Keywords: CSA, CSM, DC accuracy, current sense amplifier, current shunt monitor, currentsense amplifier, currentshunt monitor
Related Parts 


Lord Kelvin’s Sensing Method Lives On in the Measurement Accuracy of UltraPrecision CurrentShunt Monitors/CurrentSense Amplifiers

Ultraprecision, highside current sensing is crucial in applications where one must measure the current entering or leaving a battery. Today many digital multimeters feature fourlead Kelvin sensing to eliminate the series resistance of the multimeter leads and give an accurate voltage drop across a given resistor. Similarly, a currentshunt monitor (CSM) or currentsense amplifier (CSA) measures voltage drop across a shunt resistor based on the current flown into or out of the battery. This is how you determine the amount of current drawn by the load from a battery in realworld applications. Systems today use low power and require a very accurate measure of charge left in the battery. To quantify remaining charge, every microamp drawn from the battery by the load or pumped into the battery by a charger needs to be accounted for. Thus, ultraprecise sensing of voltage drop across the shunt is critical.
This article discusses how to measure voltage drop across a shunt resistor with very high precision. We will show how an ultrahighprecision CSM measures voltage drop across the shunt resistor with typical connections, and then compare this value with the CSM accuracy specification in its datasheet. Then we examine ways to improve the measurement accuracy using that same CSM. These measurements are enhanced utilizing the proven Kelvin sensing methods with a fourterminal sense resistor. Test results also show that one should be careful with the board layout. Once the layout practices listed in this article are followed, we can capitalize on Kelvin sensing and sense the microvolt level drop across the sense resistor with ultrahigh precision.
Before we talk about ultraprecision CSMs/CSAs, let’s start with a look back in time to an impressive scientist and avant garde engineer, Lord Kelvin (Figure 1). Lord Kelvin’s pioneering effort is the basis of many electronic principles that we take for granted in our daily life, such as knowing when our cell phone needs charging. Kelvin’s work in measuring very low resistances is still used in modern integrated circuits (ICs). In fact, when you accurately measure battery capacity by applying early Kelvin principles and additional math, battery life is extended by preventing overcharging or discharging.
Figure 1. A portrait of Lord Kelvin (1824–1907) by Sir Hubert von Herkomer (1849–1914).^{1}
Early instruments such as the Kelvin bridge (Figure 2) are amazingly accurate by today’s standards.
Figure 2. An early Kelvin bridge for making accurate resistance measurements of very lowohm resistors.
Note the block diagram in the center of Figure 2. On the left is a battery and below are four leads. The outer leads supply current through resistor X, while the inner leads isolate the measuring circuit. It is easier to see the Kelvin sensing principle in Figure 3.
Figure 3. A block diagram showing the Kelvin sensing method.
By separating the main current path from the measurement path, Kelvin improves measurement accuracy. In Figure 3, the main current to be measured flows from the battery on the top left through the ammeter (A), and the voltage drops across resistor “X” (the gray bar at the bottom) between leads 2 and 3. Virtually no current flows through the voltmeter circuit (V and leads 2 and 3) due to very highinput impedance and, hence, the voltmeter makes a highly accurate measurement. The current is the same at all parts of the main circuit comprised of the ammeter, battery resistor, and leads 1 through 4. However, leads 1 and 4 contribute series resistance that, in turn, contributes to a finite amount of voltage drop along the leads. Although very small voltage drops, nonetheless, they reduce accuracy. By separating the main current path from the measurement path, Kelvin’s sensing improves the accuracy of measurements. Of course, knowing any two of the three parameters—voltage, current, and resistance—we can calculate the third parameter.
Figure 4 shows connections around a CSM used for monitoring current from the battery into the load. We might think at the outset that there is nothing wrong with Figure 4. However, this design will not yield the ±0.23% gain error specified for this CSA. The design problems actually result from shortcomings in the board layout and poor schematic placement.
Figure 4. Typical connections to measure drop across a sense resistor. The example device serving as the shunt monitor is the MAX44286 CSA.
When we examine the schematic placement in Figure 4 and make some adjustments, we can preserve the shunt monitor’s DC accuracy parameters like gain accuracy and inputoffset voltage. The example shunt monitor shown here is the MAX44286 available in a 4bump waferlevel package (WLP) with 0.78mm x 0.78mm x 0.35mm dimensions. These findings and recommendations will apply similarly to any precision CSA. Although our analysis here is done with the MAX44286, the results are true and should hold good for any highprecision CSMs.
We begin the analysis of Figure 4 with a wellknown axiom:
V_{OUT} = Gain × V_{DIFF} …  (Eq. 1) 
Where:
Gain accuracy or gain error is a critical parameter in precision applications where highly accurate sensing is needed on µVtomV level drops across a sense resistor. Therefore:
Gain Error (GE) = [(Gain_{MEAS} – Gain_{IDEAL}) × 100]/Gain_{IDEAL} …….  (Eq. 2) 
Where:
Below are the results for the MAX44286 on bench tests for the setup in Figure 4. To read the most accurate measurement of voltage drop, we calculate gain error by a twopoint differential voltage covering both extremes of the fullscale differential sense range. Our test conditions were V_{BAT} = 5.5V with G_{IDEAL} = 50V/V version at room temperature. Specifically:
So, calculating gain error per Equation 2 yields:
Gain Error (GE) = 0.23713148%
Now this result is not what we expect from this CSM, as its maximum gain error specification is ±0.23%.
Another important specification in these ultraprecision sense amplifiers is input offset voltage, given by:
V_{OS} = (V_{OUT}  V_{DIFF} × G_{MEAS})/G_{MEAS} …  (Eq. 3) 
Where:
V_{OS} is the CSM’s inputoffset voltage specified in microvolts due to mismatch in the input pair. From Equation 3 and our test results, we achieve:
V_{OS} = 5.93281µV
There is a way to achieve gain error that is always less than ±0.2%, and better inputoffset voltage. Examine Figure 5 and notice that there are a few more traces than in Figure 4.
Figure 5. Circuit shows Kelvin connections on both inputs, output, and ground bump. Once again the MAX44286 is the example CSA acting as the shunt monitor.
Traces from the senseresistor terminals to the amplifier inputs carry input bias current. Supply current to the amplifier is part of the input bias current drawn through the RS+ pin because there is no dedicated supply voltage pin on the MAX44286. Otherwise, the input bias current flows through the RS+ and RS pins and the supply current flows through the V_{CC} pin, if there is a dedicated supply pin. Also, this current through the RS+ bump increases as the input differential voltage increases. Trace impedance will create a drop due to this current flow through the trace. The result will be extra gain error if the input sense voltage is calculated across the sense resistor, since we did not account for loss along the trace. These extra traces at the input bumps, RS+ MEASURE and RS MEASURE, will have no effect on the input sense voltage when it is measured across them.
Note also that the extra GND MEASURE trace is isolated from the currents flowing to the board’s ground and is solely used as a ground reference for accurate output voltage measurement. Another trace coming from the OUT bump, V_{OUT},MEASURE, is isolated from the actual output trace carrying the load current when the load resistor sources or sinks current out of the amplifier. This isolation lets us accurately measure the output voltage at the OUT bump with respect to the GND MEASURE trace. From all this we can calculate the gain error and input V_{OS} of the CSA very precisely.
If you notice, there is a fourterminal resistor used in Figure 5. The 4lead Kelvin configuration enables current to be applied through two opposite terminals; a sensing voltage is measured across the other two terminals. This design eliminates the resistance and temperature coefficient of the terminals for a more accurate current measurement. Also, traces from the senseresistor terminals are taken directly underneath the pads of the resistor, thus preventing any additional trace impedance on the sense resistor.
The results below were achieved on the bench with the setup shown on Figure 5. Gain error is calculated similarly where a twopoint differential voltage covering both extremes is applied to the shunt monitor and the output voltages recorded. Our test conditions were the same as earlier, V_{BAT} = 5.5V with G_{IDEAL} = 50V/V for the CSA at room temperature. Therefore, V_{DIFF} = 60mV, 4mV as two extremes.
Now V_{DIFF} is the input differential voltage measured between RS+ MEASURE and RS MEASURE. Also the V_{OUT},MEASURE values, with respect to the GND MEASURE for 60mV and 4mV input sense voltages applied, are 3.013034V and 0.2141941V respectively. Thus:
G_{MEAS} = V_{OUT}/V_{DIFF}  (Eq. 4) 
So, calculating gain error from Equation 2 yields:
Gain error = 0.08518056%
Substituting V_{OUT},MEASURE calculated with respect to GND MEASURE and substituting in Equation 3 yields:
V_{OS} = 3.54415µV
We can clearly see that there is an appreciable change in the gain error and input V_{OS}. Thus, preserving the ultraprecise measurements of a CSA depends on the layout and component placement on the test fixture. If we use the sensing traces to measure as shown in Figure 5, measurements are very accurate. In ultraprecision applications, sense voltages on the order of microvolts are very important for sensing current on the order of microamps. Clearly, each trace must be laid out with great care.
Traces from each senseresistor terminal to the respective input bumps need to be symmetrical in shape and length. A 2terminal sense resistor will also provide good gain accuracy readings within a maximum of ±0.23% over temperature. For more accurate results over temperature, use a 4terminal sense resistor.
Thus, we complement Lord Kelvin’s sensing principles by preserving the DC accuracy of an ultraprecision CSA. Precision measurements not only depend on the good design and layout of the CSA itself, but on the board layout as well.
Reference
A similar version of this article appeared February 14, 2015 in Power Systems Design.
Related Parts  
MAX4070  Bidirectional, HighSide, CurrentSense Amplifiers with Reference  Samples 
MAX44286  LowPower, Precision, 4Bump WLP, CurrentSense Amplifier  Samples 
MAX9634  nanoPower, 4Bump UCSP/SOT23, Precision CurrentSense Amplifier  Samples 
MAX9923  UltraPrecision, HighSide CurrentSense Amplifiers  Samples 
MAX9934  HighPrecision, LowVoltage, CurrentSense Amplifier with Current Output and Chip Select for Multiplexing  Samples 
Next Steps  
EEMail  Subscribe to EEMail and receive automatic notice of new documents in your areas of interest. 
Download  Download, PDF Format (961.4kB) 
© Mar 17, 2015, Maxim Integrated Products, Inc. 
APP 5761: Mar 17, 2015
APPLICATION NOTE 5761, AN5761, AN 5761, APP5761, Appnote5761, Appnote 5761 