RELIABILITY REPORT
FOR
MAX3353EEUE+
PLASTIC ENCAPSULATED DEVICES

September 10, 2009

MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Approved by

<table>
<thead>
<tr>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Wendel</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Director, Reliability Engineering</td>
</tr>
</tbody>
</table>
Conclusion

The MAX3353EEUE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.

Table of Contents

I. Device Description
II. Manufacturing Information
III. Packaging Information
IV. Die Information
V. Quality Assurance Information
VI. Reliability Evaluation

I. Device Description

A. General

The MAX3353E I²C-compatible USB On-the-Go (OTG) regulated charge pump with switchable pullup/pulldown resistors allows peripherals and mobile devices such as PDAs, cellular phones, and digital cameras to be interconnected without a host PC. The MAX3353E enables a system with an integrated USB dual-role transceiver to function as a USB OTG dual-role device. The charge pump in the MAX3353E supplies VBUS power and signaling that is required by the transceiver as defined in On-the-Go Supplement: USB 2.0, Revision 1.0. The MAX3353E provides the switchable pullup and pulldown resistors on D+ and D- required for a dual-role device. The MAX3353E integrates a regulated charge pump, switchable pullup/pulldown resistors, and an I²C-compatible 2-wire serial interface. The device provides a detector to monitor ID status and operates with logic supply voltages (VL) between +1.65V and VCC and charge-pump supply voltages (VCC) from +2.6V to +5.5V. The charge pump supplies an OTG-compatible output on VBUS while sourcing 8mA output current. The MAX3353E enables USB OTG communication between digital logic parts that cannot supply or tolerate the +5V VBUS levels that USB OTG requires. By controlling and measuring VBUS using internal comparators, this device supports USB OTG session request protocol (SRP) and host negotiation protocol (HNP). The MAX3353E has built-in ±15kV ESD protection circuitry to guard VBUS, ID_IN, D+, and D-. The MAX3353E is available in a 5 x 4 chip-scale package (UCSP™) and 16-pin TSSOP package.
II. Manufacturing Information

A. Description/Function: USB On-the-Go Charge Pump with Switchable Pullup/Pulldown Resistors
B. Process: B8
C. Number of Device Transistors:
D. Fabrication Location: California or Texas
E. Assembly Location: Philippines, Thailand, Malaysia
F. Date of Initial Production: April 25, 2003

III. Packaging Information

A. Package Type: 16-pin TSSOP
B. Lead Frame: Copper
C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-2601-0097
H. Flammability Rating: Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C Level 1
J. Single Layer Theta Ja: 106°C/W
K. Single Layer Theta Jc: 27°C/W
L. Multi Layer Theta Ja: 90°C/W
M. Multi Layer Theta Jc: 27°C/W

IV. Die Information

A. Dimensions: 83 X 103 mils
B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)
C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization: None
E. Minimum Metal Width: 0.8 microns (as drawn)
F. Minimum Metal Spacing: 0.8 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO2
I. Die Separation Method: Wafer Saw
V. Quality Assurance Information

A. Quality Assurance Contacts:
 Ken Wendel (Director, Reliability Engineering)
 Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate:
 < 50 ppm

D. Sampling Plan:
 Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

 The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (χ) is calculated as follows:

 \[\chi = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 96 \times 2} \]
 (Chi square value for MTTF upper limit)

 \[\chi = 11.2 \times 10^{-9} \]
 \[\chi = 11.2 \text{ F.I.T. (60% confidence level @ 25°C)} \]

 The following failure rate represents data collected from Maxim’s reliability monitor program. Maxim performs quarterly life test
 monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor.
 Cumulative monitor data for the B8 Process results in a FIT Rate of 0.06 @ 25C and 0.99 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

 The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

 The RT48 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883
 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA, 1.5x VCCMax Overvoltage per
 JESD78.
<table>
<thead>
<tr>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
<th>FAILURE IDENTIFICATION</th>
<th>SAMPLE SIZE</th>
<th>NUMBER OF FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Life Test</td>
<td>Ta = 135°C</td>
<td>DC Parameters & functionality</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 192 hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Testing</td>
<td>Ta = 130°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RH = 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time = 96hrs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Stress</td>
<td>-65°C/150°C</td>
<td>DC Parameters & functionality</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1000 Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method 1010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data