6)
RTC Subsecond Alarm	IM0 (IMR.0)	ASE (RCNT.2)	ALSF (RCNT.7)
Serial Port 0 Receive	IM2 (IMR.2)	ESI (SMD0.2)	RI (SCON0.0)
Serial Port 0 Transmit	IM2 (IMR.2)	ESI (SMD0.2)	TI (SCON0.1)
Serial Port 1 Receive	IM3 (IMR.3)	ESI (SMD1.2)	RI (SCON1.0)
Serial Port 1 Transmit	IM3 (IMR.3)	ESI (SMD1.2)	TI (SCON1.1)
SPI Mode Fault	IM3 (IMR.3)	ESPII (SPICF.7)	MODF (SPICN.3)
SPI Write Collision	IM3 (IMR.3)	ESPII (SPICF.7)	WCOL (SPICN.4)
SPI Receive Overrun	IM3 (IMR.3)	ESPII (SPICF.7)	ROVR (SPICN.5)
SPI Transfer Complete	IM3 (IMR.3)	ESPII (SPICF.7)	SPIC (SPICN.6)
Timer 0–Low Compare	IM3 (IMR.3)	ET2L (T2CNB0.7)	T2CL (T2CNB0.0)
Timer 0–Low Overflow	IM3 (IMR.3)	ET2L (T2CNB0.7)	TF2L (T2CNB0.2)
Timer 0-Capture/Compare	IM3 (IMR.3)	ET2 (T2CNA0.7)	TCC2 (T2CNB0.1)
Timer 0–Overflow	IM3 (IMR.3)	ET2 (T2CNA0.7)	TF2 (T2CNB0.3)
Timer 1–Low Compare	IM4 (IMR.4)	ET2L (T2CNB1.7)	T2CL (T2CNB1.0)
Timer 1–Low Overflow	IM4 (IMR.4)	ET2L (T2CNB1.7)	TF2L (T2CNB1.2)

Table 2. MAXQ2000 Interrupt Sources and Control Bits (continued)

INTERRUPT	MODULE ENABLE BIT	LOCAL ENABLE BIT	INTERRUPT FLAG	
Timer 1-Capture/Compare	IM4 (IMR.4)	ET2 (T2CNA1.7)	TCC2 (T2CNB1.1)	
Timer 1–Overflow	IM4 (IMR.4)	ET2 (T2CNA1.7)	TF2 (T2CNB1.3)	
Timer 2–Low Compare	IM4 (IMR.4)	ET2L (T2CNB2.7)	T2CL (T2CNB2.0)	
Timer 2–Low Overflow	IM4 (IMR.4)	ET2L (T2CNB2.7)	TF2L (T2CNB2.2)	
Timer 2–Capture/Compare	IM4 (IMR.4)	ET2 (T2CNA2.7)	TCC2 (T2CNB2.1)	
Timer 2–Overflow	IM4 (IMR.4)	ET2 (T2CNA2.7)	TF2 (T2CNB2.3)	
1-Wire Presence Detect*	IM3 (IMR.3); EOWMI (OWD[5].7)	EPD (OWD[3].0)	PD (OWD[2].0)	
1-Wire Transmit Buffer Empty*	IM3 (IMR.3); EOWMI (OWD[5].7)	ETBE (OWD[3].2)	TBE (OWD[2].2)	
1-Wire Transmit Shift Register Empty*	IM3 (IMR.3); EOWMI (OWD[5].7)	ETMT (OWD[3].3)	TEMT (OWD[2].3)	
1-Wire Receive Buffer Full*	IM3 (IMR.3); EOWMI (OWD[5].7)	ERBF (OWD[3].4)	RBF (OWD[2].4)	
1-Wire Receive Shift Register Full*	IM3 (IMR.3); EOWMI (OWD[5].7)	ERSF (OWD[3].5)	RSRF (OWD[2].5)	
1-Wire Short*	IM3 (IMR.3); EOWMI (OWD[5].7)	EOWSH (OWD[3].6)	OW_SHORT (OWD[2].6)	
1-Wire Low*	IM3 (IMR.3); EOWMI (OWD[5].7)	EOWL (OWL[3].7)	OW_LOW (OWD[2].7)	

* External Interrupts 10, external interrupt 11, and 1-Wire are only available on the 68-pin (RAX) version of the MAXQ2000.

Note 1: For 1-Wire Master interrupts to be received, both IM3 and EOWMI must be set to 1.

Note 2: The notation OWD[n] refers to accessing the OWD register with the OWA register set to n.

Reset Conditions

There are three possible reset sources for the MAXQ2000. While in the reset state, the enabled system clock oscillator continues running, but no code execution occurs. Once the reset condition has been removed or has completed, code execution resumes at address 8000h for all reset types.

Power-On Reset

When power is first applied to the MAXQ2000, or when the internal supply voltage VDD drops below the minimum allowed value, the processor is held in a power-on reset state (Figure 6). For the MAXQ2000 to exit power-on reset, the following two conditions must apply:

- V_{DD} is within the acceptable range for that power supply (see data sheet for values).
- The ring oscillator has completed 65,536 cycles (delay for power supply to stabilize).

Note that since the MAXQ2000 has no brownout reset function, the power-on reset is only guaranteed to occur if V_{DD} drops all the way to ground before rising again. Brownout events where V_{DD} drops partially (but remains above ground) and then rises back into the acceptable range are not guaranteed to trigger a power-on reset and can result in unpredictable device behavior.

If the V_{DDIO} power supply drops to ground, a power-on reset is not triggered. However, this causes all port pins driven by V_{DDIO} to drop to ground. Additionally, the 32kHz oscillator only operates when V_{DDIO} is within acceptable limits.

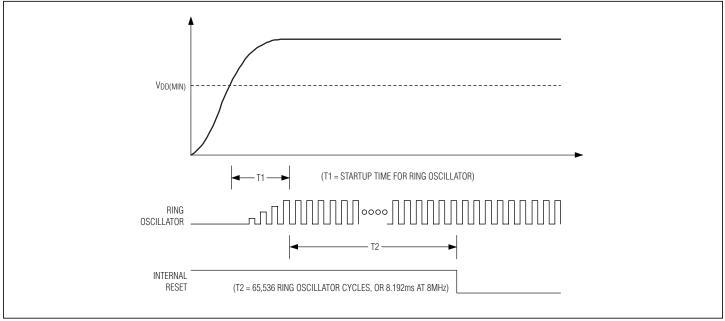


Figure 6. MAXQ2000 Power-On Reset

Watchdog Timer Reset

The watchdog timer on the MAXQ2000 functions as described in the MAXQ Family User's Guide. When running at 14MHz, the maximum watchdog time period before reset is approximately 150ms.

Since the RGSL bit is cleared to 0 on power-on reset only, it is possible to exit a watchdog reset with the clock source set to the high-frequency oscillator. In this case, execution resumes running from the ring oscillator, and the switchover to the high-frequency oscillator occurs automatically when the 65,536-cycle warmup delay for that oscillator has completed.

External Reset

External reset via RESET is a synchronous reset source. After the external reset low has been removed and sampled, execution resumes (running from the ring oscillator) following a delay of four ring-oscillator cycles, as shown in Figure 7.

Since the RGSL bit is cleared to 0 on power-on reset only, it is possible to exit an external reset with the clock source set to the high-frequency oscillator. In this case, execution resumes running from the ring oscillator, and the switchover to the high-frequency oscillator occurs automatically when the 65,536-cycle warmup delay for that oscillator has completed.

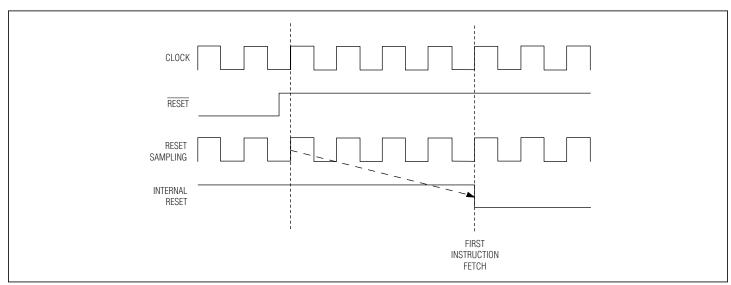


Figure 7. MAXQ2000 External Reset

Power Management Features

The MAXQ2000 provides the following features to assist in power management.

- Divide-by-256 (PMM1) and 32kHz (PMM2) modes to reduce current consumption.
- Switchback mode to exit PMM modes automatically when rapid processing is required.
- Ultra-low-power Stop mode.

Table 3 shows the system registers and bits used to control power management features. For more information, refer to the register descriptions in the MAXQ Family User's Guide.

Table 3. System Power Management Registers

REGISTER	ADDRESS	BIT	FUNCTION
CKCN	M8[0Eh]	[1:0] to CD[1:0]	Selects clock divide-by-1 (00), -2 (01), -4 (10), or -8 (11) mode. When PMM mode is enabled, selects divide-by-256 (00) or 32kHz (11) mode.
CKCN	M8[0Eh]	2 (PMME)	Selects PMM mode (when set to 1) or normal clock divide mode (when set to 0).
CKCN	M8[0Eh]	3 (SWB)	When set to 1, enables automatic switchback from PMM (divide-by-256 mode) to normal clock divide mode under certain conditions.
CKCN	M8[0Eh]	4 (STOP)	When set to 1, causes the processor to enter Stop mode.

Divide-by-256 Mode (PMM1)

In this power management mode, all operations continue as normal but at a reduced clock rate (the high-frequency system clock divided by 256). This power management mode affects module clock rates as follows.

- Program execution occurs at the high-frequency clock rate divided by 256.
- The RTC module continues to operate using its originally selected clock, which is either the 32kHz clock or the high-frequency clock divided by 128, as selected by the ACS bit (RCNT.13).
- The LCD module continues to operate using its originally selected clock, which is either the 32kHz clock or the high-frequency clock divided by 128, as selected by the LCCS bit (LCRA.6).
- All other functional modules (timers, UARTs, SPI) operate at the high-frequency clock rate divided by 256.

This power management mode is entered by setting the PMME bit (CKCN.2) to 1 while the CD1 and CD0 (CKCN[1:0]) bits are both cleared to 0. When PMM1 mode is exited (either by clearing the PMME bit or as a result of a switchback trigger), system operation will revert to the mode indicated by the values of the CD1 and CD0 bits, which in this case will be the standard divide-by-1 clock mode.

32kHz Mode (PMM2)

In this power management mode, all operations continue as normal using the 32kHz clock as the system clock source. This power management mode affects module clock rates as follows.

- Program execution occurs at the 32kHz clock rate.
- The RTC module continues to operate using its originally selected clock, which is either the 32kHz clock or the high-frequency clock divided by 128, as selected by the ACS bit (RCNT.13).
- The LCD module continues to operate using its originally selected clock, which is either the 32kHz clock or the high-frequency clock divided by 128, as selected by the LCCS bit (LCRA.6).
- All other functional modules (timers, UARTs, SPI) operate at the 32kHz clock rate.

This power management mode is entered by setting the PMME bit (CKCN.2) to 1 while the CD1 and CD0 (CKCN[1:0]) bits are both set to 1. When PMM2 mode is exited (either by clearing the PMME bit or as a result of a switchback trigger), system operation will revert to the mode indicated by the values of the CD1 and CD0 bits, which in this case will be the divide-by-8 clock mode.

When PMM2 mode is entered, the high-frequency oscillator is automatically disabled unless Switchback has been enabled by setting the SWB bit to 1. If Switchback is not being used, the LCD module and RTC module should both be set to use the 32kHz clock (not HFClk / 128) before PMM2 mode is entered.

Switchback Mode

As described in the *MAXQ Family User's Guide*, Switchback mode provides automatic exit from power management mode when a higher clock rate is required to respond to I/O, such as UART activity, SPI activity, or an external interrupt.

Switchback mode is enabled when the SWB (CKCN.3) bit is set to 1 and the PMME (CKCN.2) bit is set to 1(the system is in either the PMM1 or PMM2 modes). If Switchback is enabled, the PMME bit will be cleared (causing the system to exit power management mode) when any of the following conditions occur.

- An external interrupt condition occurs on an INTx pin and the corresponding external interrupt is enabled.
- An active-low transition occurs on the RXD0 or RXD1 pin and the corresponding UART is enabled to receive data. If PMM2 mode is exited in this manner, the first character read by the UART will be received incorrectly.
- The SBUF0 or SBUF1 register is written to transmit a byte and the corresponding UART is enabled to transmit data.
- The SPIB register is written to send an outgoing byte through the SPI interface and transmission is enabled.
- An active-low transition occurs on the SSEL pin when the SPI interface is configured for slave mode.
- A Time-of-Day alarm is generated by the RTC module.
- Active debug mode is entered either by a breakpoint match or direct issuance of the Debug command from background mode.

As described in the MAXQ Family User's Guide, if any of these conditions are true (a Switchback source is active) and the SWB bit has been set, the PMME bit cannot be set to enter power management mode.

Stop Mode

Stop mode disables all circuits within the MAXQ2000 except for the 32kHz crystal amplifier and any circuitry that is clocked directly by the 32kHz clock. All other on-chip clocks, timers, serial ports, and other peripherals are stopped, and no code execution occurs. Once in Stop mode, the MAXQ2000 is in a mostly static state, with power consumption determined largely by leakage currents.

Stop mode is invoked by setting the STOP bit to 1. The MAXQ2000 enters Stop mode immediately when the STOP bit is set. Entering Stop mode does not affect the setting of the clock control bits; this allows the system to return to its original operating frequency following Stop mode removal.

The processor exits Stop mode if any of the following conditions occur.

- External reset (from the \overline{RST} pin)
- Power-on reset
- External interrupt (interrupt must be enabled prior to entering Stop mode)
- RTC time-of-day alarm

Note that exiting Stop mode through external reset or power-on reset causes the processor to undergo a normal reset cycle, as opposed to resuming execution at the point at which it entered Stop mode. Exiting Stop mode by means of an external interrupt or time-of-day alarm causes the processor to resume execution at the instruction following the one that set the STOP bit.

When Stop mode is exited, processor execution resumes as follows.

- If the ring oscillator is selected as the system clock source (RGSL = 1), execution resumes using the ring oscillator as the system clock following a delay of four ring cycles.
- If the high-frequency oscillator is selected as the system clock source (RGSL = 0), execution resumes using the ring oscillator as the system clock following a delay of four ring cycles. After the high-frequency oscillator has completed its warmup period, the system clock source switches over to the high-frequency clock automatically.
- If the 32kHz oscillator is selected as the system clock source, execution resumes using the 32kHz oscillator as the system clock following a delay of four ring cycles. For this to work properly, the 32kHz crystal amplifier must be enabled and running prior to entering Stop mode, or an external 32kHz clock must be provided immediately upon Stop mode exit (if X32D is set to 1).

ADDENDUM TO SECTION 3: PROGRAMMING

Refer to Section 3: Programming in the MAXQ Family User's Guide for examples of general program operations involving the MAXQ core. The MAXQ2000 contains the MAXQ20 (16-bit accumulator version) of the MAXQ core.

ADDENDUM TO SECTION 4: SYSTEM REGISTER DESCRIPTIONS

Refer to Section 4: System Register Descriptions in the MAXQ Family User's Guide for functional descriptions of the registers and bits listed in Tables 4, 5, and 6.

Table 4. System Register Map

CYCLES TO READ	CYCLES TO WRITE	REGISTER INDEX	AP (8h)	A (9h)	PFX (Bh)	IP (Ch)	SP (Dh)	DPC (Eh)	DP (Fh)
1	1	0xh	AP	A[0]	PFX	IP			
1	1	1xh	APC	A[1]			SP		
1	1	2xh	_	A[2]			IV		
1	1	3xh	_	A[3]				Offs	DP[0]
1	1	4xh	PSF	A[4]				DPC	
1	1	5xh	IC	A[5]				GR	
1	1	6xh	IMR	A[6]			LC[0]	GRL	
1	1	7xh	_	A[7]			LC[1]	BP	DP[1]
1	2	8xh	SC	A[8]				GRS	
1	2	9xh	_	A[9]				GRH	
1	2	Axh	_	A[10]				GRXL	
1	2	Bxh	IIR	A[11]				FP	
1	2	Cxh	_	A[12]					
1	2	Dxh	_	A[13]					
1	2	Exh	CKCN	A[14]					
1	2	Fxh	WDCN	A[15]					

Note: Register names that appear in italics indicate read-only registers. Register names that appear in bold indicate 16-bit registers. All other registers are 8 bits in width.

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
AP											—	—		AP (4	bits)	
APC									CLR	IDS	—	_		MOD2	MOD1	MOD0
PSF									Z	S	_	GPF1	GPF0	OV	С	E
IC									_	_	CGDS	_			INS	IGE
IMR									IMS	_	_	IM4	IM3	IM2	IM1	IM0
SC									TAP	_	_	CDA0	_	ROD	PWL	—
IIR									IIS	_	_	4	113	112	1	110
CKCN									—	RGSL	RGMD	STOP	SWB	PMME	CD1	CD0
WDCN									POR	EWDI	WD1	WD0	WDIF	WTRF	EWT	RWT
A[015]								A[n] (1	6 bits)							
PFX								PFX (1	6 bits)							
IP								IP (16	6 bits)							
SP	_		—		_	—	_			_	—	_		SP (4	bits)	
IV								IV (16	8 bits)							
LC[0]								LC[0] (
LC[1]								LC[1] (16 bits)							
Offs											-	Offs (a	8 bits)		-	-
DPC	_	_	_	_	_	—	_		_	_	_	WBS2	WBS1	WBS0	SDPS1	SDPS0
GR			-		-			GR (1	6 bits)		-				-	-
GRL									GR.7	GR.6	GR.5	GR.4	GR.3	GR.2	GR.1	GR.0
BP			-		-			BP (1	6 bits)		-				-	-
GRS	GR.7	GR.6	GR.5	GR.4	GR.3	GR.2	GR.1	GR.0	GR.15	GR.14	GR.13	GR.12	GR.11	GR.10	GR.9	GR.8
GRH									GR.15	GR.14	GR.13	GR.12	GR.11	GR.10	GR.9	GR.8
GRXL	GR.7	GR.7	GR.7	GR.7	GR.7	GR.7	GR.7	GR.7	GR.7	GR.6	GR.5	GR.4	GR.3	GR.2	GR.1	GR.0
FP		FP (16 bits)														
DP[0]								DP[0] (16 bits)							
DP[1]								DP[1] (16 bits)							

Table 5. System Register Bit Functions

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
AP									0	0	0	0	0	0	0	0
APC									0	0	0	0	0	0	0	0
PSF									1	0	0	0	0	0	0	0
IC									0	0	0	0	0	0	0	0
IMR									0	0	0	0	0	0	0	0
SC									0	0	0	0	0	0	S	0
IIR									0	0	0	0	0	0	0	0
CKCN									0	S	S	0	0	0	0	0
WDCN									S	s	0	0	0	S	S	0
A[015]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PFX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IP	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LC[0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LC[1]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Offs									0	0	0	0	0	0	0	0
DPC	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0
GR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRL									0	0	0	0	0	0	0	0
BP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRH									0	0	0	0	0	0	0	0
GRXL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DP[0]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DP[1]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6. System Register Reset Values

Note: Bits marked as "s" have special behavior upon reset; see register descriptions for details.

The following section details the functionality of any System Registers contained in the MAXQ2000 that operate differently from their descriptions in the MAXQ Family User's Guide.

Register Name:	IMB
Register Description:	Interrupt Mask Register
Register Address:	AP[06h]

Bit #	7	6	5	4	3	2	1	0
Name	IMS	_	—	IM4	IM3	IM2	IM1	IMO
Reset	0	0	0	0	0	0	0	0
Access	r/w	r	r	r/w	r/w	r/w	r/w	r/w

The first five bits in this register are interrupt mask bits for modules 0 through 4, one bit per module. The eighth bit, IMS, serves as a mask for any system module interrupt sources. Setting a mask bit allows the enabled interrupt sources for the associated module or system (with IMS) to generate interrupt requests. Clearing the mask bit effectively disables all interrupt sources associated with that module or, in the case of IMS, all system interrupt sources. The IMR register is intended to facilitate user-definable interrupt prioritization.

Bit 0: (IMR.0) Module 0 Interrupt Mask (IM0)

Bit 1: (IMR.1) Module 1 Interrupt Mask (IM1)

Bit 2: (IMR.2) Module 2 Interrupt Mask (IM2)

Bit 3: (IMR.3) Module 3 Interrupt Mask (IM3)

Bit 4: (IMR.4) Module 4 Interrupt Mask (IM4)

Bits 5 and 6: (IMR.5 and IMR.6) Reserved

Bit 7: (IMR.7) System Module Interrupt Mask (IMS)

Register Name:	SC
Register Description:	System Control Register
Register Address:	AP[08h]

Bit #	7	6	5	4	3	2	1	0
Name	TAP	_	_	CDA0	_	_	PWL	—
Reset	1	0	0	0	0	0	not set	0
POR	1	0	0	0	0	0	1	0
Access	r/w	r	r	r/w	r	r	r/w	r

Bit 0: (SC.0) Reserved

Bit 1: (SC.1) Password Lock (PWL). This bit defaults to 1 on power-on reset only. When this bit is 1, it requires a 32-byte password to be matched with the password in the program space before allowing access to the ROM Loader's utilities for read/write of program memory and debug functions. Clearing this bit to 0 disables the password protection to the ROM Loader.

Bits 2 and 3: (SC.2 and SC.3) Reserved

Bit 4: (SC.4) Code Data Access Bit 0 (CDA0). If this bit is set to 0, the lower half of physical program memory will be visible in data space (when not executing from physical program memory) in byte mode. If this bit is set to 1, the upper half of physical program memory will be visible in data space in byte mode. When accessing data space in word mode, this bit has no effect.

Bits 5 and 6: (SC.5 and SC.6) Reserved

Bit 7: (SC.7) Test Access (JTAG) Port Enable

- 0 = JTAG TAP functions are disabled and P4.0 through P4.3 can be used as general-purpose I/O pins.
- 1 = TAP special function pins P4.0 through P4.3 are enabled to act as JTAG inputs and outputs.

Register Name:	R
0	terrupt Identification Register P[0Bh]

Bit #	7	6	5	4	3	2	1	0
Name	IIS	_	_	114	113	112	1	IIO
Reset	0	0	0	0	0	0	0	0
Access	r	r	r	r	r	r	r	r

The first five bits in this register indicate interrupts pending in modules 0 through 4, one bit per module. The eighth bit, IIS, indicates a pending system interrupt (from the watchdog timer or other system function). The interrupt pending flags will be set only for enabled interrupt sources waiting for service. The interrupt pending flag will be cleared when the pending interrupt source(s) within that module are disabled when the interrupt flag(s) are cleared by software.

- Bit 0: (IIR.0) Interrupt Pending Flag for Module 0 (II0)
- Bit 1: (IIR.1) Interrupt Pending Flag for Module 1 (II1)
- Bit 2: (IIR.2) Interrupt Pending Flag for Module 2 (II2)
- Bit 3: (IIR.3) Interrupt Pending Flag for Module 3 (II3)
- Bit 4: (IIR.4) Interrupt Pending Flag for Module 4 (II4)
- Bits 5 and 6: (IIR.5 and IIR.6) Reserved

Bit 7: (IIR.7) Interrupt Pending Flag for System Modules

Register Name:	CKCN
Register Description:	System Clock Control Register
Register Address:	AP[0Eh]

Bit #	7	6	5	4	3	2	1	0
Name	—	RGSL	RGMD	STOP	SWB	PMME	CD1	CD0
Reset	0	0	S	0	0	0	0	0
Access	r/w	r/w	r	r/w	r/w	r/w	special	special

The CKCN register bit settings determine the system clock source and clock divider as described in the following table.

RGMD	SWB	PMME	CD1	CD0	SYSTEM CLOCK	HIGH-FREQUENCY OSCILLATOR	SWITCHBACK
0	0	0	0	0	HFOsc / 1	Running	N/A
0	0	0	0	1	HFOsc / 2	Running	N/A
0	0	0	1	0	HFOsc / 4	Running	N/A
0	0	0	1	1	HFOsc / 8	Running	N/A
0	0	1	0	0	HFOsc / 256	Running	Not Active
0	1	1	0	0	HFOsc / 256	Running	Active
1	0	0	0	0	Ring / 1	Off or Warming Up	N/A
1	0	0	0	1	Ring / 2	Off or Warming Up	N/A
1	0	0	1	0	Ring / 4	Off or Warming Up	N/A
1	0	0	1	1	Ring / 8	Off or Warming Up	N/A
1	0	1	0	0	Ring / 256	Off or Warming Up	N/A
Х	0	1	1	1	32kHz	Off	Not Active
х	1	1	1	1	32kHz	Running	Active

MAXQ2000 System Clock Modes

Bit 0: (CKCN.0) Clock Divide 0 (CD0); Bit 1: (CKCN.1) Clock Divide 1 (CD1); Bit 2: (CKCN.2) Power Management Mode Enable (PMME). These three bits control the divide ratio or enable power management mode for the system clock as shown in the *MAXQ2000 System Clock Modes* table. CD0 and CD1 can always be read, and they can be written as long as PMME = 0.

Setting the PMME bit to 1 activates either the divide-by-256 power management mode or the 32kHz power management mode, depending on the settings of CD1 and CD0. When PMME is set to 1, CD0 and CD1 cannot be changed; their values will determine the clock divide ratio that is used when the processor exits power management mode. When the 32kHz power management mode is active, the high-frequency oscillator amplifier is disabled unless Switchback is enabled.

Bit 3: (CKCN.3) Switchback Enable (SWB). Setting this bit to 1 enables Switchback mode. If power management mode (either divide by 256 or 32kHz) is active and Switchback is enabled, the PMME bit will be cleared to 0 when any of the following conditions occur.

- An external interrupt is generated based on an edge detect.
- Either serial port 0 or serial port 1 is enabled to receive data and detects a low condition on its data receive pin.
- Either serial port 0 or serial port 1 is enabled to transmit data has a byte written to its buffer register by software.
- The SPI module is enabled in slave mode and receives a slave select signal from the bus master.
- The SPI module is enabled to transmit data and has a byte written to its buffer register by software.
- A time-of-day interrupt occurs from the real-time clock.
- Debug mode is entered through command entry or a breakpoint match.

Triggering a Switchback condition only clears the PMME bit; the settings of CD0 and CD1 remain the same. This means that exiting Switchback from divide-by-256 mode will revert to a divide by 1 mode, while exiting Switchback from 32kHz mode will revert to a divide by 8 mode.

When either power management mode is active, the SWB bit may not be set to 1 as long as any of the above conditions are true.

Bit 4: (CKCN.4) Stop Mode Select (STOP). Setting this bit to 1 causes the processor to enter Stop Mode. This will not change the currently selected clock divide ratio.

Bit 5: (CKCN.5) Ring Oscillator Mode (RGMD). This read-only bit indicates the current oscillator source. If RGMD is set to 1, the internal ring oscillator is currently acting as the oscillator source for the system clock. (This can either be because RGSL = 1, or because RGSL = 0, and the crystal warmup period has not yet completed.) If RGMD is cleared to 0, the external crystal oscillator is currently acting as the oscillator source for the System clock (unless the PMM2 32kHz mode is active).

Bit 6: (CKCN.6) Ring Oscillator Select (RGSL). If this bit is set to 1, the ring oscillator will immediately begin sourcing the system clock, and the high-frequency oscillator will be disabled (unless 32kHz mode and Switchback are enabled). Clearing this bit to 0 enables the high-frequency oscillator. Until the warmup period for the high-frequency oscillator has completed, the ring oscillator will still provide the system clock source (indicated by RGMD = 1). Once the warmup period completes, the system clock source will automatically switch over to the high-frequency oscillator, and RGMD will go to 0.

Bit 7: (CKCN.7) Reserved

ADDENDUM TO SECTION 5: PERIPHERAL REGISTER MODULES

Refer to the MAXQ Family User's Guide.

Table 7. Peripheral Register Map

CYCLES TO READ	CYCLES TO WRITE	REGISTER INDEX	M0 (0h)	M1 (1h)	M2 (2h)	M3 (3h)	M4 (4h)	M5 (5h)
1	1	00h	PO0	PO4	MCNT	T2CNA0	T2CNA1	_
1	1	01h	PO1	PO5	MA	T2H0	T2H1	
1	1	02h	PO2	PO6	MB	T2RH0	T2RH1	_
1	1	03h	PO3	PO7	MC2	T2CH0	T2CH1	_
1	1	04h	_	_	MC1	_	T2CNA2	_
1	1	05h	_	_	MC0	SPIB	T2H2	_
1	1	06h	EIF0	EIF1	SCON0	SCON1	T2RH2	_
1	1	07h	EIE0	EIE1	SBUF0	SBUF1	T2CH2	_
1	2	08h	PIO	PI4	SMD0	SMD1	T2CNB1	_
1	2	09h	PI1	PI5	PR0	PR1	T2V1	_
1	2	0Ah	Pl2	Pl6	_	_	T2R1	_
1	2	0Bh	PI3	PI7	MC1R	_	T2C1	_
1	2	0Ch	EIES0	EIES1	MC0R	T2CNB0	T2CNB2	_
1	2	0Dh	_	_	LCRA	T2V0	T2V2	—
1	2	0Eh	—	_	LCFG	T2R0	T2R2	—
1	2	0Fh	_	_	LCD16	T2C0	T2C2	_
2	2	10h	PD0	PD4	LCD0	T2CFG0	T2CFG1	_
2	2	11h	PD1	PD5	LCD1	_	T2CFG2	_
2	2	12h	PD2	PD6	LCD2	_		_
2	2	13h	PD3	PD7	LCD3	OWA		_
2	2	14h	—		LCD4	OWD		_
2	2	15h		_	LCD5	SPICN		_
2	2	16h	—	_	LCD6	SPICF		—
2	2	17h			LCD7	SPICK		_
2	2	18h	—		LCD8	_		—
2	2	19h	RCNT		LCD9	_		—
2	2	1Ah	RTSS		LCD10	_		_
2	2	1Bh	RTSH		LCD11	ICDF		—
2	2	1Ch	RTSL		LCD12	_		—
2	2	1Dh	RSSA		LCD13	_		_
2	2	1Eh	RASH	SVS	LCD14	_		—
2	2	1Fh	RASL	WKO	LCD15	_		_

Note: Register names in italics indicate read-only registers. Register names in bold indicate 16-bit registers. All other registers are 8 bits in width.

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
PO0									PO0 (8 bits)							
PO1												PO1 (8	B bits)			
PO2												PO2 (8	B bits)			
PO3												PO3 (8	B bits)			
EIF0									IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0
EIE0									EX7	EX6	EX5	EX4	EX3	EX2	EX1	EX0
PIO												PI0 (8	bits)			
PI1												PI1 (8	bits)			
Pl2												PI2 (8	bits)			
PI3												PI3 (8	bits)			
EIES0									IT7	IT6	IT5	IT4	IT3	IT2	IT1	IT0
PD0												PD0 (8	3 bits)			
PD1												PD1 (8	3 bits)			
PD2												PD2 (8	3 bits)			
PD3												PD3 (8	3 bits)			
RCNT	WE	X32D	ACS	—	_	_	_	—	ALSF	ALDF	RDYE	RDY	BUSY	ASE	ADE	RTCE
RTSS												RTSS (8 bits)			
RTSH								RT	SH (16 bits	;)						
RTSL								RT	SL (16 bits	;)						
RSSA												RSSA	(8 bits)			
RASH												RASH	(8 bits)			
RASL								RA	SL (16 bits	;)						
PO4									-	—	_		P	O4 (5 bits)		
PO5											1	PO5 (8 bits)			
PO6												PO6 (8 bits)			
PO7									-	_	_	_	_	_	P07 (2 bits)
EIF1									IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8
EIE1									EX15	EX14	EX13	EX12	EX11	EX10	EX9	EX8
PI4									-	_	—		1	PI4 (5 bits)		
PI5											•	PI5 (8	3 bits)			
Pl6												PI6 (8	3 bits)			
PI7									-	_	—	—	_		PI7 (2	2 bits)
EIES1									IT15	IT14	IT13	IT12	IT11	IT10	IT9	IT8
PD4								PD4 (5 bits)								
PD5										•		PD5 (8 bits)			

Table 8. Peripheral Register Bit Functions

Table 8. Periphera	Register Bit Functions	(continued)
--------------------	------------------------	-------------

REG	BIT15	BIT14	BIT13	BIT12	BIT11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
PD6												PD6 (8 bits)			
PD7									—	—	_	_	_	_	PD7 (2 bits)
SVS									SV67	SV66	SV65	SV64	—		SV71	SV70
WKO									—	—	_	—	—	WKL	WKE1	WKE0
MCNT									OF	—	_	SQU	OPCS	CLD	MMAC	SUS
MA								N	1A (16 bits)							I
MB								N	1B (16 bits)							
MC2								M	C2 (16 bits)						
MC1								M	C1 (16 bits)						
MC0								M	C0 (16 bits)						
SCON0									SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI
SBUF0												SBUF0	(8 bits)	1		<u></u>
SMD0									_	—	—	—	_	ESI0	SMOD0	FEDE0
PR0								PI	R0 (16 bits)					1		<u></u>
MC1R								MC	C1R (16 bits	3)						
MCOR								MC	COR (16 bits	3)						
LCRA	_	_	_	DUTY1	DUTY0	FRM3	FRM2	FRM1	FRM0	LCCS	LRIG	LRA4	LRA3	LRA2	LRA1	LRA0
LCFG									PCF3	PCF2	PCF1	PCF0	_	_	OPM	DPE
LCD0												LCD0	(8 bits)			1
LCD1												LCD1	(8 bits)			
LCD2												LCD2	(8 bits)			
LCD3												LCD3	(8 bits)			
LCD4												LCD4	(8 bits)			
LCD5												LCD5	(8 bits)			
LCD6												LCD6	(8 bits)			
LCD7												LCD7	(8 bits)			
LCD8												LCD8	(8 bits)			
LCD9												LCD9	(8 bits)			
LCD10												LCD10	(8 bits)			
LCD11												LCD11	(8 bits)			
LCD12									LCD12 (8 bits)							
LCD13								1	LCD13 (8 bits)							
LCD14									LCD14 (8 bits)							
LCD15												LCD15	(8 bits)			
LCD16								1				LCD16	(8 bits)			
T2CNA0									ET2	T2OE0	T2POL0	TR2L	TR2	CPRL2	SS2	G2EN
T2H0									T2V0.15	T2V0.14	T2V0.13	T2V0.12	T2V0.11	T2V0.10	T2V0.9	T2V0.8
T2RH0									T2R0.15	T2R0.14	T2R0.13	T2R0.12	T2R0.11	T2R0.10	T2R0.9	T2R0.8

REG	BIT15	BIT14	BIT13	BIT12	BIT11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
T2CH0									T2C0.15	T2C0.14	T2C0.13	T2C0.12	T2C0.11	T2C0.10	T2C0.9	T2C0.8
SPIB								SPIB (16 bits)	1	1					
SCON1									SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI
SBUF1										I		SBUF1	(8 bits)	1	1	L
SMD1									_	—	—	—		ESI1	SMOD1	FEDE1
PR1								PR1 (*	6 bits)	I		1	1	1	1	L
T2CNB0									ET2L	T2OE1	T2POL1	TR2L	TF2	TF2L	TCC2	TC2L
T2V0	T2V0.15	T2V0.14	T2V0.13	T2V0.12	T2V0.11	T2V0.10	T2V0.9	T2V0.8	T2V0.7	T2V0.6	T2V0.5	T2V0.4	T2V0.3	T2V0.2	T2V0.1	T2V0.0
T2R0	T2R0.15	T2R0.14	T2R0.13	T2R0.12	T2R0.11	T2R0.10	T2R0.9	T2R0.8	T2R0.7	T2R0.6	T2R0.5	T2R0.4	T2R0.3	T2R0.2	T2R0.1	T2R0.0
T2C0	T2C0.15	T2C0.14	T2C0.13	T2C0.12	T2C0.11	T2C0.10	T2C0.9	T2C0.8	T2C0.7	T2C0.6	T2C0.5	T2C0.4	T2C0.3	T2C0.2	T2C0.1	T2C0.0
T2CFG0									T2C1	DIV2	DIV1	DIV0	T2MD	CCF1	CCF0	C/T2
OWA									—	—	—		_	A2	A1	A0
OWD												OWD	(8 bits)			
SPICN									STBY	SPIC	ROVR	WCOL	MODF	MODFE	MSTM	SPIEN
SPICF									ESPI1	—	—	_	_	CHR	CKPHA	CKPOL
SPICK									CKR7	CKR6	CKR5	CKR4	CKR3	CKR2	CKR1	CKR0
ICDF									_	—	—	_	PSS1	PSS0	SPE	—
T2CNA1									ET2	T2OE0	T2POL0	TR2L	TR2	CPRL2	SS2	G2EN
T2H1									T2V1.15	T2V1.14	T2V1.13	T2V1.12	T2V1.11	T2V1.10	T2V1.9	T2V1.8
T2RH1									T2R1.15	T2R1.14	T2R1.13	T2R1.12	T2R1.11	T2R1.10	T2R1.9	T2R1.8
T2CH1									T2C1.15	T2C1.14	T2C1.13	T2C1.12	T2C1.11	T2C1.10	T2C1.9	T2C1.8
T2CNA2									ET2	T2OE0	T2POL0	TR2L	TR2	CPRL2	SS2	G2EN
T2H2									T2V2.15	T2V2.14	T2V2.13	T2V2.12	T2V2.11	T2V2.10	T2V2.9	T2V2.8
T2RH2									T2R2.15	T2R2.14	T2R2.13	T2R2.12	T2R2.11	T2R2.10	T2R2.9	T2R2.8
T2CH2									T2C2.15	T2C2.14	T2C2.13	T2C2.12	T2C2.11	T2C2.10	T2C2.9	T2C2.8
T2CNB1									ET2L	T2OE1	T2POL1	TR2L	TF2	TF2L	TCC2	TC2L
T2V1	T2V1.15	T2V1.14	T2V1.13	T2V1.12	T2V1.11	T2V1.10	T2V1.9	T2V1.8	T2V1.7	T2V1.6	T2V1.5	T2V1.4	T2V1.3	T2V1.2	T2V1.1	T2V1.0
T2R1	T2R1.15	T2R1.14	T2R1.13	T2R1.12	T2R1.11	T2R1.10	T2R1.9	T2R1.8	T2R1.7	T2R1.6	T2R1.5	T2R1.4	T2R1.3	T2R1.2	T2R1.1	T2R1.0
T2C1	T2C1.15	T2C1.14	T2C1.13	T2C1.12	T2C1.11	T2C1.10	T2C1.9	T2C1.8	T2C1.7	T2C1.6	T2C1.5	T2C1.4	T2C1.3	T2C1.2	T2C1.1	T2C1.0
T2CNB2									ET2L	T2OE1	T2POL1	TR2L	TF2	TF2L	TCC2	TC2L
T2V2	T2V2.15	T2V2.14	T2V2.13	T2V2.12	T2V2.11	T2V2.10	T2V2.9	T2V2.8	T2V2.7	T2V2.6	T2V2.5	T2V2.4	T2V2.3	T2V2.2	T2V2.1	T2V2.0
T2R2	T2R2.15	T2R2.14	T2R2.13	T2R2.12	T2R2.11	T2R2.10	T2R2.9	T2R2.8	T2R2.7	T2R2.6	T2R2.5	T2R2.4	T2R2.3	T2R2.2	T2R2.1	T2R2.0
T2C2	T2C2.15	T2C2.14	T2C2.13	T2C2.12	T2C2.11	T2C2.10	T2C2.9	T2C2.8	T2C2.7	T2C2.6	T2C2.5	T2C2.4	T2C2.3	T2C2.2	T2C2.1	T2C2.0
T2CFG1									T2C1	DIV2	DIV1	DIV0	T2MD	CCF1	CCF0	C/T2
T2CFG2									T2C1	DIV2	DIV1	DIV0	T2MD	CCF1	CCF0	C/T2

Table 8. Peripheral Register Bit Functions (continued)

Table 9. Peripheral Register Bit Reset Values

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
PO0									1	1	1	1	1	1	1	1
PO1									1	1	1	1	1	1	1	1
PO2									1	1	1	1	1	1	1	1
PO3									1	1	1	1	1	1	1	1
EIFO									0	0	0	0	0	0	0	0
EIE0									0	0	0	0	0	0	0	0
PI0									S	S	S	S	S	S	S	S
PI1									S	S	S	S	S	S	S	S
PI2									S	S	S	S	S	S	S	S
PI3									S	s	S	S	S	S	S	S
EIES0									0	0	0	0	0	0	0	0
PD0									0	0	0	0	0	0	0	0
PD1									0	0	0	0	0	0	0	0
PD2									0	0	0	0	0	0	0	0
PD3									0	0	0	0	0	0	0	0
RCNT	0	S	S	0	0	0	0	0	S	S	0	0	1	S	S	S
RTSS									S	S	S	S	S	S	S	S
RTSH	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
RTSL	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
RSSA									0	0	0	0	0	0	0	0
RASH									0	0	0	0	0	0	0	0
RASL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PO4									0	0	0	1	1	1	1	1
PO5									1	1	1	1	1	1	1	1
PO6									1	1	1	1	1	1	1	1
PO7									0	0	0	0	0	0	1	1
EIF1									0	0	0	0	0	0	0	0
EIE1									0	0	0	0	0	0	0	0
PI4									0	0	0	s	s	S	S	S
PI5									S	S	S	S	S	S	S	S
PI6									S	s	S	S	S	S	S	S
PI7									0	0	0	0	0	0	S	S
EIES1									0	0	0	0	0	0	0	0
PD4									0	0	0	0	0	0	0	0
PD5									0	0	0	0	0	0	0	0

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
PD6									0	0	0	0	0	0	0	0
PD7									0	0	0	0	0	0	0	0
SVS									0	0	0	0	0	0	0	0
WKO									0	0	0	0	0	0	0	0
MCNT									0	0	0	0	0	0	0	0
MA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SCON0									0	0	0	0	0	0	0	0
SBUF0									0	0	0	0	0	0	0	0
SMD0									0	0	0	0	0	0	0	0
PR0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC1R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MCOR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCRA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCFG									0	0	0	0	0	0	0	0
LCD0									0	0	0	0	0	0	0	0
LCD1									0	0	0	0	0	0	0	0
LCD2									0	0	0	0	0	0	0	0
LCD3									0	0	0	0	0	0	0	0
LCD4									0	0	0	0	0	0	0	0
LCD5									0	0	0	0	0	0	0	0
LCD6									0	0	0	0	0	0	0	0
LCD7									0	0	0	0	0	0	0	0
LCD8									0	0	0	0	0	0	0	0
LCD9									0	0	0	0	0	0	0	0
LCD10									0	0	0	0	0	0	0	0
LCD11									0	0	0	0	0	0	0	0
LCD12									0	0	0	0	0	0	0	0
LCD13									0	0	0	0	0	0	0	0
LCD14									0	0	0	0	0	0	0	0
LCD15									0	0	0	0	0	0	0	0
LCD16									0	0	0	0	0	0	0	0
T2CNA0									0	0	0	0	0	0	0	0
T2H0									0	0	0	0	0	0	0	0

Table 9. Peripheral Register Bit Reset Values (continued)

REG	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
T2RH0									0	0	0	0	0	0	0	0
T2CH0									0	0	0	0	0	0	0	0
SPIB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SCON1									0	0	0	0	0	0	0	0
SBUF1									0	0	0	0	0	0	0	0
SMD1									0	0	0	0	0	0	0	0
PR1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNB0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2V0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2R0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CFG0									0	0	0	0	0	0	0	0
OWA									0	0	0	0	0	0	0	0
OWD									0	0	0	0	0	0	0	0
SPICN									0	0	0	0	0	0	0	0
SPICF									0	0	0	0	0	0	0	0
SPICK									0	0	0	0	0	0	0	0
ICDF									S	S	S	S	S	S	S	S
T2CNA1									0	0	0	0	0	0	0	0
T2H1									0	0	0	0	0	0	0	0
T2RH1									0	0	0	0	0	0	0	0
T2CH1									0	0	0	0	0	0	0	0
T2CNA2									0	0	0	0	0	0	0	0
T2H2									0	0	0	0	0	0	0	0
T2RH2									0	0	0	0	0	0	0	0
T2CH2									0	0	0	0	0	0	0	0
T2CNB1									0	0	0	0	0	0	0	0
T2V1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2R1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNB2									0	0	0	0	0	0	0	0
T2V2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2R2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CFG1									0	0	0	0	0	0	0	0
T2CFG2									0	0	0	0	0	0	0	0

Table 9. Peripheral Register Bit Reset Values (continued)

Note: Bits marked as "s" have special behavior upon reset. See the register descriptions for details.

ADDENDUM TO SECTION 6: GENERAL-PURPOSE I/O MODULE (GPIO AND EXTERNAL INTERRUPTS)

The MAXQ2000 provides 50 port pins (in the 68-pin package) or 38 port pins (in the 56-pin package) for general-purpose I/O, which are grouped into logical ports P0 through P7. Each of these port pins has the following features.

- CMOS output drivers
- Schmitt trigger inputs
- Optional weak pullup to VDDIO when operating in input mode

Port pins P6.4, P6.5, P7.0, and P7.1 may be configured to operate at a voltage level given by V_{LCD} instead of V_{DDIO} by setting bits in the SVS register.

Many of the port pins on the MAXQ2000 are also multiplexed with special functions as listed below. All of these special functions are disabled by default with the exception of the JTAG interface pins, which are enabled by default following any reset.

Table 10. Port Pin Special Functions (68-Pin Package)

PORT PIN	TYPE	SPECIAL FUNCTION	ENABLED WHEN
P0.0	Analog	LCD Segment SEG0	PCF0=1 and OPM=1
P0.1	Analog	LCD Segment SEG1	PCF0=1 and OPM=1
P0.2	Analog	LCD Segment SEG2	PCF0=1 and OPM=1
P0.3	Analog	LCD Segment SEG3	PCF0=1 and OPM=1
P0.4	Analog	LCD Segment SEG4	PCF0=1 and OPM=1
P0.4	Input	External Interrupt 0	EX0=1
P0.5	Analog	LCD Segment SEG5	PCF0=1 and OPM=1
P0.5	Input	External Interrupt 1	EX1=1
P0.6	Analog	LCD Segment SEG6	PCF0=1 and OPM=1
P0.6	Input	External Interrupt 2	EX2=1
P0.7	Analog	LCD Segment SEG7	PCF0=1 and OPM=1
P0.7	Input	External Interrupt 3	EX3=1
P1.0	Analog	LCD segment SEG8	PCF1=1 and OPM=1
P1.1	Analog	LCD segment SEG9	PCF1=1 and OPM=1
P1.2	Analog	LCD segment SEG10	PCF1=1 and OPM=1
P1.3	Analog	LCD Segment SEG11	PCF1=1 and OPM=1
P1.4	Analog	LCD Segment SEG12	PCF1=1 and OPM=1
P1.5	Analog	LCD Segment SEG13	PCF1=1 and OPM=1
P1.6	Analog	LCD Segment SEG14	PCF1=1 and OPM=1
P1.7	Analog	LCD Segment SEG15	PCF1=1 and OPM=1
P2.0	Analog	LCD Segment SEG16	PCF2=1 and OPM=1
P2.1	Analog	LCD Segment SEG17	PCF2=1 and OPM=1
P2.2	Analog	LCD Segment SEG18	PCF2=1 and OPM=1
P2.3	Analog	LCD Segment SEG19	PCF2=1 and OPM=1
P2.4	Analog	LCD Segment SEG20	PCF2=1 and OPM=1
P2.5	Analog	LCD Segment SEG21	PCF2=1 and OPM=1
P2.6	Analog	LCD Segment SEG22	PCF2=1 and OPM=1
P2.7	Analog	LCD Segment SEG23	PCF2=1 and OPM=1
P3.0	Analog	LCD Segment SEG24	PCF3=1 and OPM=1

Table 10. Port Pin Special Functions (continued)

PORT PIN	TYPE	SPECIAL FUNCTION	ENABLED WHEN
P3.1	Analog	LCD Segment SEG25	PCF3=1 and OPM=1
P3.2	Analog	LCD Segment SEG26	PCF3=1 and OPM=1
P3.3	Analog	LCD Segment SEG27	PCF3=1 and OPM=1
P3.4	Analog	LCD Segment SEG28	PCF3=1 and OPM=1
P3.4	Input	External Interrupt 4	EX4=1
P3.5	Analog	LCD Segment SEG29	PCF3=1 and OPM=1
P3.5	Input	External Interrupt 5	EX5=1
P3.6	Analog	LCD Segment SEG30	PCF3=1 and OPM=1
P3.6	Input	External Interrupt 6	EX6=1
P3.7	Analog	LCD Segment SEG31	PCF3=1 and OPM=1
P3.7	Input	External Interrupt 7	EX7=1
P4.0	Input	JTAG Interface—TAP Clock (TCK)	(SC.7) TAP=1
P4.0	Input	External Interrupt 8	EX8=1
P4.1	Input	JTAG Interface—TAP Data Input (TDI)	(SC.7) TAP=1
P4.1	Input	External Interrupt 9	EX9=1
P4.2	Input	JTAG Interface—TAP Mode Select (TMS)	(SC.7) TAP=1
P4.3	Input	JTAG Interface—TAP Data Output (TDO)	(SC.7) TAP=1
P5.2	Input	Serial UART 1 Receive	REN=1
P5.2	Input	External Interrupt 10	EX10=1
P5.3	Output	Serial UART 1 Transmit	SBUF1 written
P5.3	Input	External Interrupt 11	EX11=1
P5.4	Input/Output	SPI Slave Select (SSEL)	SPIEN=1
P5.5	Input/Output	SPI Master Out-Slave In (MOSI)	SPIEN=1
P5.6	Input/Output	SPI Slave Clock (SCLK)	SPIEN=1
P5.7	Input/Output	SPI Master In-Slave Out (MISO)	SPIEN=1
P6.0	Output	Timer 1 (Type 2) Secondary Output (T2PB)	T2OE = 10b or 11b
P6.0	Input	External Interrupt 12	EX12=1
P6.1	Input/Output	Timer 1 (Type 2) Input/Output (T2P)	T2OE = 01b or 11b, or G2EN = 1
P6.1	Input	External Interrupt 13	EX13=1
P6.2	Output	Timer 2 (Type 2) Secondary Output (T2PB)	T2OE = 10b or 11b
P6.2	Output	1-Wire Master Output	CLK_EN=1
P6.3	Input/Output	Timer 2 (Type 2) input/output (T2P)	T2OE = 01b or 11b, or G2EN = 1
P6.3	Input	1-Wire Master Input	CLK_EN=1
P6.4	Output	Timer 0 (Type 2) Secondary Output (T2PB)	T2OE = 10b or 11b
P6.4	Output	Wakeup Output 0	WKE0=1
P6.5	Input/Output	Timer 0 (Type 2) Input/Output (T2P)	T2OE = 01b or 11b, or G2EN = 1
P6.5	Output	Wakeup Output 1	WKE1=1
P7.0	Output	Serial UART 0 Transmit	SBUF0 written
P7.0	Input	External Interrupt 14	EX14=1
P7.1	Input	Serial UART 0 Receive	REN=1
P7.1	Input	External Interrupt 15	EX15=1

Table 11. Port Pin Special Functions (56-Pin Package)

PORT PIN	TYPE	SPECIAL FUNCTION	ENABLED WHEN
P0.0	Analog	LCD Segment SEG0	PCF0=1 and OPM=1
P0.1	Analog	LCD Segment SEG1	PCF0=1 and OPM=1
P0.2	Analog	LCD Segment SEG2	PCF0=1 and OPM=1
P0.3	Analog	LCD Segment SEG3	PCF0=1 and OPM=1
P0.4	Analog	LCD Segment SEG4	PCF0=1 and OPM=1
P0.4	Input	External Interrupt 0	EX0=1
P0.5	Analog	LCD Segment SEG5	PCF0=1 and OPM=1
P0.5	Input	External Interrupt 1	EX1=1
P0.6	Analog	LCD Segment SEG6	PCF0=1 and OPM=1
P0.6	Input	External Interrupt 2	EX2=1
P0.7	Analog	LCD Segment SEG7	PCF0=1 and OPM=1
P0.7	Input	External Interrupt 3	EX3=1
P1.0	Analog	LCD Segment SEG8	PCF1=1 and OPM=1
P1.1	Analog	LCD Segment SEG9	PCF1=1 and OPM=1
P1.2	Analog	LCD Segment SEG10	PCF1=1 and OPM=1
P1.3	Analog	LCD Segment SEG11	PCF1=1 and OPM=1
P1.4	Analog	LCD Segment SEG12	PCF1=1 and OPM=1
P1.5	Analog	LCD Segment SEG13	PCF1=1 and OPM=1
P1.6	Analog	LCD Segment SEG14	PCF1=1 and OPM=1
P1.7	Analog	LCD Segment SEG15	PCF1=1 and OPM=1
P2.4	Analog	LCD Segment SEG16	PCF2=1 and OPM=1
P2.5	Analog	LCD Segment SEG17	PCF2=1 and OPM=1
P2.6	Analog	LCD Segment SEG18	PCF2=1 and OPM=1
P2.7	Analog	LCD Segment SEG19	PCF2=1 and OPM=1
P3.4	Analog	LCD Segment SEG20	PCF3=1 and OPM=1
P3.4	Input	External Interrupt 4	EX4=1
P3.5	Analog	LCD segment SEG21	PCF3=1 and OPM=1
P3.5	Input	External Interrupt 5	EX5=1
P3.6	Analog	LCD Segment SEG22	PCF3=1 and OPM=1
P3.6	Input	External Interrupt 6	EX6=1
P3.7	Analog	LCD Segment SEG23	PCF3=1 and OPM=1
P3.7	Input	External Interrupt 7	EX7=1

PORT PIN	TYPE	SPECIAL FUNCTION	ENABLED WHEN
P4.0	Input	JTAG Interface—TAP Clock (TCK)	(SC.7) TAP=1
P4.0	Input	External Interrupt 8	EX8=1
P4.1	Input	JTAG Interface—TAP Data Input (TDI)	(SC.7) TAP=1
P4.1	Input	External Interrupt 9	EX9=1
P4.2	Input	JTAG Interface—TAP Mode Select (TMS)	(SC.7) TAP=1
P4.3	Input	JTAG Interface—TAP Data Output (TDO)	(SC.7) TAP=1
P5.4	Input/Output	SPI Slave Select (SSEL)	SPIEN=1
P5.5	Input/Output	SPI Master Out-Slave In (MOSI)	SPIEN=1
P5.6	Input/Output	SPI Slave Clock (SCLK)	SPIEN=1
P5.7	Input/Output	SPI Master In-Slave Out (MISO)	SPIEN=1
P6.0	Output	Timer 1 (Type 2) Secondary Output (T2PB)	T2OE = 10b or 11b
P6.0	Input	External Interrupt 12	EX12=1
P6.1	Input/Output	Timer 1 (Type 2) Input/Output (T2P)	T2OE = 01b or 11b, or G2EN = 1
P6.1	Input	External Interrupt 13	EX13=1
P6.4	Output	Timer 0 (Type 2) Secondary Output (T2PB)	T2OE = 10b or 11b
P6.4	Output	Wakeup Output 0	WKE0=1
P6.5	Input/Output	Timer 0 (Type 2) Input/Output (T2P)	T2OE = 01b or 11b, or G2EN = 1
P6.5	Output	Wakeup Output 1	WKE1=1
P7.0	Output	Serial UART 0 Transmit	SBUF0 written
P7.0	Input	External Interrupt 14	EX14=1
P7.1	Input	Serial UART 0 Receive	REN=1
P7.1	Input	External Interrupt 15	EX15=1

Table 11. Port Pin Special Functions (56-Pin Package) (continued)

The port pins on the MAXQ2000 operate the same as standard MAXQ port pins, with input/output states defined according to Table 12.

Table 12. MAXQ2000 Port Pin Input/Output States

PDx.y	POx.y	PORT PIN MODE	PORT PIN (Px.y) STATE
0	0	Input	Tri-state
0	1	Input	Weak pullup HIGH
1	0	Output	Strong drive LOW
1	1	Output	Strong drive HIGH

The following peripheral registers control the general-purpose I/O and external interrupt features specific to the MAXQ2000.

Register Name:	PC
Register Description:	Ро
Register Address:	MC

PO0 Port 0 Output Register M0[00h]

Bit #	7	6	5	4	3	2	1	0
Name	PO0.7	PO0.6	PO0.5	PO0.4	PO0.3	PO0.2	PO0.1	PO0.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO0.0 to PO0.7) Port 0 Output. This register stores the data that will be output on any of the pins of Port 0 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD0) will not affect the value in this register.

Register Name:	PO1
Register Description:	Port 1 Output Register
Register Address:	M0[01h]

Bit #	7	6	5	4	3	2	1	0
Name	PO1.7	PO1.6	PO1.5	PO1.4	PO1.3	PO1.2	PO1.1	PO1.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO1.0 to PO1.7) Port 1 Output. This register stores the data that will be output on any of the pins of Port 1 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD1) will not affect the value in this register.

Register Name:	PO2
Register Description:	Port 2 Output Register
Register Address:	M0[02h]

Bit #	7	6	5	4	3	2	1	0
Name	PO2.7	PO2.6	PO2.5	PO2.4	PO2.3	PO2.2	PO2.1	PO2.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO2.0 to PO2.7) Port 2 Output. This register stores the data that will be output on any of the pins of Port 2 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD2) will not affect the value in this register.

Register Name:	PO3
Register Description:	Port 3 Output Register
Register Address:	M0[03h]

Bit #	7	6	5	4	3	2	1	0
Name	PO3.7	PO3.6	PO3.5	PO3.4	PO3.3	PO3.2	PO3.1	PO3.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO3.0 to PO3.7) Port 3 Output. This register stores the data that will be output on any of the pins of Port 3 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD3) will not affect the value in this register.

Register Name:	EIF0
	External Interrupt Flag 0 Register
Register Address:	M0[06h]

Bit #	7	6	5	4	3	2	1	0
Name	IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each bit in this register is set when a negative or positive edge (depending on the ITn bit setting) is detected on the corresponding interrupt pin. Once an external interrupt has been detected, the interrupt flag bit will remain set until cleared by software or a reset. Setting any of these bits will cause the corresponding interrupt to trigger if it is enabled to do so.

Bit 0: (EIF0.0) External Interrupt 0 Edge Detect (IE0)

Bit 1: (EIF0.1) External Interrupt 1 Edge Detect (IE1)

Bit 2: (EIF0.2) External Interrupt 2 Edge Detect (IE2)

Bit 3: (EIF0.3) External Interrupt 3 Edge Detect (IE3)

Bit 4: (EIF0.4) External Interrupt 4 Edge Detect (IE4)

Bit 5: (EIF0.5) External Interrupt 5 Edge Detect (IE5)

Bit 6: (EIF0.6) External Interrupt 6 Edge Detect (IE6)

Bit 7: (EIF0.7) External Interrupt 7 Edge Detect (IE7)

Register Name:	EIE0
Register Description:	External Interrupt Enable 0 Register
Register Address:	M0[07h]

Bit #	7	6	5	4	3	2	1	0
Name	EX7	EX6	EX5	EX4	EX3	EX2	EX1	EX0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each bit in this register controls the enable for one external interrupt. If the bit is set to 1, the interrupt is enabled (if it is not otherwise masked). If the bit is set to 0, its corresponding interrupt is disabled.

Bit 0: (EIE0.0) External Interrupt 0 Enable (EX0)

Bit 1: (EIE0.1) External Interrupt 1 Enable (EX1)

Bit 2: (EIE0.2) External Interrupt 2 Enable (EX2)

Bit 3: (EIE0.3) External Interrupt 3 Enable (EX3)

Bit 4: (EIE0.4) External Interrupt 4 Enable (EX4)

Bit 5: (EIE0.5) External Interrupt 5 Enable (EX5)

Bit 6: (EIE0.6) External Interrupt 6 Enable (EX6)

Bit 7: (EIE0.7) External Interrupt 7 Enable (EX7)

Register Name:	PI0
Register Description:	Port 0 Input Register
Register Address:	M0[08h]

Bit #	7	6	5	4	3	2	1	0
Name	PI0.7	PI0.6	PI0.5	PI0.4	PI0.3	PI0.2	PI0.1	PI0.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Each of the read-only bits in this register reflects the logic state present at the corresponding port pin.

Register I	Name:
Register	Description:
Register /	Address:

PI1 Port 1 Input Register M0[09h]

Bit #	7	6	5	4	3	2	1	0
Name	PI1.7	PI1.6	PI1.5	PI1.4	PI1.3	PI1.2	PI1.1	PI1.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Each of the read-only bits in this register reflects the logic state present at the corresponding port pin.

Register Name: Register Description: Register Address: Pl2 Port 2 Input Register M0[0Ah]

Bit #	7	6	5	4	3	2	1	0
Name	PI2.7	PI2.6	PI2.5	PI2.4	PI2.3	PI2.2	PI2.1	PI2.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Each of the read-only bits in this register reflects the logic state present at the corresponding port pin.

Register Name:	PI3
Register Description:	Port 3 Input Register
Register Address:	M0[0Bh]

Bit #	7	6	5	4	3	2	1	0
Name	PI3.7	PI3.6	PI3.5	PI3.4	PI3.3	PI3.2	PI3.1	PI3.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Each of the read-only bits in this register reflects the logic state present at the corresponding port pin.

Register Description:External Interrupt Edge Select 0 RegisterRegister Address:M0[0Ch]
--

Bit #	7	6	5	4	3	2	1	0
Name	IT7	IT6	IT5	IT4	IT3	IT2	IT1	IT0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each bit in this register controls the edge select mode for an external interrupt, as follows:

0 = The external interrupt will trigger on a rising (positive) edge.

1 = The external interrupt will trigger on a negative (falling) edge.

- Bit 0: (EIES0.0) Edge Select for External Interrupt 0 (IT0)
- Bit 1: (EIES0.1) Edge Select for External Interrupt 1 (IT1)
- Bit 2: (EIES0.2) Edge Select for External Interrupt 2 (IT2)
- Bit 3: (EIES0.3) Edge Select for External Interrupt 3 (IT3)
- Bit 4: (EIES0.4) Edge Select for External Interrupt 4 (IT4)
- Bit 5: (EIES0.5) Edge Select for External Interrupt 5 (IT5)
- Bit 6: (EIES0.6) Edge Select for External Interrupt 6 (IT6)
- Bit 7: (EIES0.7) Edge Select for External Interrupt 7 (IT7)

Register Name:	PD0
Register Description:	Port 0 Direction Register
Register Address:	M0[10h]

Bit #	7	6	5	4	3	2	1	0
Name	PD0.7	PD0.6	PD0.5	PD0.4	PD0.3	PD0.2	PD0.1	PD0.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each of the bits in this register controls the input/output direction of a port pin (P0.0 to P0.7), as follows.

0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).

1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PD1
Register Description:	Port 1 Direction Register
Register Address:	M0[11h]

Bit #	7	6	5	4	3	2	1	0
Name	PD1.7	PD1.6	PD1.5	PD1.4	PD1.3	PD1.2	PD1.1	PD1.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each of the bits in this register controls the input/output direction of a port pin (P1.0 to P1.7), as follows.

0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).

1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PD2
Register Description:	Port 2 Direction Register
Register Address:	M0[12h]

Bit #	7	6	5	4	3	2	1	0
Name	PD2.7	PD2.6	PD2.5	PD2.4	PD2.3	PD2.2	PD2.1	PD2.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each of the bits in this register controls the input/output direction of a port pin (P2.0 to P2.7), as follows.

0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).

1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PD3
Register Description:	Port 3 Direction Register
Register Address:	M0[13h]

Bit #	7	6	5	4	3	2	1	0
Name	PD3.7	PD3.6	PD3.5	PD3.4	PD3.3	PD3.2	PD3.1	PD3.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Each of the bits in this register controls the input/output direction of a port pin (P3.0 to P3.7), as follows.

0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).

1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PO4
Register Description:	Port 4 Output Register
Register Address:	M1[00h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	PO2.4	PO2.3	PO2.2	PO2.1	PO2.0
Reset	0	0	0	1	1	1	1	1
Access	r	r	r	r/w	r/w	r/w	r/w	r/w

Bits 0 to 4: (PO4.0 to PO4.4) Port 4 Output. This register stores the data that will be output on any of the pins of Port 4 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD4) will not affect the value in this register.

Bits 5 to 7: (PO4.5 to PO4.7) Reserved

Register Name:	PO5
Register Description:	Port 5 Output Register
Register Address:	M1[01h]

Bit #	7	6	5	4	3	2	1	0
Name	PO5.7	PO5.6	PO5.5	PO5.4	PO5.3	PO5.2	PO5.1	PO5.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO5.0 to PO5.7) Port 5 Output. This register stores the data that will be output on any of the pins of Port 5 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD5) will not affect the value in this register.

Register Name:	PO6
Register Description:	Port 6 Output Register
Register Address:	M1[02h]

Bit #	7	6	5	4	3	2	1	0
Name	PO6.7	PO6.6	PO6.5	PO6.4	PO6.3	PO6.2	PO6.1	PO6.0
Reset	1	1	1	1	1	1	1	1
Access	r/w							

Bits 0 to 7: (PO6.0 to PO6.7) Port 6 Output. This register stores the data that will be output on any of the pins of Port 6 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD6) will not affect the value in this register.

Register Name:	P07
Register Description:	Port 7 Output Register
Register Address:	M1[03h]

Bit #	7	6	5	4	3	2	1	0
Name	—	—	—	—	—	—	PO2.1	PO2.0
Reset	0	0	0	0	0	0	1	1
Access	r	r	r	r	r	r	r/w	r/w

Bits 0 and 1: (PO7.0 and PO7.1) Port Output for P7.0 and P7.1. This register stores the data that will be output on any of the pins of Port 7 that have been defined as output pins. If the port pins are in input mode, this register controls the weak pullup for each pin. Changing the data direction of any pins for this port (through register PD7) will not affect the value in this register.

Bits 2 to 7: (PO7.2 to PO7.7) Reserved

Register Name:	EIF1
Register Description:	External Interrupt Flag 1 Register
Register Address:	M1[06h]

Bit #	7	6	5	4	3	2	1	0
Name	IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Each bit in this register is set when a negative or positive edge (depending on the ITn bit setting) is detected on the corresponding interrupt pin. Once an external interrupt has been detected, the interrupt flag bit will remain set until cleared by software or a reset. Setting any of these bits will cause the corresponding interrupt to trigger if it is enabled to do so.

Bit 0: (EIF1.0) External Interrupt 8 Edge Detect (IE8)

Bit 1: (EIF1.1) External Interrupt 9 Edge Detect (IE9)

Bit 2: (EIF1.2) External Interrupt 10 Edge Detect (IE10)

Bit 3: (EIF1.3) External Interrupt 11 Edge Detect (IE11)

Bit 4: (EIF1.4) External Interrupt 12 Edge Detect (IE12)

Bit 5: (EIF1.5) External Interrupt 13 Edge Detect (IE13)

Bit 6: (EIF1.6) External Interrupt 14 Edge Detect (IE14)

Bit 7: (EIF1.7) External Interrupt 15 Edge Detect (IE15)

0

EX8

0

r/w

Register Na Register De Register Ac	escription:	EIE1 External Ir M1[07h]	nterrupt Ena	able 1 Regis	ster		
Bit #	7	6	5	4	3	2	1
Name	EX15	EX14	EX13	EX12	EX11	EX10	EX9
Reset	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Each bit in this register controls the enable for one external interrupt. If the bit is set to 1, the interrupt is enabled (if it is not otherwise masked). If the bit is set to 0, its corresponding interrupt is disabled.

Bit 0: (EIE1.0) External Interrupt 8 Enable (EX8)

e de la

- Bit 1: (EIE1.1) External Interrupt 9 Enable (EX9)
- Bit 2: (EIE1.2) External Interrupt 10 Enable (EX10)
- Bit 3: (EIE1.3) External Interrupt 11 Enable (EX11)
- Bit 4: (EIE1.4) External Interrupt 12 Enable (EX12)
- Bit 5: (EIE1.5) External Interrupt 13 Enable (EX13)
- Bit 6: (EIE1.6) External Interrupt 14 Enable (EX14)
- Bit 7: (EIE1.7) External Interrupt 15 Enable (EX15)

Register Name:	PI4
Register Description:	Port 4 Input Register
Register Address:	M1[08h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	PI4.4	PI4.3	PI4.2	PI4.1	PI4.0
Reset	0	0	0	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Bits 0 to 4: (PI4.0 to PI4.4) Port Pin Input Bits for P4.0 to P4.4. Each of these read-only bits reflects the logic state present at the corresponding port pin.

Bits 5 to 7. (PI4.5 to PI4.7) Reserved

Register Name:	PI5
Register Description:	Port 5 Input Register
Register Address:	M1[09h]

Bit #	7	6	5	4	3	2	1	0
Name	PI5.7	PI5.6	PI5.5	PI5.4	PI5.3	PI5.2	PI5.1	PI5.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Bits 0 to 7: (PI5.0 to PI5.7) Port Pin Input Bits for P5.0 to P5.7. Each of these read-only bits reflects the logic state present at the corresponding port pin.

Register Name:	PI6
Register Description:	Port 6 Input Register
Register Address:	M1[0Ah]

Bit #	7	6	5	4	3	2	1	0
Name	PI6.7	PI6.6	PI6.5	PI6.4	PI6.3	PI6.2	PI6.1	PI6.0
Reset	S	S	S	S	S	S	S	S
Access	r	r	r	r	r	r	r	r

Bits 0 to 7: (PI6.0 to PI6.7) Port Pin Input Bits for P6.0 to P6.7. Each of these read-only bits reflects the logic state present at the corresponding port pin.

Register Name:	PI7
Register Description:	Port 7 I
Register Address:	M1[0Bh

Port 7 Input Register M1[0Bh]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	_	_	_	PI7.1	PI7.0
Reset	0	0	0	0	0	0	S	S
Access	r	r	r	r	r	r	r	r

Bits 0 and 1: (PI7.0 and PI7.1) Port Pin Input Bits for P7.0 and P7.1. Each of these read-only bits reflects the logic state present at the corresponding port pin.

0 IT8 0 r/w

Bits 2 to 7: (PI7.2 to PI7.7) Reserved

Register Na Register De Register Ac	escription:	EIES1 External Ir M1[0Ch]	nterrupt Edg	ge Select 1	Register			
Bit #	7	6	5	4	3	2	1	
Name	IT15	IT14	IT13	IT12	IT11	IT10	IT9	
Reset	0	0	0	0	0	0	0	
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

Each bit in this register controls the edge select mode for an external interrupt, as follows:

0 = The external interrupt will trigger on a rising (positive) edge.

1 = The external interrupt will trigger on a negative (falling) edge.

Bit 0: (EIES1.0) Edge Select for External Interrupt 8 (IT8)

- Bit 1: (EIES1.1) Edge Select for External Interrupt 9 (IT9)
- Bit 2: (EIES1.2) Edge Select for External Interrupt 10 (IT10)

Bit 3: (EIES1.3) Edge Select for External Interrupt 11 (IT11)

Bit 4: (EIES1.4) Edge Select for External Interrupt 12 (IT12)

Bit 5: (EIES1.5) Edge Select for External Interrupt 13 (IT13)

Bit 6: (EIES1.6) Edge Select for External Interrupt 14 (IT14)

Bit 7: (EIES1.7) Edge Select for External Interrupt 15 (IT15)

Register Name:	PD4
Register Description:	Port 4 Direction Register
Register Address:	M1[10h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	PD4.4	PD4.3	PD4.2	PD4.1	PD4.0
Reset	0	0	0	0	0	0	0	0
Access	r	r	r	r/w	r/w	r/w	r/w	r/w

Bits 0 to 4: (PD4.0 to PD4.4) Port Direction Bits for P4.0 to P4.4. Each these bits controls the input/output direction of its corresponding port pin as follows.

- 0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).
- 1 = The port pin is in output mode, with the output level to drive given by PO.

Bits 5 to 7: (PD4.5 to PD4.7) Reserved

Register Name:	PD5
Register Description:	Port 5 Direction Register
Register Address:	M1[11h]

Bit #	7	6	5	4	3	2	1	0
Name	PD5.7	PD5.6	PD5.5	PD5.4	PD5.3	PD5.2	PD5.1	PD5.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Bits 0 to 7: (PD5.0 to PD5.7) Port Direction Bits for P5.0 to P5.7. Each these bits controls the input/output direction of its corresponding port pin as follows.

- 0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).
- 1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PD6
Register Description:	Port 6 Direction Register
Register Address:	M1[12h]

Bit #	7	6	5	4	3	2	1	0
Name	PD6.7	PD6.6	PD6.5	PD6.4	PD6.3	PD6.2	PD6.1	PD6.0
Reset	0	0	0	0	0	0	0	0
Access	r/w							

Bits 0 to 7: (PD6.0 to PD6.7) Port Direction Bits for P6.0 to P6.7. Each these bits controls the input/output direction of its corresponding port pin as follows.

- 0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).
- 1 = The port pin is in output mode, with the output level to drive given by PO.

Register Name:	PD7
Register Description:	Port 7 Direction Register
Register Address:	M1[13h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	_	_	_	PD7.1	PD7.0
Reset	0	0	0	0	0	0	0	0
Access	r	r	r	r/w	r/w	r/w	r/w	r/w

Bits 0 and 1: (PD7.0 and PD7.1) Port Direction Bits for P7.0 and P7.1. Each these bits controls the input/output direction of its corresponding port pin as follows.

- 0 = The port pin is in input mode, either with a weak pullup (if PO = 1) or tri-stated (if PO = 0).
- 1 = The port pin is in output mode, with the output level to drive given by PO.

Bits 2 to 7: (PD7.2 to PD7.7) Reserved

Register Name:	SVS
Register Description:	Supply Voltage Select Register
Register Address:	M1[10h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	SV65	SV64	_	_	SV71	SV70
Reset	0	0	0	0	0	0	0	0
Access	r	r	r/w	r/w	r	r	r/w	r/w

Each bit in this register controls the supply voltage used for a particular port pin's input and output levels, as follows.

0 = The standard VDDIO supply rail will be used to drive this port pin.

1 = The LCD supply rail will be used to drive this port pin.

Bit 0: (SVS.0) Supply Voltage Select for P7.0 (SV70)

Bit 1: (SVS.1) Supply Voltage Select for P7.1 (SV71)

Bits 2, 3, 6, 7: Reserved

Bit 4: (SVS.4) Supply Voltage Select for P6.4 (SV64)

Bit 5: (SVS.5) Supply Voltage Select for P6.5 (SV65)

Register Name:	WKO
Register Description:	Wakeup Output Register
Register Address:	M1[1Fh]

Bit #	7	6	5	4	3	2	1	0
Name	_	_	—	—	—	WKL	WKE1	WKE0
Reset	0	0	0	0	0	0	0	0
Access	r	r	r	r	r	r/w	r/w	r/w

Bit 0: (WKO.0) Wakeup Output 0 Enable (WKE0). When set to 1, this bit enables the output of a wakeup signal on port pin P6.4. The active polarity of the output signal is determined by the WKL bit, on the output pulse duration is determined by the duration of the source that triggers the wakeup event.

Bit 1: (WKO.1) Wakeup Output 1 Enable (WKE1). When set to 1, this bit enables the output of a wakeup signal on port pin P6.5. The active polarity of the output signal is determined by the WKL bit, on the output pulse duration is determined by the duration of the source that triggers the wakeup event.

Bit 2: (WKO.2) Wakeup Output Level (WKL). This bit determines the polarity of the wakeup signal, which may be output on P6.4 and P6.5 as follows.

0 = Wakeup outputs are driven low when a wakeup source is active.

1 = Wakeup outputs are driven high when a wakeup source is active.

When no wakeup source is active, the enabled wakeup outputs will be driven to the opposite level (low if WKL = 1, high if WKL = 0).

Bits 3 to 7: (WKO.3 to WKO.7) Reserved

Port Pin Example 1: Driving Outputs on Port 0

move	PO0,	#000h	;	Set	all	out	puts	lov	V	
move	PD0,	#0FFh	;	Set	all	P0	pins	to	output	mode

Port Pin Example 2: Receiving Inputs on Port 1

move PO1	1, #0FFh	;	Set weak pullups ON on all pins
move PD1	1, #000h	;	Set all P1 pins to input mode
nop		;	Wait for external source to drive P1 pins
move Acc	c, PI1	;	Get input values from P1 (will return FF if
		;	no other source drives the pins low)

ADDENDUM TO SECTION 7: TIMER/COUNTER 0 MODULE

The MAXQ2000 does not provide these peripherals. Refer to the MAXQ Family User's Guide.

ADDENDUM TO SECTION 8: TIMER/COUNTER 1 MODULE

The MAXQ2000 does not provide these peripherals. Refer to the MAXQ Family User's Guide.

ADDENDUM TO SECTION 9: TIMER/COUNTER 2 MODULE

The MAXQ2000 provides three Type 2 timer/counters (Timer 0, Timer 1, Timer 2), which operate as described in the MAXQ Family User's Guide. Table 13 shows the associated pins and Table 14 shows the associated registers for these timer/counters.

Using the 32kHz Alternate Timer Clock Source

The 32kHz clock can be used as an alternate Timer 2 clock source by setting the T2CI bit in that timer's T2CFG register to 1. Note that for this to work properly, either the 32kHz crystal oscillator must be enabled (by clearing the X32D/RCNT.14 bit to zero) with a 32kHz external crystal connected between pins 32KIN and 32KOUT, or the 32kHz clock must be driven directly by an external 32kHz clock source at 32KIN.

Additionally, because the Timer 2 alternate clock source is sampled by the system clock, for proper operation the system clock must either be (a) running directly from the 32kHz clock source, or (b) running at a frequency greater than (32kHz x 4).

Table 13. Type 2 Timer/Counter Input and Output Pins

TIMER/COUNTER FUNCTION	PIN NU	JMBER	MULTIPLEXED WITH PORT PIN	
	68-PIN	56-PIN		
Timer 0 Input/Output—T0 (T2P)	48	39	P6.5	
Timer 0 Secondary Output—T0B (T2PB)	47	38	P6.4	
Timer 1 Input/Output—T1 (T2P)	44	37	P6.1	
Timer 1 Secondary Output—T1B (T2PB)	43	36	P6.0	
Timer 2 Input/Output—T2 (T2P)	46	_	P6.2	
Timer 2 Secondary Output—T2B (T2PB)	45	_	P6.1	

Table 14. Type 2 Timer/Counter Control Registers

REGISTER	ADDRESS	FUNCTION
T2CFG0	M3[10h]	Timer/Counter 0 (Type 2) Configuration Register. Controls counter/timer select, capture/compare function select, 8-bit/16-bit mode select, and clock divide modes.
T2CNA0	M3[00h]	Timer/Counter 0 (Type 2) Control Register A. I/O settings, run enables, polarity modes.
T2CNB0	M3[0Ch]	Timer/Counter 0 (Type 2) Control Register B. Contains capture, compare, overflow flags.
T2V0	M3[0Dh]	Timer/Counter 0 (Type 2) Value Register
T2H0	M3[01h]	Timer/Counter 0 (Type 2) Value MSB Register. Provides access to high byte of T2V.
T2R0	M3[0Eh]	Timer/Counter 0 (Type 2) Reload Register
T2RH0	M3[02h]	Timer/Counter 0 (Type 2) Reload MSB Register. Provides access to high byte of T2R.
T2C0	M3[0Fh]	Timer/Counter 0 (Type 2) Capture/Compare Register
T2CH0	M3[03h]	Timer/Counter 0 (Type 2) Capture/Compare MSB Register. Access to high byte of T2C.
T2CFG1	M4[10h]	Timer/Counter 1 (Type 2) Configuration Register. Controls counter/timer select, capture/compare function select, 8-bit/16-bit mode select, and clock divide modes.
T2CNA1	M4[00h]	Timer/Counter 1 (Type 2) Control Register A. I/O settings, run enables, polarity modes.
T2CNB1	M4[08h]	Timer/Counter 1 (Type 2) Control Register B. Contains capture, compare, overflow flags.

REGISTER	ADDRESS	FUNCTION
T2V1	M4[09h]	Timer/Counter 1 (Type 2) Value Register
T2H1	M4[01h]	Timer/Counter 1 (Type 2) Value MSB Register. Provides access to high byte of T2V.
T2R1	M4[0Ah]	Timer/Counter 1 (Type 2) Reload Register
T2RH1	M4[02h]	Timer/Counter 1 (Type 2) Reload MSB Register. Provides access to high byte of T2R.
T2C1	M4[0Bh]	Timer/Counter 1 (Type 2) Capture/Compare Register
T2CH1	M4[03h]	Timer/Counter 1 (Type 2) Capture/Compare MSB Register. Access to high byte of T2C.
T2CFG2	M4[11h]	Timer/Counter 2 (Type 2) Configuration Register. Controls counter/timer select, capture/compare function select, 8-bit/16-bit mode select, and clock divide modes.
T2CNA2	M4[04h]	Timer/Counter 2 (Type 2) Control Register A. I/O settings, run enables, polarity modes.
T2CNB2	M4[0Ch]	Timer/Counter 2 (Type 2) Control Register B. Contains capture, compare, overflow flags.
T2V2	M4[0Dh]	Timer/Counter 2 (Type 2) Value Register
T2H2	M4[05h]	Timer/Counter 2 (Type 2) Value MSB Register. Provides access to high byte of T2V.
T2R2	M4[0Eh]	Timer/Counter 2 (Type 2) Reload Register
T2RH2	M4[06h]	Timer/Counter 2 (Type 2) Reload MSB Register. Provides access to high byte of T2R.
T2C2	M4[0Fh]	Timer/Counter 2 (Type 2) Capture/Compare Register
T2CH2	M4[07h]	Timer/Counter 2 (Type 2) Capture/Compare MSB Register. Access to high byte of T2C.

Table 14. Type 2 Timer/Counter Control Registers (continued)

Timer 2 Example: Triggering a Periodic Interrupt

move	PD0, #0FFh	; Set P0.0-P0.7 to output mode
move	PO0, #000h	; Drive low on all Port 0 pins
move	IV, #IntHandler	; Set address for interrupt handler
move	IMR.3, #1	; Enable interrupts for module 3
move	T2CFG0, #070h	; 16-bit timer mode, system clock / 128
move	T2V0, #0CCCCh	; Period = (10000h-0CCCCh)*128 / Clock
move	T2CNA0.3, #1	; Start timer 0
move	T2CNA0.7, #1	; Enable timer 0 interrupts
move	IC, #1	; Enable global interrupts
jump	\$	
IntHand	dler:	
move	T2CNB0, #00h	; Clear interrupt flags
move	T2V0, #0CCCCh	; Reset for the same period
move	Acc, POO	; Get current Port 0 output
cpl		; Toggle all bits
move	POO, Acc	; Set new Port 0 output
reti		

ADDENDUM TO SECTION 10: SERIAL I/O (UART) MODULE

The MAXQ2000 provides up to two serial UART modules (Serial 0 and 1 in the 68-pin package, Serial 0 in the 56-pin package), which operate as described in the MAXQ Family User's Guide. Table 15 shows the associated pins and Table 16 shows the associated registers for these UARTs.

Table 15. Serial UART Input and Output Pins

SERIAL UART FUNCTION	PIN NU	JMBER		
SERIAL DART FUNCTION	68-PIN	56-PIN	MOLTIFLEXED WITH FORT FIN	
Serial Port 0 Receive—RXD0	53	44	P7.1	
Serial Port 0 Transmit—TXD0	52	43	P7.0	
Serial Port 1 Receive—RXD1	36	_	P5.2	
Serial Port 1 Transmit—TXD1	37	—	P5.3	

Table 16. Serial UART Control Registers

REGISTER	ADDRESS	FUNCTION			
SCON0	M2[06h]	Serial Port 0 Control Register. Serial port mode, receive enable, 9th bit control, and interrupt flags.			
SBUF0	M2[07h]	Serial Port 0 Data Buffer. Input and output data buffer.			
SMD0	M2[08h]	Serial Port 0 Mode Register. Controls baud rate, interrupt enable, and framing error detection.			
PR0	M2[09h]	Serial Port 0 Phase Register. Contains counter reload value for baud rate generation.			
SCON1	M3[06h]	Serial Port 1 Control Register. Serial port mode, receive enable, 9th bit control, and interrupt flags.			
SBUF1	M3[07h]	Serial Port 1 Data Buffer. Input and output data buffer.			
SMD1	M3[08h]	Serial Port 1 Mode Register. Controls baud rate, interrupt enable, and framing error detection.			
PR1	M3[09h]	Serial Port 1 Phase Register. Contains counter reload value for baud rate generation.			

Serial UART Example: Asynchronous 10-Bit Output at 115,200 Baud

move move move	SMD0.1, #1	;;	Set to mode 1 (10-bit asynchronous) Enable receiver Baud rate = 16 x baud clock PR0 = 2^21 * 115200 / 13.5MHz (crystal)
move			Clear received character flag Clear transmit character flag
Loop1:			
move	Acc, #'0'	;	Start with '0' character
move	LC[0], #10	;	Transmit from '0'-'9'
Loop2:			
move	SBUF0, Acc	;	Send character
Transmit:			
move	C, SCON0.1	;	Check transmit flag
jump	NC, Transmit	;	Wait for transmit to complete
move	SCON0.1, #0	;	Clear transmit flag
add	#1	;	Increment character by 1
djnz	LC[0], Loop2		
jump	Loopl		

ADDENDUM TO SECTION 11: SERIAL PERIPHERAL INTERFACE (SPI)

The MAXQ2000 provides a Serial Peripheral Interface (SPI) module, which operates as described in the MAXQ Family User's Guide. Table 17 shows the associated pins and Table 18 shows the associated registers for this interface.

Table 17. SPI Input and Output Pins

SPI INTERFACE FUNCTION	PIN NU	JMBER	MULTIPLEXED WITH PORT PIN
SPHILTERFACE FUNCTION	68-PIN	56-PIN	
Slave Select—SSEL	38	—	P5.4
Slave Clock—SCLK	40	—	P5.6
Master Out-Slave In-MOSI	39	—	P5.5
Master In-Slave Out-MISO	41	—	P5.7

Table 18. SPI Interface Control Registers

REGISTER	ADDRESS	FUNCTION			
SPICN	M3[15h]	SPI Control Register. Enable, master/slave mode select, status, and interrupt flags.			
SPICF	M3[16h]	SPI Configuration Register. Clock polarity/phase, character length, interrupt enable.			
SPICK	M3[17h]	PI Clock Register. Master baud rate = 0.5 x sysClock / (SPICK + 1)			
SPIB	M3[05h]	SPI Data Buffer. Writes go to SPI write buffer; reads come from SPI read buffer.			

SPI Example: Enabling Master Mode

move	SPICN,	#03h	;	Enable	SPI	for	master	mode	commun	icatior	1
move	SPICF,	#00h	;	Rising	cloc	ck, a	active	edge	sample,	8-bit	character
move	SPICK,	#010h	;	Divide	by 1	L6 C	lock				

ADDENDUM TO SECTION 12: HARDWARE MULTIPLIER

The MAXQ2000 provides a hardware multiplier module that provides the following features (detailed in the MAXQ Family User's Guide).

- · Completes a 16-bit x 16-bit multiply-accumulate or multiply-subtract operation in a single cycle
- Includes 48-bit accumulator
- Supports seven different multiplication operations:
 - Unsigned 16-bit multiply
 - Unsigned 16-bit multiply and accumulate
 - Unsigned 16-bit multiply and subtract
 - Signed 16-bit multiply
 - Signed 16-bit multiply and negate
 - Signed 16-bit multiply and accumulate
 - Signed 16-bit multiply and subtract

The associated registers for this module are listed below.

Table 19. Hardware Multiplier Control Registers

REGISTER	ADDRESS	FUNCTION
MCNT	M2[00h]	Multiplier Control Register. Controls operation and mode selection for the multiplier.
MA	M2[01h]	Multiplier Operand A Register. Input register for multiplier operations.
MB	M2[02h]	Multiplier Operand B Register. Input register for multiplier operations.
MC2	M2[03h]	Multiplier Accumulate Register 2. Contains bits 32 to 47 of the accumulator.
MC1	M2[04h]	Multiplier Accumulate Register 1. Contains bits 16 to 31 of the accumulator.
MC0	M2[05h]	Multiplier Accumulate Register 0. Contains bits 0 to 15 of the accumulator.
MC1R	M2[0Bh]	Multiplier Read Register 1. Contains bits 16 to 31 of the last multiplier operation result.
MCOR	M2[0Ch]	Multiplier Read Register 2. Contains bits 0 to 15 of the last multiplier operation result.

Multiplier Example: 16-Bit Unsigned Multiplication

move	MCNT, #021h	; 0010 0001
		; 0 - OF : overflow flag (read only)
		; 0 - MCW : write result to MC registers
		; 1 - CLD : clears MA/MB/MCx to zero
		; 0 - SQU : square function disabled
		; 0 - OPCS : start op after writing MA,MB
		; 00 - MCNT : MC = MA * MB
		; 1 - SUS : unsigned operation
move	MA, #01234h	; load first operand
move	MB, #00055h	; load second operand, operation starts
move	A[2], MC2	; should be 0000h
move	A[1], MC1	; should be 0006h
move	A[0], MC0	; should be OB44h

ADDENDUM TO SECTION 13: 1-Wire BUS MASTER

The MAXQ2000 provides a 1-Wire Bus Master (68-pin package only) that operates as described in the MAXQ Family User's Guide. Tables 20 to 23 show the associated pins and registers for this interface.

Table 20. 1-Wire Master Input and Output Pins

1-WIRE MASTER FUNCTION	PIN NU	JMBER	MULTIPLEXED WITH PORT PIN				
I-WINE MASTER FORCHOR	68-PIN	56-PIN					
1-Wire Master Input—OW_IN	46	—	P6.3				
1-Wire Master Output—OW_OUT	47	—	P6.4				

Table 21. 1-Wire Interface Control Registers

REGISTER	ADDRESS	FUNCTION
OWA	M3[13h]	1-Wire Address Register. Selects the 1-Wire register that will be accessible through OWD.
OWD	M3[14h]	1-Wire Data Register. Reading and writing to this register reads and writes to the 1-Wire register, which has been selected by OWA.

Table 22. 1-Wire Master Register Bit Functions

OWA[2:0]	REGISTER	R/W	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
000	OWCMD	R/W	_	_	_	_	OW_IN	FOW	SRA	1WR
001	OWBUF	R/W				Input/Output	Buffer (8 Bits)			
010	OWIF	R	LOW	SHORT	RSRF	RBF	TEMT*	TBE*	PDR	PD
011	OWIE	R/W	EOWL	EOWSH	ERSF	ERBF	ETMT	ETBE	—	EPD
100	OWCLK	R/W	CLK_EN	_	_	DIV2	DIV1	DIV0	PRE1	PRE0
101	OWCTL	R/W	EOWMI	_	BIT_CTL	_	—	EN_FOW	PPM	LLM
110	reserved									
111	reserved									

Table 23. 1-Wire Master Register Bit Reset Values

OWA[2:0]	REGISTER	R/W	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
000	OWCMD	R/W	0	0	0	0	special	0	0	0
001	OWBUF	R/W	0	0	0	0	0	0	0	0
010	OWIF	R	0	0	0	0	1	1	1	0
011	OWIE	R/W	0	0	0	0	0	0	0	0
100	OWCLK	R/W	0	0	0	0	0	0	0	0
101	OWCTL	R/W	0	0	0	0	0	0	0	0
110	reserved									
111	reserved									

*The behavior of these bits on the MAXQ2000 may differ from their described behavior in the MAXQ Family User's Guide for some device revisions. Refer to the MAXQ2000 errata for more details (<u>www.maxim-ic.com/errata</u>).

1-Wire Example: Reset and Presence Detect

OW_BUFI OW_INT OW_INT OW_CLOG	MAND equ 00h FER equ 01h ERRUPT equ 02h _ENABLE equ 03h CK equ 04h IROL equ 05h	
move	OWA, #OW_CLOCK OWD, #10001001b	; Access 1-Wire Clock Control Register ; Divide ratio = 12, enable clock
move	OWA, #OW_CONTROL OWD, #00h	
Reset:		
move	OWA, #OW_COMMAND	; Access 1-Wire Command Register
move	OWD, #01h	; Initiate 1-Wire reset cycle
	LC[0], #60000 LC[0], \$; Delay
move	OWA, #OW_INTERRUPT	; Access 1-Wire Interrupt Flag Register
move	Acc, OWD	; Get interrupt flags
move	C, Acc.0	; Check PD flag (1=reset cycle completed)
jump	NC, Reset	; Retry
move	C, Acc.1	; Get presence detect result (0=found slave device)

ADDENDUM TO SECTION 14: REAL-TIME CLOCK

The MAXQ2000 provides a real-time clock that operates as described in the MAXQ Family User's Guide. Table 24 shows the associated registers for this module.

Table 24. Real-Time Clock Control Registers

REGISTER	ADDRESS	FUNCTION
RCNT	M0[19h]	Real-Time Clock Control Register. Sets modes and alarm enables for the clock.
RTSS	M0[1Ah]	RTC Sub-Second Counter Register. Contains the 1/256 sub-second count.
RTSL	M0[1Ch]	RTC Second Counter Low Register. Contains the low-order byte of the 32-bit second count.
RTSH	M0[1Bh]	RTC Second Counter High Register. Contains the high-order byte of the 32-bit second count.
RSSA	M0[1Dh]	RTC Sub-second Alarm Register. Contains the sub-second alarm reload value.
RASL	M0[1Fh]	RTC Time-of-Day Alarm Low Register. Contains the low-order 16 bits of the time-of-day alarm value.
RASH	M0[1Eh]	RTC Time-of-Day Alarm High Register. Contains the high-order 8 bits of the time-of-day alarm value.

Real-Time Clock Example: Starting and Setting the Clock

move RCNT, #00000h ; Turn on 32kHz	crystal oscillator
move RCNT, #08000h ; RTC write enal	ble
move RTSS, #00h ; Clear sub-seco	ond count
move RTSL, #0000h ; Clear low-orde	er seconds counter
move RTSH, #0000h ; Clear high-ord	der seconds counter
move RCNT, #08001h ; Start clock	

ADDENDUM TO SECTION 15: TEST ACCESS PORT (TAP)

The JTAG TAP port on the MAXQ2000 is multiplexed with port pins P4.0, P4.1, P4.2, and P4.3. These pins default to their JTAG TAP function on reset, which means that the part will always be ready for in-circuit debugging or in-circuit programming operations following any reset.

Once an application has been loaded and starts running, the JTAG TAP port can still be used for in-circuit debugging operations. If in-circuit debugging functionality is not needed, the P4.0, P4.1, P4.2, and P4.3 port pins can be reclaimed for application use by setting the TAP (SC.7) bit to 0. This disables the JTAG TAP interface and allows the four pins to operate as normal port pins.

The maximum speed of the JTAG/TAP interface clock (TCK) is limited to the system clock frequency divided by 8.

ADDENDUM TO SECTION 16: IN-CIRCUIT DEBUG MODE

The MAXQ2000 provides an in-circuit debugging interface through a JTAG TAP port as described in the MAXQ Family User's Guide. This interface provides the following functions for use in debugging application software.

- Single-step (trace) execution
- Four program address breakpoints
- Two breakpoints configurable as data address or register address breakpoints
- Register read and write
- Program stack read
- Data memory read and write
- Optional password protection

The following sections provide specific notes on the operation of the MAXQ2000 in debugging mode.

Register Read and Write Commands

Any register location can be read or written using these commands, including reserved locations and those used for op code support. No protection is provided by the debugging interface, and avoiding side effects is the responsibility of the host system communicating with the MAXQ2000.

Writing to the IP register alters the address that execution resumes at once the debugging engine exits.

In general, reading a register through the debug interface returns the value that was in that register before the debugging engine was invoked. An exception to this rule is the SP register. Reading the SP register through the debug interface actually returns the value (SP + 1).

Data Memory Read Command

When invoking this command, ICDA should be set to the word address of the starting location to read from, and ICDD should be set to the number of words. The input address must be based on the utility ROM memory map, as shown in Figure 3. Data memory words returned by this command are output LSB first.

Data Memory Write Command

When invoking this command, ICDA should be set to the word address of the location to write to, and ICDD should be set to the data word to write. The input address must be based on the utility ROM memory map, as shown in Figure 3.

Program Stack Read Command

When invoking this command, ICDA should be set to the address of the starting stack location (value of SP) to read from, and ICDD should be set to the number of words. The address given in ICDA is the highest value that will be used, as words are popped off the stack and returned in descending order. Stack words returned by this command are output LSB first.

Read Register Map Command

This command outputs all peripheral registers in the range M0[00h] to M4[11h], along with a fixed set of system registers. The following formatting rules apply to the returned data.

- System registers are output as 8-bit or 16-bit, least significant byte first.
- All peripheral registers are output as 16-bit, least significant byte first. The top byte of 8-bit registers is returned as 00h.
- Non-implemented peripheral registers in the range M0[00h] to M4[11h] are returned as 0000h.
- The value of SPIB is not read, and this register is returned as 0000h.

The first byte output by this command is the value 146 (092h), which represents the number of peripheral registers output. Table 25 lists the remaining 356 bytes output by this command.

	x0	x1	x2	x3	x4	x5	x6	x7	x8	x9	хА	хB	xC	xD	хE	xF	
-	-		×2 P(-			-		-	-	XA 00						
0x		00				02		PO3		00 00		00	Ell		EIEO		
1x		10		11		12	P	-	EIE		00	00	00	00	00	00	
2x		00		D1		02		03	00	00	00	00	00	00	00	00	
3x	00	00	RC	NT	RT	SS	RT	SH	RT	SL	RS	SA	RA	SH	RA	SL	
4x	PC	04	PC	D5	P	D6	PC)7	00	00	00	00	EII	F1	EI	E1	
5x	Р	14	P	15	P	16	P	7	EIE	S1	00	00	00	00	00	00	
6x	PE	04	P	D5	PI	D6	PE)7	00	00	00	00	00	00	00	00	
7x	00	00	00	00	00	00	00	00	00	00	00	00	S۱	/S	Wł	<0	
8x	MC	NT	N	MA		1B	M	C2	M	C1	M	C0	SCC	ONO	SBUF0		
9x	SM	ID0	PR0		00	00	MC1R		MCOR		LCRA		LCFG		LCD16		
Ax	LC	D0	LC	D1	LCD2		LC	LCD3		LCD4		LCD5		LCD6		LCD7	
Bx	LC	D8	LCD9		LCD10		LCE	D11	LCI	D12	LCI	D13	LCE	D14	LCI	D15	
Cx	T2C	NA0	T2	HO	T2RH0 T2CH0		00	00	00	00	SCC	DN1	SBUF1				
Dx	SM	ID1	PI	71	00	00	00 00 00		T2C	NB0	T2	V0	T2	R0	T2C0		
Ex	T2C	FG0	00	00	00	00	OWA		OWD		SPICN		SPICF		SPICK		
Fx	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
10x	T2C	NA1	T2	H1	T2F	RH1	T2C	H1	T2C	NA2	T2H2		T2RH2		T2CH2		
11x	T2C	NB1	T2V1		T2	R1	T2	C1	T2C	T2CNB2		T2V2		T2R2		T2C2	
12x	T2C	FG1	T2C	CFG2 AP APC		PSF	IC	IMR	SC	IIR	CKCN	WDCN	00	A[0]			
13x	A[[1]	A[2]		A	[3]	A[4]	A[5]	A	[6]	A[7]	A[8]		
14x	A[[9]	A[10]		A[11]		A[1		A[⁻	13]	A[14]	A[*	15]	IP		
15x	SP		Γ	V	LC	:[0]	LC	[1]	Of	ffs	DPC		GR		В	P	
16x	DP	·[0]	DF	·[1]													

Table 25. Output From DebugReadMap Command

ADDENDUM TO SECTION 17: IN-SYSTEM PROGRAMMING (JTAG)

The MAXQ2000 provides two different interfaces for in-system programming (bootloader) operations.

- JTAG TAP interface
- Serial port 0 (UART) interface

To use either of these interfaces for in-system programming, the SPE and PSS[1:0] bits must be set through the JTAG TAP interface. This is done while the device is held in reset, using the system-programming instruction as described in the MAXQ Family User's Guide.

It is also possible for the MAXQ2000 to bootstrap itself into in-system programming mode by setting the proper bits in the In-Circuit Debug Flag (ICDF) register and invoking a reset. The procedure for invoking in-system programming in this manner must be defined by the application firmware.

Register Name:	ICDF
Register Description:	In-Circuit Debug Flag Register
Register Address:	M1[10h]

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	—	PSS1	PSS0	SPE	_
Reset	0	0	0	0	0	0	0	0
Access	r	r	r	r	r/w	r/w	r/w	r

Bit 0: (ICDF.0) Reserved

Bit 1: (ICDF.1) System Program Enable (SPE). This bit controls the behavior of the MAXQ2000 following reset.

- 0 = The MAXQ2000 jumps to application code (in flash/ROM) at 0000h following a reset.
- 1 = The MAXQ2000 executes the in-system programming bootloader following a reset.

Bits 2 and 3: (ICDF.2 and ICDF.3) Programming Source Select (PSS0 and PSS1). When SPE = 1, these bits determine which interface is used for in-system programming operations.

Programming Source Select Values

PSS1	PSS0	PROGRAMMING SOURCE	
0	0	JTAG Interface	
0	1	Serial Port 0 (UART)	
1	0	reserved	
1	1	reserved	

Bits 4 to 7: (ICDF.4 to ICDF.7) Reserved

Bootloader Protocol

Regardless of which interface is being used (JTAG or Serial Port 0), the protocol for communicating with the bootloader follows the same binary format. The following notes apply for each interface.

- When using the JTAG interface, the clock rate (TCK) must be kept below 1/8 the system clock rate.
- When using the Serial Port 0 interface, the bootloader autobauds to the serial baud rate being used by the host.

All bootloader commands begin with a single command byte. The high four bits of this command byte define the command family (from 0 to 15), while the low four bits define the specific command within that family. All commands (except for those in Family 0) follow this format:

BYTE 1	BYTE 2	BYTE 3	BYTE 4	(LENGTH) BYTES/WORDS
Command	Length	Param 1	Param 2	Data

After each command has completed, the loader outputs a "prompt" byte to indicate that it has finished the operation. The prompt byte is the single chararacter ">".

Bootloader commands that fail for any reason set the bootloader status byte to an error code value describing the reason for the failure. See Table 26. This status byte can be read by means of the Get Status command (04h).

Table 26. Bootloader Status Codes

STATUS VALUE	FUNCTION
00	No Error. The last command completed successfully.
01	Family Not Supported. An attempt was made to use a command from a family the bootloader does not support.
02	Invalid Command. An attempt was made to use a nonexistent command within a supported command family.
03	No Password Match. An attempt was made to use a password-protected command without first matching a valid password. Or, the Match Password command was called with an incorrect password value.
04	Bad Parameter. The parameter (address or otherwise) passed to the command was out of range or otherwise invalid.
05	Verify Failed. The verification step failed on a Load/Verify or Verify command.
06	Unknown Register. An attempt was made to read from or write to a nonexistent register.
07	Word Mode Not Supported. An attempt was made to set word mode access, but the bootloader supports byte mode access only.
08	Master Erase Failed. The bootloader was unable to perform master erase.

All commands in Family 0 can be executed without first matching the password. All other commands (in Families 1x through Fx) are password protected; the password must first be matched before these commands can be executed.

A special case exists when the program memory has not been initialized (following master erase). If the password (stored in word locations 0010h to 001Fh in program memory) is all 0000h words or all FFFFh words, the bootloader treats the password as having been matched. This allows access to password-protected commands following master erase (when no password has been set in program memory).

When providing addresses for code or data read or write to bootloader commands, all addresses run from 0000h to (memory size-1).

Family 0 Commands (Not Password Protected)

Command 00h—No Operation

I/O	Byte 1
Input	00h
Output	

Command 01h—Exit Loader

This command causes the bootloader command loop to exit, and execution jumps to the beginning of application code.

I/O	Byte 1
Input	01h
Output	

Command 02h—Master Erase

This command clears (programs to FFFFh) all words in the program flash memory.

I/O	Byte 1
Input	02h
Output	

Command 03h—Password Match

This command accepts a 32-byte password value, which is matched against the password in program memory (in byte mode) from addresses 0020h to 003Fh. If the value matches, the password lock is cleared.

I/O	Byte 1	32 Bytes	
Input	03h	Password value	
Output			

Command 04h—Get Status

The status code returned by this command is defined in Table 26. The flags byte contains the following bit status flags.

I/O	Byte 1	Byte 2	
Input	04h		
Output	Flags	Status Code	

Table 27. Bootloader Status Flags

FLAG BIT	FUNCTION
0	Password Lock0 = The password is unlocked or had a default value; password-protected commands can be used.1 = The password is locked. Password-protected commands cannot be used.
1	Word/Byte Mode 0 = The bootloader is currently in byte mode for memory reads/writes. 1 = The bootloader is currently in word mode for memory reads/writes.
2	Word/Byte Mode Supported 0 = The bootloader supports byte mode only. 1 = The bootloader supports word mode as well as byte mode.
3 to 8	Reserved

Command 05h—Get Supported Commands

The SupportL (LSB) and SupportH (MSB) bytes form a 16-bit value that indicates which command families this bootloader supports. If bit 0 is set to 1, it indicates that Family 0 is supported. If bit 1 is set to 1, it indicates that Family 1 is supported, and so on.

The CodeLen and DataLen bytes return the fixed block lengths used by the Load/Dump/Verify Fixed Length commands for code and data space, respectively.

I/O	Byte 1	Byte 2	Byte 3	Byte 4
Input	05h			
Output	SupportL	SupportH	CodeLen	DataLen

Command 06h—Get Code Size

This command returns SizeH:SizeL, which represents the size of available code memory in words minus 1. If this command is unsupported, the return value will be 0000h meaning "unknown amount of memory."

I/O	Byte 1	Byte 2	
Input	06h		
Output	SizeL	SizeH	

Command 07h—Get Data Size

This command returns SizeH:SizeL, which represents the size of available data memory in words minus 1. If this command is unsupported, the return value will be 0000h meaning "unknown amount of memory."

I/O	Byte 1	Byte 2
Input	07h	
Output	SizeL	SizeH

Command 08h—Get Loader Version

I/O	Byte 1	Byte 2
Input	08h	
Output	VersionL	VersionH

Command 09h—Get Utility ROM Version

I/O	Byte 1	Byte 2
Input	09h	
Output	VersionL	VersionH

Command 0Ah—Set Word/Byte Mode Access

The Mode byte should be 0 to set byte access mode or 1 to set word access mode. The current access mode is returned in the status flag byte by command 04h, as well as a flag to indicate whether word access mode is supported by this particular bootloader.

I/O	Byte 1	Byte 2
Input	0Ah	Mode
Output		

Command 0Dh—Get ID Information

For the MAXQ2000, the information returned by this command is a zero-terminated ROM banner string.

I/O	Byte 1	(Variable)
Input	0Dh	
Output		Device dependent information

Family 1 Commands: Load Variable Length (Password Protected)

Command 10h—Load Code Variable Length

This command programs (Length) bytes/words of data into the program flash starting at address (AddressH:AddressL), with the following restrictions.

- In byte mode, if the starting address is on an odd word boundary (such as 0001), the low bit will be changed to zero to make it an even word address.
- In byte mode, if an odd number of bytes is input, the data will be padded out with a 00 to make it an even number.

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	10h	Length	AddressL	AddressH	Data to load
Output					

Command 11h—Load Data Variable Length

This command writes (Length) bytes/words of data into the data SRAM starting at address (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	11h	Length	AddressL	AddressH	Data to load
Output					

Family 2 Commands: Dump Variable Length (Password Protected)

Command 20h—Dump Code Variable Length

This command has a slightly different format depending on the length of the dump requested. It returns the contents of the application flash/ROM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Input (to dump < 256 bytes/words)	20h	1	AddressL	AddressH	LengthL	
Input (to dump 256+ bytes/words)	20h	2	AddressL	AddressH	LengthL	LengthH

Command 21h—Dump Data Variable Length

This command has a slightly different format depending on the length of the dump requested. It returns the contents of the data SRAM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Input (to dump < 256 bytes/words)	21h	1	AddressL	AddressH	LengthL	
Input (to dump 256+ bytes/words)	21h	2	AddressL	AddressH	LengthL	LengthH

Family 3 Commands: CRC Variable Length (Password Protected)

Command 30h—CRC Code Variable Length

This command has a slightly different format depending on the length of the CRC requested. It returns the CRC-16 value (CrcH:CrcL) of the application flash/ROM—(LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Input (to CRC < 256 bytes/words)	30h	1	AddressL	AddressH	LengthL	
Input (to CRC 256+ bytes/words)	30h	2	AddressL	AddressH	LengthL	LengthH
Output	CrcH	CrcL				

Command 31h—CRC Data Variable Length

This command has a slightly different format depending on the length of the CRC requested. It returns the CRC-16 value (CrcH:CrcL) of the data SRAM – (LengthL) or (LengthH:LengthL) bytes/words starting at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Input (to CRC < 256 bytes/words)	31h	1	AddressL	AddressH	LengthL	
Input (to CRC 256+ bytes/words)	31h	2	AddressL	AddressH	LengthL	LengthH
Output	CrcH	CrcL				

Family 4 Commands: Verify Variable Length (Password Protected)

Command 40h—Verify Code Variable Length

This command operates in the same manner as the "Load Code Variable Length" command, except that instead of programming the input data into code flash, it verifies that the input data matches the data already in code space. If the data does not match, the status code is set to reflect this failure.

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	40h	Length	AddressL	AddressH	Data to verify
Output					

Command 41h—Verify Data Variable Length

This command operates in the same manner as the "Load Data Variable Length" command, except that instead of writing the input data into data SRAM, it verifies that the input data matches the data already in data space. If the data does not match, the status code is set to reflect this failure.

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	41h	Length	AddressL	AddressH	Data to verify
Output					

Family 5 Commands: Load and Verify Variable Length (Password Protected)

Command 50h—Load and Verify Code Variable Length

This command combines the functionality of the "Load Code Variable Length" and "Verify Code Variable Length" commands.

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	50h	Length	AddressL	AddressH	Data to load/verify
Output					

Command 51h—Load and Verify Data Variable Length

This command combines the functionality of the "Load Data Variable Length" and "Verify Data Variable Length" commands.

I/O	Byte 1	Byte 2	Byte 3	Byte 4	(Length) Bytes/Words
Input	51h	Length	AddressL	AddressH	Data to load/verify
Output					

Family 6 Commands: Erase Variable Length (Password Protected)

Command 60h—Erase Data Variable Length

This command has a slightly different format depending on the length of the erase requested. It clears (LengthL) or (LengthH:LengthL) bytes/words in the data SRAM to zero starting at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Input (to erase < 256 bytes/words)	60h	1	AddressL	AddressH	LengthL	
Input (to erase 256+ bytes/words)	60h	2	AddressL	AddressH	LengthL	LengthH

Family E Commands: Erase Fixed Length (Password Protected)

Command E0h—Erase Code Fixed Length

This command erases (programs to FFFFh) all words in a 256-word block of the program flash memory. The address given should be located in the 256-word block to be erased. For example, providing address 0000h (in byte mode) to this command will erase the first 256-word block, address 0200h will erase the second block, and so on.

This command also combines the functionality of the "Load Code Variable Length" and "Verify Code Variable Length" commands.

I/O	Byte 1	Byte 2	Byte 3	Byte 4
Input	E0h	0	AddressL	AddressH
Output				

Command E1h—Erase Data Fixed Length

This command erases a single word/byte in data SRAM to zero at (AddressH:AddressL).

I/O	Byte 1	Byte 2	Byte 3	Byte 4
Input	E1h	0	AddressL	AddressH
Output				

ADDENDUM TO SECTION 18: MAXQ FAMILY INSTRUCTION SET SUMMARY

Refer to the MAXQ Family User's Guide. The tables from the MAXQ Family User's Guide are reproduced here.

	MNEMONIC	DESCRIPTION	16-BIT INSTRUCTION WORD	STATUS BITS AFFECTED	AP INC/DEC	NOTES
	AND src	Acc ← Acc AND src	f001 1010 ssss ssss	S, Z	Y	1
	OR src	Acc \leftarrow Acc OR src	f010 1010 ssss ssss	S, Z	Y	1
	XOR src	Acc ← Acc XOR src	f011 1010 ssss ssss	S, Z	Y	1
	CPL	Acc ← ~Acc	1000 1010 0001 1010	S, Z	Y	
NS	NEG	$Acc \leftarrow -Acc + 1$	1000 1010 1001 1010	S, Z	Y	
OPERATIONS	SLA	Shift Acc left arithmetically	1000 1010 0010 1010	C, S, Z	Y	
۲۲ ۲۲	SLA2	Shift Acc left arithmetically twice	1000 1010 0011 1010	C, S, Z	Y	
ЦЩ.	SLA4	Shift Acc left arithmetically four times	1000 1010 0110 1010	C, S, Z	Y	
	RL	Rotate Acc left (w/o C)	1000 1010 0100 1010	S	Y	
AL	RLC	Rotate Acc left (through C)	1000 1010 0101 1010	C, S, Z	Y	
LOGICAL	SRA	Shift Acc right arithmetically	1000 1010 1111 1010	C, Z	Y	
Ŏ	SRA2	Shift Acc right arithmetically twice	1000 1010 1110 1010	C, Z	Y	
	SRA4	Shift Acc right arithmetically four times	1000 1010 1011 1010	C, Z	Y	
	SR	Shift Acc right (0 \rightarrow msbit)	1000 1010 1010 1010	C, S, Z	Y	
	RR	Rotate Acc right (w/o C)	1000 1010 1100 1010	S	Y	
	RRC	Rotate Acc right (though C)	1000 1010 1101 1010	C, S, Z	Y	
	MOVE C, Acc. 	C ← Acc. 	1110 1010 bbbb 1010	С		
	MOVE C, #0	C ← 0	1101 1010 0000 1010	С		
s	MOVE C, #1	C ← 1	1101 1010 0001 1010	С		
NO	CPL C	$C \leftarrow -C$	1101 1010 0010 1010	С		
Ē	MOVE Acc. , C	Acc. ← C	1111 1010 bbbb 1010	S, Z		
E E	AND Acc. 	C ← C AND Acc. 	1001 1010 bbbb 1010	С		
OPERATIONS	OR Acc. 	C ← C OR Acc. 	1010 1010 bbbb 1010	С		
BIT (XOR Acc. 	$C \leftarrow C XOR Acc. $	1011 1010 bbbb 1010	С		
B	MOVE dst. , #1	dst. ← 1	1ddd dddd 1bbb 0111	C, S, E, Z		2
	MOVE dst. , #0	dst. ← 0	1ddd dddd 0bbb 0111	C, S, E, Z		2
	MOVE C, src. 	$C \leftarrow src. $	fbbb 0111 ssss ssss	С		

	MNEMONIC	DESCRIPTION	16-BIT INSTRUCTION WORD	STATUS BITS AFFECTED	AP INC/DEC	NOTES
	ADD src	$Acc \leftarrow Acc + src$	f100 1010 ssss ssss	C, S, Z, OV	Y	1
МАТН	ADDC src	$Acc \leftarrow Acc + (src + C)$	f110 1010 ssss ssss	C, S, Z, OV	Y	1
MA	SUB src	$Acc \leftarrow Acc - src$	f101 1010 ssss ssss	C, S, Z, OV	Y	1
	SUBB src	$Acc \leftarrow Acc - (src + C)$	f111 1010 ssss ssss	C, S, Z, OV	Y	1
	{L/S}JUMP src	$IP \leftarrow IP + src \text{ or } src$	f000 1100 ssss ssss			6
	{L/S}JUMP C, src	If C=1, IP \leftarrow (IP + src) or src	f010 1100 ssss ssss			6
	{L/S}JUMP NC, src	If C=0, IP \leftarrow (IP + src) or src	f110 1100 ssss ssss			6
	{L/S}JUMP Z, src	If Z=1, IP \leftarrow (IP + src) or src	f001 1100 ssss ssss			6
	{L/S}JUMP NZ, src	If Z=0, IP \leftarrow (IP + src) or src	f101 1100 ssss ssss			6
	{L/S}JUMP E, src	If E=1, IP \leftarrow (IP + src) or src	0011 1100 ssss ssss			6
	{L/S}JUMP NE, src	If E=0, IP \leftarrow (IP + src) or src	0111 1100 ssss ssss			6
	{L/S}JUMP S, src	If S=1, IP \leftarrow (IP + src) or src	f100 1100 ssss ssss			6
	{L/S}DJNZ LC[n], src	IfLC[n] <> 0, IP← (IP + src) or src	f10n 1101 ssss ssss			6
U Z	{L/S}CALL src	@++SP \leftarrow IP+1; IP \leftarrow (IP+src) or src	f011 1101 ssss ssss			6,7
BRANCHING	RET	IP ← @SP	1000 1100 0000 1101			
Ž	RET C	If C=1, IP ← @SP	1010 1100 0000 1101			
BR/	RET NC	If C=0, IP ← @SP	1110 1100 0000 1101			
	RET Z	If Z=1, IP ← @SP	1001 1100 0000 1101			
	RET NZ	If Z=0, IP ← @SP	1101 1100 0000 1101			
	RET S	If S=1, IP ← @SP	1100 1100 0000 1101			
	RETI	$IP \leftarrow @SP; INS \leftarrow 0$	1000 1100 1000 1101			
	RETI C	If C=1, IP \leftarrow @SP ; INS \leftarrow 0	1010 1100 1000 1101			
	RETI NC	If C=0, IP ← @SP ; INS← 0	1110 1100 1000 1101			
	RETI Z	If Z=1, IP ← @SP ; INS← 0	1001 1100 1000 1101			
	RETI NZ	If Z=0, IP ← @SP ; INS← 0	1101 1100 1000 1101			
	RETI S	If S=1, IP \leftarrow @SP ; INS \leftarrow 0	1100 1100 1000 1101			
	XCH (MAXQ20 only)	Swap Acc bytes	1000 1010 1000 1010	S	Y	
Ë	XCHN	Swap nibbles in each Acc byte	1000 1010 0111 1010	S	Y	
SEA	MOVE dst, src	dst ← src	fddd dddd ssss ssss	C, S, Z, E	(Note 8)	7, 8
DATA ANSFER	PUSH src	@++SP ← src	f000 1101 ssss ssss			7
Ë	POP dst	dst ← @SP	1ddd dddd 0000 1101	C, S, Z, E		7
	POPI dst	dst ← @SP ; INS ← 0	1ddd dddd 1000 1101	C, S, Z, E		7
	CMP src	$E \leftarrow (Acc = src)$	f111 1000 ssss ssss	E		
	NOP	No operation	1101 1010 0011 1010			

Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination.

Note 2: Only module 8 and modules 0-5 (when implemented for a given product) are supported by these single-cycle bit operations. Potentially affects C or E if PSF register is the destination. Potentially affects S and/or Z if AP or APC is the destination.

Note 3: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator.

Note 4: Any index represented by or found inside [] brackets is considered variable, but required.

Note 5: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src.

Note 6: The '{L/S}' prefix is optional.

Note 7: Instructions that attempt to simultaneously push/pop the stack (e.g. PUSH @SP--, PUSH @SPI--, POP @++SP, POPI @++SP) or modify SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.

Note 8: Special cases: If 'MOVE APC, Acc' sets the APC.CLR bit, AP will be cleared, overriding any auto-inc/dec/modulo operation specified for AP. If 'MOVE AP, Acc' causes an auto-inc/dec/modulo operation on AP, this overrides the specified data transfer (i.e., Acc will not be transferred to AP).

LCD CONTROLLER (SPECIFIC TO MAXQ2000)

The MAXQ2000 provides an on-board LCD controller module that can generate segment and common signals for an LCD based on display memory content. Once the LCD controller settings and display memory have been initialized, the LCD segment and common signals are generated automatically at the selected display frequency. No additional processor overhead is required while the LCD controller is running.

LCD Controller Features

- Automatic LCD segment and common-drive signal generation
- Four types of display modes supported:
 - Static
 - 1/2 duty multiplexed with 1/2 bias voltages
 - 1/3 duty multiplexed with 1/3 bias voltages
 - 1/4 duty multiplexed with 1/3 bias voltages
- 68-pin package: Up to 36 segment (SEG0 to SEG35) outputs and four common (COM0 to COM3) outputs
- 56-pin package: Up to 28 segment (SEG0 to SEG27) outputs and four common (COM0 to COM3) outputs
- Unused segment outputs can be used as general-purpose port pins
- 17 bytes (136 bits) of display memory
- Unused display memory can be used for general-purpose storage
- Flexible LCD clock source, selectable from 32kHz or HFClk / 128
- Adjustable frame frequency
- · Internal voltage divider resistors eliminate requirement for external components
- · Internal adjustable resistor allows contrast adjustment without external components
- · Capability to use external resistors to adjust drive voltages and current capacity

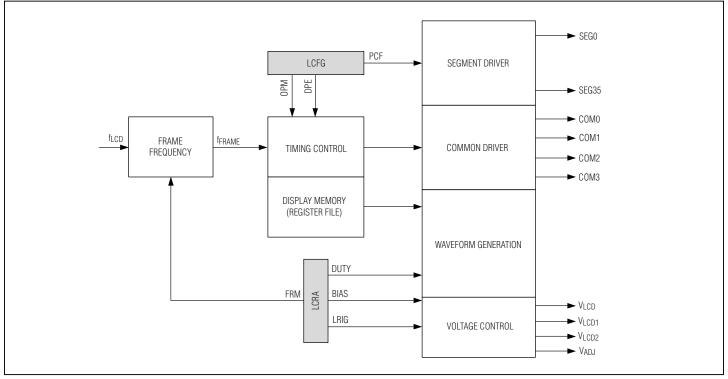


Figure 8. LCD Controller Block Diagram

The following peripheral registers are used to control the LCD controller.

Register Name:	LCFG
Register Description:	LCD Configuration Register
Register Address:	M2[0Eh]

Bit #	7	6	5	4	3	2	1	0
Name	PCF3	PCF2	PCF1	PCF0	—	_	OPM	DPE
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Bit 0: (LCFG.0) Display Enable (DPE). When the LCD controller is in normal operating mode, this bit controls whether the display register data is used to drive the LCD. This bit has no meaning when LCD operation is suspended (OPM = 0).

0 = Disables the LCD display. SEG and COM waveforms are driven to turn all segments OFF.

1 = Drive the LCD display normally.

Bit 1: (LCFG.1) Operation Mode (OPM). This bit determines whether the LCD controller is operating (driving SEG and COM lines) or suspended (with its clock gated off).

0 = The LCD controller is suspended.

1 = The LCD controller is in normal operating mode.

Bits 2 and 3: (LCFG.2 and LCFG.3) Reserved

Bits 4 to 7: (LCFG.4 to LCFG.7) Segment Pin Configuration (PCF0 to PCF3). Each of these bits controls whether a group of pins operates as port pin I/O or as LCD segment outputs. The specific pins controlled by each bit depend on the package type, as shown in Table 28 and Table 29.

Table 28. PCFn Bit Functions for 68-Pin Package

BIT	PINS AFFECTED	FUNCTION WHEN PCFn = 0	FUNCTION WHEN PCFn = 1
PCF0	58 to 65	P0.0 to P0.7	SEG0 to SEG7
PCF1	66 to 68, 1 to 5	P1.0 to P1.7	SEG8 to SEG15
PCF2	6 to 13	P2.0 to P2.7	SEG16 to SEG23
PCF3	14 to 21	P3.0 to P3.7	SEG24 to SEG31

Table 29. PCFn Bit Functions for 56-Pin Package

BIT	PINS AFFECTED	FUNCTION WHEN PCFn = 0	FUNCTION WHEN PCFn = 1
PCF0	49 to 56	P0.0 to P0.7	SEG0 to SEG7
PCF1	1 to 8	P1.0 to P1.7	SEG8 to SEG15
PCF2	9 to 12	P2.4 to P2.7	SEG16 to SEG19
PCF3	13 to 16	P3.4 to P3.7	SEG20 to SEG27

Register Name: Register Description: Register Address:		LCRA LCD Adjust Register M2[0Dh]							
Bit #	15	14	13	12	11	10	9	8	
Name		—	—	DUTY1	DUTY0	FRM3	FRM2	FRM1	
Reset	0	0	0	0	0	0	0	0	
Access	r	r	r	r/w	r/w	r/w	r/w	r/w	
Bit #	7	6	5	4	3	2	1	0	
Name	FRM0	LCCS	LRIG	LRA4	LRA3	LRA2	LRA1	LRA0	
Reset	0	0	0	0	0	0	0	0	
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

This register can only be written to when the LCD controller is in suspended mode (OPM = 0).

Bits 0 to 4: (LCRA.0 to LCRA.4) LCD Register Adjust (LRA0 to LRA4). These bits control the resistance of the internal LCD resistor RADJ. The approximate resistance can be determined as follows.

if (LRA[4:0] = 0), $R_{ADJ} = 200k\Omega$

if (LRA[4:0] > 0), $R_{ADJ} = (LRA[4:0] - 1) \times 6.45 k\Omega$

Bit 5: (LCRA.5) LCD Resistor Internally Grounded (LRIG)

0 = RADJ is disconnected from ground internally.

1 = RADJ is connected to ground internally.

Bit 6: (LCRA.6) LCD Clock Select (LCCS). This bit selects the source clock (f_{LCD}) used for LCD segment and common timing generation.

 $0 = f_{LCD} = 32kHz clock$

 $1 = f_{LCD} = high-frequency oscillator / 128$

Bits 7 to 10: (LCRA.7 to LCRA.10) LCD Frame Frequency (FRM0 to FRM3). These bits select the LCD frame frequency as follows.

for 1/3 bias mode: $f_{FRAME} = f_{LCD} / [(FRM[3:0]) + 1) \times 96]$

for all other modes: fFRAME = fLCD / [(FRM[3:0]) + 1) x 64]

Bits 11 and 12: (LCRA.11 and LCRA.12) LCD Duty Cycle Select (DUTY0 and DUTY1). These bits select the LCD duty cycle and corresponding bias generation mode as follows.

LCD Duty Cycle and Bias Mode Selection

DUTY1	DUTY0	DUTY CYCLE	BIAS MODE
0	0	Static	Static
0	1	1/2	1/2
1	0	1/3	1/3
1	1	1/4	1/3

Bits 13 to 15: (LCRA.13 to LCRA.15) Reserved

The following registers (LCD0 to LCD15) contain display memory for the LCD controller.

	0 0							
Register Na Register De Register Ac	escription:	LCD0 LCD Displ M2[10h]	ay Register	0				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ac	escription:	LCD1 LCD Displ M2[11h]	ay Register	1				
						2	1	0
Bit #	7	6	5	4	3	2	1	
Bit # Reset	7 0	6 0	5 0	4	3	0	0	0
· ·								
Reset	0 r/w ame: escription:	0 r/w	0	0 r/w	0	0	0	0
Reset Access Register Na Register De	0 r/w ame: escription:	0 r/w LCD2 LCD Displ	0 r/w	0 r/w	0	0	0	0
Reset Access Register Na Register De Register Ac	0 r/w ame: escription: ddress:	0 r/w LCD2 LCD Displ M2[12h]	0 r/w	0 r/w	0 r/w	0 r/w	0 r/w	0 r/w
Reset Access Register Na Register De Register Ac Bit #	0 r/w ame: escription: Idress: 7	0 r/w LCD2 LCD Displ M2[12h] 6	0 r/w ay Register 5	0 r/w • 2 4	0 r/w 3	0 r/w 2	0 r/w 1	0 r/w 0
Reset Access Register Na Register De Register Ac Bit # Reset	0 r/w ame: escription: ddress: 7 0 r/w	0 r/w LCD2 LCD Displ M2[12h] 6 0 r/w LCD3	0 r/w lay Register 5 0	0 r/w 2 4 0 r/w	0 r/w 3 0	0 r/w 2 0	0 r/w 1 0	0 r/w 0
Reset Access Register Na Register Ac Bit # Reset Access Register Na Register De	0 r/w ame: escription: ddress: 7 0 r/w	0 r/w LCD2 LCD Displ M2[12h] 6 0 r/w LCD3 LCD3	0 r/w lay Register 5 0 r/w	0 r/w 2 4 0 r/w	0 r/w 3 0	0 r/w 2 0	0 r/w 1 0	0 r/w 0
Reset Access Register Na Register De Register Ac Bit # Reset Access Register Na Register De Register Ac	0 r/w ame: escription: ddress: 7 0 r/w ame: escription: ddress:	0 r/w LCD2 LCD Displ M2[12h] 6 0 r/w LCD3 LCD Displ M2[13h]	0 r/w	0 r/w 2 4 0 r/w	0 r/w 3 0 r/w	0 r/w 2 0 r/w	0 r/w 1 0 r/w	0 r/w 0 0 r/w

Register Na Register De Register Ac	escription:	LCD4 LCD Displ M2[14h]	ay Register	r 4				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ac	escription:	LCD5 LCD Displ M2[15h]	ay Register	r 5				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ac	escription:	LCD6 LCD Displ M2[16h]	ay Register	r 6				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ac	escription:	LCD7 LCD Displ M2[17h]	ay Register	r 7				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Register N Register D Register A	escription:	LCD8 LCD Disp M2[18h]	lay Registe	r 8				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register N Register D Register A	escription:	LCD9 LCD Disp M2[19h]	lay Registe	r 9				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register N Register D Register A	escription: ddress:	M2[1Ah]	lay Registe					
Register D Register A Bit #	escription: ddress: 7	LCD Disp M2[1Ah] 6	5	4	3	2	1	0
Register D Register A Bit # Reset	escription: ddress: 7 0	LCD Disp M2[1Ah] 6 0	5	4	0	0	0	0
Register D Register A Bit #	escription: ddress: 7	LCD Disp M2[1Ah] 6	5	4				,
Register D Register A Bit # Reset	escription: ddress: 7 0 r/w ame: escription:	LCD Disp M2[1Ah] 6 0 r/w LCD11	5	4 0 r/w	0	0	0	0
Register D Register A Bit # Reset Access Register N Register D	escription: ddress: 7 0 r/w ame: escription:	LCD Disp M2[1Ah] 6 0 r/w LCD11 LCD Disp	5 0 r/w	4 0 r/w	0	0	0	0
Register D Register A Bit # Reset Access Register N Register D Register A	escription: ddress: 7 0 r/w ame: escription: ddress:	LCD Disp M2[1Ah] 6 0 r/w LCD11 LCD Disp M2[1Bh]	5 0 r/w	4 0 r/w	0 r/w	0 r/w	0 r/w	0 r/w
Register D Register A Bit # Reset Access Register N Register D Register A Bit #	escription: ddress: 7 0 r/w ame: escription: ddress: 7	LCD Disp M2[1Ah] 6 0 r/w LCD11 LCD Disp M2[1Bh] 6	5 0 r/w lay Registe	4 0 r/w r 11	0 r/w 3	0 r/w 2	0 r/w 1	0 r/w 0

Register Na Register De Register Ac	escription:	LCD12 LCD Displ M2[1Ch]	ay Registe	r 12				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ad	escription:	LCD13 LCD Displ M2[1Dh]	ay Registe	r 13				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register De Register Ac Bit #		6	ay Registe	4	3	2	1	0
D:+ #	7	0	~	4	0	0	4	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ac	escription: ddress:	M2[1Fh]	ay Registe					
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Register Na Register De Register Ad	escription:	LCD16 LCD Displ M2[0Fh]	ay Registe	r 16				
Bit #	7	6	5	4	3	2	1	0
Reset	0	0	0	0	0	0	0	0
Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
	ι	,	C	۰			J	

LCD Controller Operation Modes

The LCD controller defaults to suspended mode (OPM = 0, DPE = x) on power-up. In this mode, the LCD controller is completely shut down to conserve power. Any pins that are configured for LCD operation (as well as any dedicated LCD segment/common pins) are driven by a weak pullup to V_{DDIO}.

Setting the OPM bit to 1 places the LCD controller in normal operating mode. In this mode, the LCD segment and common drivers generate waveforms to display the contents of display register memory if the DPE bit is set to 1. If DPE is set to 0, the LCD controller generates waveforms to turn all segments OFF.

LCD Drive Voltages

The LCD controller provides internal voltage-divider resistors to generate the voltage bias levels needed for the LCD control. The top voltage level, V_{LCD}, must be provided by an external supply. As shown in Figure 9, no external connections (other than the power supply to V_{LCD}) are needed for static and 1/3 bias modes. For 1/2 bias mode, V_{LCD1} and V_{LCD2} must be shunted together externally.

Figure 9. LCD Drive Voltage Generation

Selecting the LCD Mode

The DUTY1 and DUTY0 bits select one of four possible display modes for the LCD controller as Table 30 shows. The display mode required for a given application depends on the number of segments needed and the multiplexing and voltage bias requirements for a given LCD display.

Table 30. LCD Display Modes

DUTY[1:0]	DUTY CYCLE	BIAS	DISPLAY SEGMENT DRIVE CAPACITY	COMMONS	V _{LCD2} VOLTAGE*	V _{LCD1} VOLTAGE*
00	Static	Static	36 (68-pin), 28 (56-pin)	COM0	—	—
01	1/2	1/2	70 (68-pin), 54 (56-pin)	COM0, COM1	Vadj + (1/2 x Vlcd – Vadj)	VADJ + (1/2 x VLCD – VADJ)
10	1/3	1/3	102 (68-pin), 78 (56-pin)	COM0, COM1, COM2	V _{ADJ} + (1/3 x V _{LCD} – V _{ADJ})	V _{ADJ} + (2/3 x V _{LCD} – V _{ADJ})
11	1/4	1/3	132 (68-pin), 100 (56-pin)	COM0, COM1, COM2, COM3	V _{ADJ} + (1/3 x V _{LCD} – V _{ADJ})	V _{ADJ} + (2/3 x V _{LCD} – V _{ADJ})

* For 1/2 bias mode, this assumes an external shunt in place between VLCD1 and VLCD2.

Segment Pin Configuration

The PCF[3:0] bits in the LCFG register switch four banks of pins between LCD segment-display mode and general-purpose port-pin mode. These pins are grouped in banks of four or eight, depending on the package type. Since all of the PCF bits default to 0 on reset, all pins that share LCD segment and port pin capability act as port pins by default. To enable these pins for LCD segment display, the PCF bits must be set appropriately and the LCD controller must be in normal operational mode.

Some of the port pins controlled by the PCF bits have external interrupt capability. If the external interrupt function is enabled for any of these port pins, this function overrides the PCF bit setting for that pin only. The pin remains a port pin (with an external interrupt enabled) regardless of the function of the other pins in its bank. The other pins in the bank can still be used for LCD segment display.

LCD Internal Adjustable Contrast Resistor

For an LCD segment to be in the OFF state, the V_{RMS} voltage between its COM and SEG signals must remain below the threshold voltage for that particular LCD display. As the V_{RMS} voltage difference increases, the LCD segment remains OFF until the threshold voltage is reached, at which point it turns ON. As the V_{RMS} difference continues to increase, the contrast of the LCD segment increases too (the segment becomes darker).

To adjust the visible contrast level for all LCD segments, the internal adjustable resistor R_{ADJ} can be varied between $0k\Omega$ and $200k\Omega$ by setting the bits LRA0 to LRA4 (LCRA.0 to LCRA.4). Changing this value causes the difference among V_{LCD}, V_{LCD1}, V_{LCD2}, and V_{ADJ} to increase or decrease evenly for all four drive voltages.

For the internal resistor R_{ADJ} to be used in this manner, the LRIG bit must be set to 1 to connect R_{ADJ} to ground internally. If an external adjustable resistor is used for the contrast adjustment function, LRIG should be set to 0, and the external resistor R_{EXT} should be connected between V_{ADJ} and ground as shown in Figure 10.

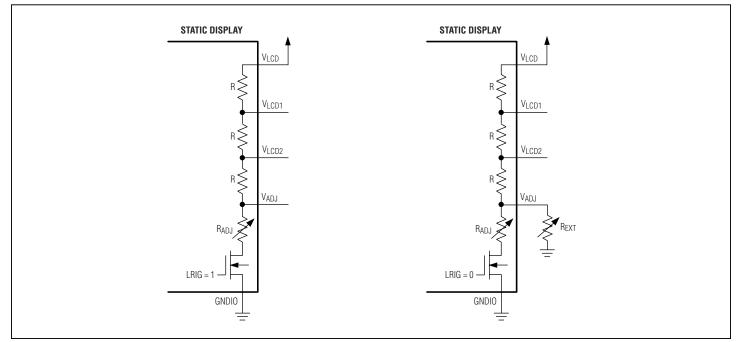


Figure 10. LCD Internal and External Display Contrast Adjustment

LCD Frame Frequency

The LCD controller clock frequency (f_{LCD}) can be sourced from either the 32kHz clock or the high-frequency clock divided by 128 as specified by the LCCS bit. If Stop mode is entered and the 32kHz clock is being used, LCD display operation continues (if OPM = 1). If Stop mode is entered and the high-frequency clock divided by 128 is being used, the LCD controller is suspended automatically until Stop mode is exited and the high-frequency clock completes its warmup period.

The bits FRM[3:0] control the generation of the LCD frame frequency from the selected LCD clock source (32kHz or HFClk / 128). The selected frame frequency (fFRAME) is defined as follows.

fFRAME = fLCD / [((FRM[3:0]) + 1) x 96] for 1/3 duty

fFRAME = fLCD / [((FRM[3:0]) + 1) x 64] for static, 1/2, and 1/4 duty

The resulting frame frequency should be between 30Hz and 1000Hz. Example frequencies that can be generated from typical clock frequencies are shown in Table 31.

FRM[3:0]	fLCD = 32	2,768Hz	f _{LCD} = 78 (1MHz		f _{LCD} = 38 (4.9152MI			62,500Hz z / 128)	
	1, 1/2, 1/4	1/3	1, 1/2, 1/4	1/3	1, 1/2, 1/4	1/3	1, 1/2, 1/4	1/3	
0	512	341	122	81	600	400	977	651	
1	256	171	61	41	300	200	488	326	
2	171	114	41	27	200	133	326	217	
3	128	85	31	20	150	100	244	163	
4	102	68	24	16	120	80	195	130	
5	85	57	20	14	100	67	163	109	
6	73	49	17	12	86	57	140	93	
7	64	43	15	10	75	50	122	81	
8	57	38	14	9	67	44	109	72	
9	51	34	12	8	60	40	98	65	
10	47	31	11	7	55	36	89	59	
11	43	28	10	7	50	33	81	54	
12	39	26	9	6	46	31	75	50	
13	37	24	9	6	43	29	70	47	
14	34	23	8	5	40	27	65	43	
15	32	21	8	5	38	25	61	41	

Table 31. LCD Frame Frequencies (Hz)

LCD Display Memory

The registers LCD0 to LCD16 provide 17 bytes of display memory. Depending on the duty cycle and package type, not all display memory can be used by the LCD controller. Any display memory that is unused by the LCD controller can be used for application purposes if desired. Tables 32 to 39 show the display memory mapping for different duty cycle and package configurations.

REGISTER	BIT 7 COM0	BIT 6 COM0	BIT 5 COM0	BIT 4 COM0	BIT 3 COM0	BIT 2 COM0	BIT 1 COM0	BIT 0 COM0
LCD0	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
LCD1	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
LCD2	SEG19	SEG18	SEG17	SEG16				
LCD3	SEG23	SEG22	SEG21	SEG20				
LCD4	SEG27	SEG26	SEG25	SEG24				
LCD5								
LCD6								
LCD7								
LCD8								
LCD9								
LCD10								
LCD11								
LCD12								
LCD13								
LCD14								
LCD15								
LCD16								

Table 32. LCD Display Memory Map (Static, 56-Pin Package)

Table 33. LCD Display Memory Map (1/2 Duty, 56-Pin Package)

REGISTER	BIT 7 COM1	BIT 6 COM0	BIT 5 COM1	BIT 4 COM0	BIT 3 COM1	BIT 2 COM0	BIT 1 COM1	BIT 0 COM0
LCD0	SEG3	SEG3	SEG2	SEG2	SEG1	SEG1	SEG0	SEG0
LCD1	SEG7	SEG7	SEG6	SEG6	SEG5	SEG5	SEG4	SEG4
LCD2	SEG11	SEG11	SEG10	SEG10	SEG9	SEG9	SEG8	SEG8
LCD3	SEG15	SEG15	SEG14	SEG14	SEG13	SEG13	SEG12	SEG12
LCD4								
LCD5	SEG19	SEG19	SEG18	SEG18	SEG17	SEG17	SEG16	SEG16
LCD6								
LCD7	SEG23	SEG23	SEG22	SEG22	SEG21	SEG21	SEG20	SEG20
LCD8			SEG26	SEG26	SEG25	SEG25	SEG24	SEG24
LCD9								
LCD10								
LCD11								
LCD12								
LCD13								
LCD14								
LCD15								
LCD16								

REGISTER	BIT 7	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0		SEG1	SEG1	SEG1		SEG0	SEG0	SEG0
LCD1		SEG3	SEG3	SEG3		SEG2	SEG2	SEG2
LCD2		SEG5	SEG5	SEG5		SEG4	SEG4	SEG4
LCD3		SEG7	SEG7	SEG7		SEG6	SEG6	SEG6
LCD4		SEG9	SEG9	SEG9		SEG8	SEG8	SEG8
LCD5		SEG11	SEG11	SEG11		SEG10	SEG10	SEG10
LCD6		SEG13	SEG13	SEG13		SEG12	SEG12	SEG12
LCD7		SEG15	SEG15	SEG15		SEG14	SEG14	SEG14
LCD8								
LCD9								
LCD10		SEG17	SEG17	SEG17		SEG16	SEG16	SEG16
LCD11		SEG19	SEG19	SEG19		SEG18	SEG18	SEG18
LCD12								
LCD13								
LCD14		SEG21	SEG21	SEG21		SEG20	SEG20	SEG20
LCD15		SEG23	SEG23	SEG23		SEG22	SEG22	SEG22
LCD16						SEG24	SEG24	SEG24

Table 34. LCD Display Memory Map (1/3 Duty, 56-Pin Package)

Table 35. LCD Display Memory Map (1/4 Duty, 56-Pin Package)

REGISTER	BIT 7 COM3	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3 COM3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0	SEG1	SEG1	SEG1	SEG1	SEG0	SEG0	SEG0	SEG0
LCD1	SEG3	SEG3	SEG3	SEG3	SEG2	SEG2	SEG2	SEG2
LCD2	SEG5	SEG5	SEG5	SEG5	SEG4	SEG4	SEG4	SEG4
LCD3	SEG7	SEG7	SEG7	SEG7	SEG6	SEG6	SEG6	SEG6
LCD4	SEG9	SEG9	SEG9	SEG9	SEG8	SEG8	SEG8	SEG8
LCD5	SEG11	SEG11	SEG11	SEG11	SEG10	SEG10	SEG10	SEG10
LCD6	SEG13	SEG13	SEG13	SEG13	SEG12	SEG12	SEG12	SEG12
LCD7	SEG15	SEG15	SEG15	SEG15	SEG14	SEG14	SEG14	SEG14
LCD8								
LCD9								
LCD10	SEG17	SEG17	SEG17	SEG17	SEG16	SEG16	SEG16	SEG16
LCD11	SEG19	SEG19	SEG19	SEG19	SEG18	SEG18	SEG18	SEG18
LCD12								
LCD13								
LCD14	SEG21	SEG21	SEG21	SEG21	SEG20	SEG20	SEG20	SEG20
LCD15	SEG23	SEG23	SEG23	SEG23	SEG22	SEG22	SEG22	SEG22
LCD16					SEG24	SEG24	SEG24	SEG24

REGISTER	BIT 7 COM0	BIT 6 COM0	BIT 5 COM0	BIT 4 COM0	BIT 3 COM0	BIT 2 COM0	BIT 1 COM0	BIT 0 COM0
LCD0	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
LCD1	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
LCD2	SEG23	SEG22	SEG21	SEG20	SEG19	SEG18	SEG17	SEG16
LCD3	SEG31	SEG30	SEG29	SEG28	SEG27	SEG26	SEG25	SEG24
LCD4	SEG35	SEG34	SEG33	SEG32				
LCD5								
LCD6								
LCD7								
LCD8								
LCD9								
LCD10								
LCD11								
LCD12								
LCD13								
LCD14								
LCD15								
LCD16								

Table 36. LCD Display Memory Map (Static, 68-Pin Package)

Table 37. LCD Display Memory Map (1/2 Duty, 68-Pin Package)

REGISTER	BIT 7 COM1	BIT 6 COM0	BIT 5 COM1	BIT 4 COM0	BIT 3 COM1	BIT 2 COM0	BIT 1 COM1	BIT 0 COM0
LCD0	SEG3	SEG3	SEG2	SEG2	SEG1	SEG1	SEG0	SEG0
LCD1	SEG7	SEG7	SEG6	SEG6	SEG5	SEG5	SEG4	SEG4
LCD2	SEG11	SEG11	SEG10	SEG10	SEG9	SEG9	SEG8	SEG8
LCD3	SEG15	SEG15	SEG14	SEG14	SEG13	SEG13	SEG12	SEG12
LCD4	SEG19	SEG19	SEG18	SEG18	SEG17	SEG17	SEG16	SEG16
LCD5	SEG23	SEG23	SEG22	SEG22	SEG21	SEG21	SEG20	SEG20
LCD6	SEG27	SEG27	SEG26	SEG26	SEG25	SEG25	SEG24	SEG24
LCD7	SEG31	SEG31	SEG30	SEG30	SEG29	SEG29	SEG28	SEG28
LCD8			SEG34	SEG34	SEG33	SEG33	SEG32	SEG32
LCD9								
LCD10								
LCD11								
LCD12								
LCD13								
LCD14								
LCD15								
LCD16								

REGISTER	BIT 7	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0		SEG1	SEG1	SEG1		SEG0	SEG0	SEG0
LCD1		SEG3	SEG3	SEG3		SEG2	SEG2	SEG2
LCD2		SEG5	SEG5	SEG5		SEG4	SEG4	SEG4
LCD3		SEG7	SEG7	SEG7		SEG6	SEG6	SEG6
LCD4		SEG9	SEG9	SEG9		SEG8	SEG8	SEG8
LCD5		SEG11	SEG11	SEG11		SEG10	SEG10	SEG10
LCD6		SEG13	SEG13	SEG13		SEG12	SEG12	SEG12
LCD7		SEG15	SEG15	SEG15		SEG14	SEG14	SEG14
LCD8		SEG17	SEG17	SEG17		SEG16	SEG16	SEG16
LCD9		SEG19	SEG19	SEG19		SEG18	SEG18	SEG18
LCD10		SEG21	SEG21	SEG21		SEG20	SEG20	SEG20
LCD11		SEG23	SEG23	SEG23		SEG22	SEG22	SEG22
LCD12		SEG25	SEG25	SEG25		SEG24	SEG24	SEG24
LCD13		SEG27	SEG27	SEG27		SEG26	SEG26	SEG26
LCD14		SEG29	SEG29	SEG29		SEG28	SEG28	SEG28
LCD15		SEG31	SEG31	SEG31		SEG30	SEG30	SEG30
LCD16		SEG33	SEG33	SEG33		SEG32	SEG32	SEG32

Table 38. LCD Display Memory Map (1/3 Duty, 68-Pin Package)

Table 39. LCD Display Memory Map (1/4 Duty, 68-Pin Package)

REGISTER	BIT 7 COM3	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3 COM3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0	SEG1	SEG1	SEG1	SEG1	SEG0	SEG0	SEG0	SEG0
LCD1	SEG3	SEG3	SEG3	SEG3	SEG2	SEG2	SEG2	SEG2
LCD2	SEG5	SEG5	SEG5	SEG5	SEG4	SEG4	SEG4	SEG4
LCD3	SEG7	SEG7	SEG7	SEG7	SEG6	SEG6	SEG6	SEG6
LCD4	SEG9	SEG9	SEG9	SEG9	SEG8	SEG8	SEG8	SEG8
LCD5	SEG11	SEG11	SEG11	SEG11	SEG10	SEG10	SEG10	SEG10
LCD6	SEG13	SEG13	SEG13	SEG13	SEG12	SEG12	SEG12	SEG12
LCD7	SEG15	SEG15	SEG15	SEG15	SEG14	SEG14	SEG14	SEG14
LCD8	SEG17	SEG17	SEG17	SEG17	SEG16	SEG16	SEG16	SEG16
LCD9	SEG19	SEG19	SEG19	SEG19	SEG18	SEG18	SEG18	SEG18
LCD10	SEG21	SEG21	SEG21	SEG21	SEG20	SEG20	SEG20	SEG20
LCD11	SEG23	SEG23	SEG23	SEG23	SEG22	SEG22	SEG22	SEG22
LCD12	SEG25	SEG25	SEG25	SEG25	SEG24	SEG24	SEG24	SEG24
LCD13	SEG27	SEG27	SEG27	SEG27	SEG26	SEG26	SEG26	SEG26
LCD14	SEG29	SEG29	SEG29	SEG29	SEG28	SEG28	SEG28	SEG28
LCD15	SEG31	SEG31	SEG31	SEG31	SEG30	SEG30	SEG30	SEG30
LCD16					SEG32	SEG32	SEG32	SEG32

Display Waveform Generation

Once the operational modes and display memory registers on the LCD controller have been properly initialized, the controller generates the segment and common drive waveforms needed to display the enabled segments on the attached LCD display.

In static mode, each segment pin is connected to a single LCD segment. There is only one common, or backplane, signal, which is driven by COM0. All ON segments are driven for the entire frame period.

In x2-multiplexed mode, also known as 1/2 duty cycle mode, each segment pin can drive up to two LCD segments. There are two common backplane signals, driven by COM0 and COM1. Each ON segment is only driven for half of the frame period.

In x3-multiplexed mode, also known as 1/3 duty cycle mode, each segment pin can drive up to three LCD segments. There are three common backplane signals, driven by COM0, COM1 and COM2. Each ON segment is only driven for 1/3 of the frame period.

In x4-multiplexed mode, also known as 1/4 duty cycle mode, each segment pin can drive up to four LCD segments. There are four common backplane signals, driven by COM0, COM1, COM2 and COM3. Each ON segment is only driven for 1/4 of the frame period.

In each of the following examples, the LCD controller is driving a "2" to the display. This is a conventional seven-segment display, and the "2" consists of ON segments a, b, d, e, g, and DP as shown in Figure 11. The voltage waveforms shown assume that VADJ equals ground (RADJ is set to $\Omega\Omega$). The portions of the memory maps used apply to either package type.

LCD Controller Static Drive Example

In this example, SEG0 through SEG7 are used to drive the LCD segments. The segments and common signals are connected as shown in Figure 12.

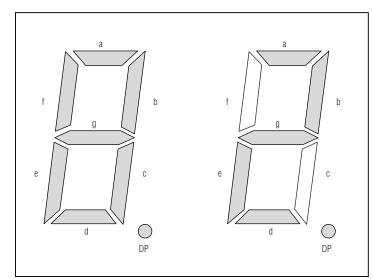


Figure 11. Sample 7-Segment LCD Display

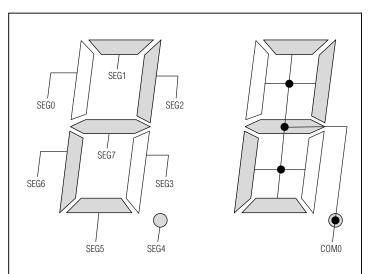


Figure 12. Static Drive Example Display Connection

Table 40. Static Drive Example Common Signal Selection

	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
COM0	ON	ON	ON	ON	off	ON	ON	off
COM1								
COM2								
COM3								

According to the static memory map table, a value of 0F6h should be written to the LCD0 register as shown in Table 41.

Table 41. Static Drive Example Register Content

	BIT 7 COM0	BIT 6 COM0	BIT 5 COM0	BIT 4 COM0	BIT 3 COM0	BIT 2 COM0	BIT 1 COM0	BIT 0 COM0
LCD0	1	1	1	1	0	1	1	0
LCD1								
LCD2								
LCD3								

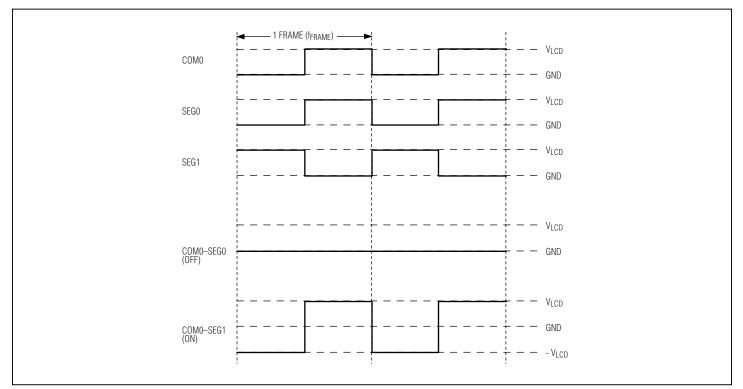


Figure 13. Static Drive Example Waveform Timing

LCD Controller 1/2 Duty Cycle Drive Example

In this example, SEG0 through SEG3 are used to drive the LCD segments. The segments and common signals are connected as shown in Figure 14.

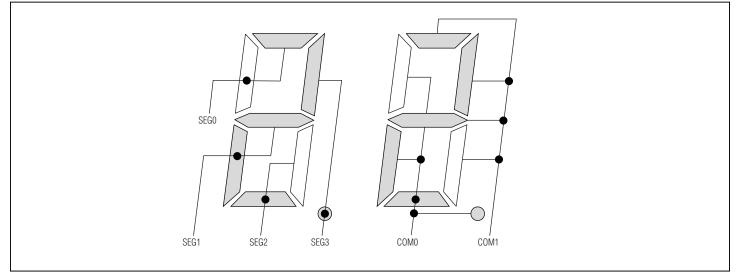


Figure 14. 1/2 Duty Drive Example Display Connection

Table 42. 1/2 Duty Drive Example Common Signal Selection

	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
COM0					ON	ON	ON	off
COM1					ON	off	ON	ON
COM2								
COM3								

According to the 1/2 duty drive memory map table, a value of 0DEh should be written to the LCD0 register as shown in Table 43.

Table 43. 1/2 Duty Drive Example Register Content

	BIT 7 COM1	BIT 6 COM0	BIT 5 COM1	BIT 4 COM0	BIT 3 COM1	BIT 2 COM0	BIT 1 COM1	BIT 0 COM0
LCD0	1	1	0	1	1	1	1	0
LCD1								
LCD2								
LCD3								

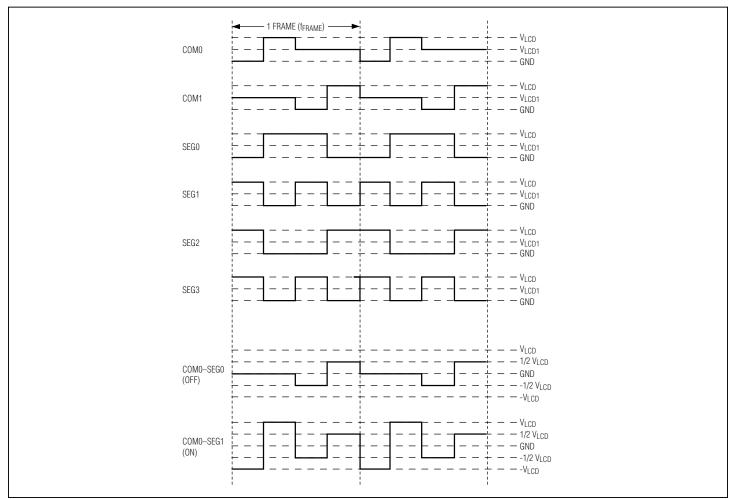


Figure 15. 1/2 Duty Drive Example Waveform Timing

LCD Controller 1/3 Duty Cycle Drive Example

In this example, SEG0 through SEG2 are used to drive the LCD segments. The segments and common signals are connected as shown in Figure 16.

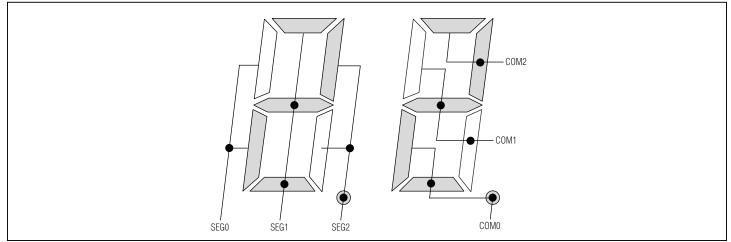


Figure 16. 1/3 Drive Example Display Connection

Table 44. 1/3 Duty Drive Example Common Signal Selection

	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
COM0						ON	ON	ON
COM1						off	ON	off
COM2						ON	ON	(don't care)
COM3								

According to the 1/3 duty drive memory map table, LCD0 should be set to 071h and LCD1 should be set to 05h as shown in Table 45.

Table 45. 1/3 Duty Drive Example Register Content

	BIT 7	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0	0	1	1	1	0	0	0	1
LCD1	0	0	0	0	0	1	0	1
LCD2								
LCD3								

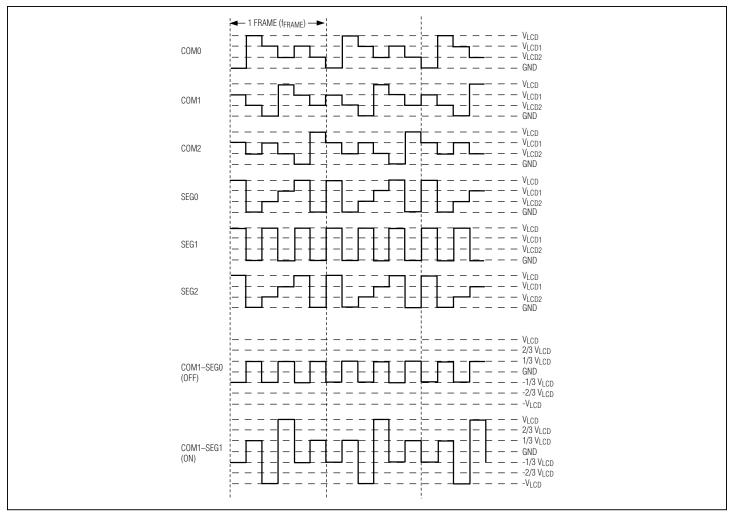


Figure 17. 1/3 Duty Drive Example Waveform Timing

LCD Controller 1/4 Duty Cycle Drive Example

In this example, SEG0 and SEG1 are used to drive the LCD segments. The segments and common signals are connected as shown in Figure 18.

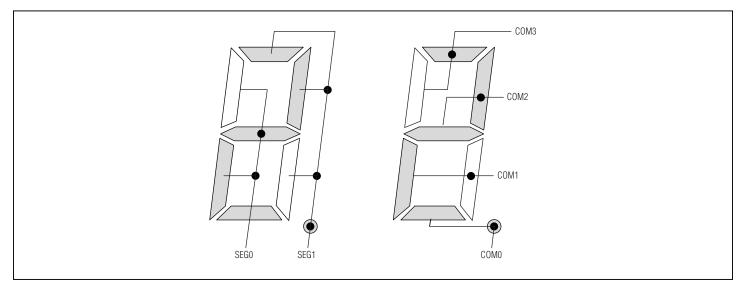


Figure 18. 1/4 Duty Drive Example Display Connection

Table 46. 1/4 Duty Drive Example Common Signal Selection

	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
COM0							ON	ON
COM1							off	ON
COM2							ON	ON
COM3							ON	off

According to the 1/4 duty drive memory map table, LCD0 should be set to 0D7h as shown in Table 47.

Table 47. 1/4 Duty Drive Example Register Content

	BIT 7 COM3	BIT 6 COM2	BIT 5 COM1	BIT 4 COM0	BIT 3 COM3	BIT 2 COM2	BIT 1 COM1	BIT 0 COM0
LCD0	1	1	0	1	0	1	1	1
LCD1								
LCD2								
LCD3								

Figure 19. 1/4 Duty Drive Example Waveform Timing

LCD Controller Example: Initializing the LCD Controller

```
move
       LCRA, #03E0h
   LCRA.FRM
               = 7
                     Set up frame frequency.
;
                     Set clock source to HFClk / 128.
   LCRA.LCCS
              = 1
                     Set up static duty cycle.
              = 0
   LCRA.DUTY
;
                     Set R-adj to 0.
   LCRA.LRA
               = 0
;
   LCRA.LRIGC = 1
                     Ground Radj resistor internally.
;
       LCFG, #0F3h
move
   LCFG.PCF = 0x0F
                     Set up all segments as outputs.
;
   LCFG.OPM = 1
                     Set to normal operation mode.
;
   LCFG.DPE = 1
                     Enable display.
;
```

UTILITY ROM (SPECIFIC TO MAXQ2000)

The MAXQ2000 utility ROM includes routines that provide the following functions to application software.

- In-application programming routines for flash memory (program, erase, mass erase)
- · Single word/byte copy and buffer copy routines for use with lookup tables

To provide backward compatibility among different versions of the utility ROM, a function address table is included that contains the entry points for all user-callable functions. With this table, user code can determine the entry point for a given function as follows.

- 1) Read the location of the function address table from address 0800Dh in the Utility ROM.
- 2) The entry points for each function listed below are contained in the function address table, one word per function, in the order given by their function numbers.

For example, the entry point for the **flashEraseAll** function can be determined by the following procedure.

- 1) functionTable = dataMemory[0800Dh]
- 2) flashWriteEntry = dataMemory[functionTable + 2]

Table 48. Utility ROM User Functions (for Utility ROM Version 1.01)

FUNCTION NUMBER	FUNCTION NAME	ENTRY POINT	SUMMARY
0	flashWrite	08461h	Programs a single word of flash memory.
1	flashErasePage	08467h	Erases (programs to FFFFh) a 256-word sector of flash memory.
2	flashEraseAll	08478h	Erases (programs to FFFFh) all flash memory.
3	moveDP0	08487h	Reads a byte/word at DP[0].
4	moveDP0inc	0848Ah	Reads a byte/word at DP[0], then increments DP[0].
5	moveDP0dec	0848Dh	Reads a byte/word at DP[0], then decrements DP[0].
6	moveDP1	08490h	Reads a byte/word at DP[1].
7	moveDP1inc	08493h	Reads a byte/word at DP[1], then increments DP[0].
8	moveDP1dec	08496h	Reads a byte/word at DP[1], then decrements DP[0].
9	moveFP	08499h	Reads a byte/word at BP[Offs].
10	moveFPinc	0849Ch	Reads a byte/word at BP[Offs], then increments Offs.
11	moveFPdec	0849Fh	Reads a byte/word at BP[Offs], then decrements Offs.
12	copyBuffer	084A2h	Copies LC[0] values from DP[0] to BP[Offs].

It is also possible to call utility ROM functions directly, using the entry points given in Table 48. Standard include files are provided for this purpose with the MAXQ development tool set. This method calls functions more quickly, but the application may need to be recompiled in order to run properly with a different version of the utility ROM.

In-Application Programming Functions

Function:	flashWrite
Summary:	Programs a single word of flash memory.
Inputs:	A[0]:Word address in program flash memory to write to.
	A[1]: Word value to write to flash memory.
Outputs:	Carry: Set on error and cleared on success.
Destroys:	PSF, LC[1]

Notes:

1) If the watchdog reset function is active, it should be disabled before calling this function.

2) If the flash location has already been programmed to a non-FFFF value, this function returns with an error (Carry set). To reprogram a flash location, it must first be erased by calling **flashErasePage** or **flashEraseAll**.

Function:flashErasePageSummary:Erases (programs to 0FFFFh) a 256-word page of flash memory.Inputs:A[0]: Word address located in the page to be erased. (The page number is the high byte of A[0].)Outputs:Carry: Set on error and cleared on success.Destroys:PSF, LC[1], GR, AP, APC, A[0]

Notes:

1) If the watchdog reset function is active, it should be disabled before calling this function.

2) When calling this function from flash, care should be taken that the return address is not in the page that is being erased.

Function: Summary:	flashEraseAll Erases (programs to 0FFFFh) all locations in flash memory.
Inputs:	None
Outputs:	Carry: Set on error and cleared on success.
Destroys:	PSF, LC[0], LC[1], GR, A[0], AP, APC

Notes:

- 1) If the watchdog reset function is active, it should be disabled before calling this function.
- 2) This function can only be called by code running from the RAM. Attempting to call this function while running from the flash results in an error.

Data Transfer Functions

Function:	moveDP0
Summary:	Reads the byte/word value pointed to by DP[0].
Inputs:	DP[0]: Address to read from
Outputs:	GR: Data byte/word read
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveDP0inc
Summary:	Reads the byte/word value pointed to by DP[0], then increments DP[0].
Inputs:	DP[0] Address to read from
Outputs:	GR: Data byte/word read
-	DP[0] is incremented
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveDP0dec
Summary:	Reads the byte/word value pointed to by DP[0], then decrements DP[0].
Inputs:	DP[0]: Address to read from
Outputs:	GR: Data byte/word read
	DP[0] is decremented
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveDP1
Summary:	Reads the byte/word value pointed to by DP[1].
Inputs:	DP[1]: Address to read from
Outputs:	GR: Data byte/word read
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the Utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveDP1inc
Summary:	Reads the byte/word value pointed to by DP[1], then increments DP[1].
Inputs:	DP[1]: Address to read from
Outputs:	GR: Data byte/word read
-	DP[1] is incremented
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveDP1dec
Summary:	Reads the byte/word value pointed to by DP[1], then decrements DP[1].
Inputs:	DP[1]: Address to read from
Outputs:	GR: Data byte/word read
-	DP[1] is decremented

Destroys:

None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveFP
Summary:	Reads the byte/word value pointed to by BP[Offs].
Inputs:	BP[Offs]: Address to read from
Outputs:	GR: Data byte/word read
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure BP[Offs] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveFPinc
Summary:	Reads the byte/word value pointed to by BP[Offs] then increments Offs.
Inputs:	DP[1]: Address to read from
Outputs:	GR: Data byte/word read
-	Offs is incremented
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure BP[Offs] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	moveFPdec
Summary:	Reads the byte/word value pointed to by BP[Offs], then decrements Offs.
Inputs:	DP[1]: Address to read from
Outputs:	GR: Data byte/word read
	Offs is decremented
Destroys:	None

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure BP[Offs] for byte or word mode.
- 2) The address passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointer before reading the byte/word value.

Function:	copyBuffer
Summary:	Copies LC[0] bytes/words from DP[0] to BP[Offs].
Inputs:	DP[0]: Address to copy from
	BP[Offs]: Address to copy to
	LC[0]: Number of bytes or words to copy
Outputs:	Offs is incremented by LC[0].
-	DP[0] is incremented by LC[0].
Destroys:	LC[0]

Notes:

- 1) Before calling this function, DPC should be set appropriately to configure DP[0] and BP[Offs] for byte or word mode. Both DP[0] and BP[Offs] should be configured to the same mode (byte or word) for correct buffer copying.
- 2) The addresses passed to this function should be based on the data memory mapping for the utility ROM, as shown in Figure 3. When a byte mode address is used, CDA0 must be set appropriately to access either the upper or lower half of program flash/ROM memory.
- 3) This function automatically refreshes the data pointers before reading the byte/word values.

ROM Example 1: Calling A Utility ROM Function Directly

This example shows the direct addressing method for calling utility functions, using the function **moveDP1inc** to read a static string from code space. Note the equate UROM_MOVEDP1INC.

UROM_MOVEDP1INC EQU 08493h

```
Text:
   DB "Hello World!",0 ; Define a string in code space.
   ;; Function: PrintText
   ;; Description: Prints the string stored at the "Text" label.
  ;; Returns: N/A
;; Destroys: ACC, DP[1], DP[0], and GR.
;; Notes: This function assumes that DP[0] is set to word mode,
;; DP[1] is in byte mode, and the device has 16-bit accumulators.
   PrintText:
  move DP[1], #Text ; Point to the string to display.
move ACC, DP[1] ; "Text" is a word address and we need a
sla ; byte address, so shift left 1 bit.
                             ; Code space is mapped to 8000h when running ; from the ROM, so the address must be masked.
          #08000h
   or
   move DP[1], ACC
PrintText Loop:
   call UROM_MOVEDP1INC ; Fetch the byte from code space.
   move ACC, GR
  jump Z, PrintText_Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
jump PrintText_Loop ; Process the next byte.
PrintText Done:
```

ret

ROM Example 2: Calling A Utility ROM Function Indirectly

The second example shows the indirect addressing method (lookup table) for calling utility functions. We use the same function (**UROM_MoveDP1Inc**) to read our static string, but this time we must figure out the address we want dynamically. Note the inserted code where we before had a direct call to the function. Also note that the function index of **moveDP1inc** is 7.

```
Text:
  DB "Hello World!",0
                      ; Define a string in code space.
  ;; Function: PrintText
  ;; Description: Prints the string stored at the "Text" label.
  ;; Returns: N/A
                 ACC, DP[1], DP[0], and GR.
  ;; Destroys:
  ;; Notes:
                 This function assumes that DP[0] is set to word mode,
                 DP[1] is in byte mode, and the device has 16-bit
  ;;
                  accumulators.
  ;;
  PrintText:
  move DP[1], #Text
                            ; Point to the string to display.
  move ACC, DP[1]
                             ; "Text" is a word address and we need a
                             ; byte address, so shift left 1 bit.
  sla
       #08000h
                        ; Code space is mapped to 8000h when running ; from the ROM, so the address must be masked.
  or
  move DP[1], ACC
PrintText Loop:
  ;
  ; Fetch the byte from code space.
  ;
  move DP[0], #0800Dh
                           ; This is where the address of the table is stored.
                            ; Get the location of the function table.
  move ACC, @DP[0]
                            ; Add the index to the moveDPlinc function.
  add
        #7
  move DP[0], ACC
move ACC, @DP[0]
                            ; Point to where the address of moveDP1 is stored.
                           ; Retrieve the address of the function.
  call ACC
                             ; Execute the function.
  move ACC, GR
  jump Z, PrintText_Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
  jump PrintText Loop ; Process the next byte.
PrintText Done:
  ret
```

REVISION HISTORY

Rev 0; 10/04: Original release.

- Rev 1; 10/05: Family Commands section updated. Commands 11h, 20h, 21h, 30h, 31h, and 60h, input to dump, > 256, byte 3 changed from AddressH to AddressL.
- Rev 2; 11/05: Added note on using the alternate 32kHz clock with Timer 2.
 Updates and clarifications to POR, LCD, interrupt, utility ROM, and JTAG sections.
 Added instruction set summary table from MAXQ Family User's Guide to Section 18.
- Rev 3; 6/07: Corrected P6.5 special function from Timer 2 (Type 2) to Timer 0 (Type 2) in Table 10 and Table 11 (pages 34 and 36).

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© &\$\$+ Maxim Integrated

The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.