PRODUCT RELIABILITY REPORT
FOR

DS2484

Maxim Integrated

14460 Maxim Dr.
Dallas, TX 75244

Approved by:

Sokhom Chum
MTS, Reliability Engineering
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim Integrated products:

DS2484

In addition, Maxim Integrated's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maximintegrated.com/qa/reliability/monitor.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://www.maximintegrated.com/search/parts.mvp.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[\text{AfT} = \exp\left(\frac{Ea}{k}\left(\frac{1}{Tu} - \frac{1}{Ts}\right)\right) = \frac{tu}{ts} \]

\(\text{AfT} \) = Acceleration factor due to Temperature
\(tu \) = Time at use temperature (e.g. 55°C)
\(ts \) = Time at stress temperature (e.g. 125°C)
\(k \) = Boltzmann’s Constant (8.617 x 10-5 eV/°K)
\(Tu \) = Temperature at Use (°K)
\(Ts \) = Temperature at Stress (°K)
\(Ea \) = Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[\text{AfV} = \exp\left(B\left(Vs - Vu\right)\right) \]

\(\text{AfV} \) = Acceleration factor due to Voltage
\(Vs \) = Stress Voltage (e.g. 7.0 volts)
\(Vu \) = Maximum Operating Voltage (e.g. 5.5 volts)
\(B \) = Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, Fr, is related to the acceleration during life test by:

\[Fr = \frac{X}{(ts \times \text{AfV} \times \text{AfT} \times N \times 2)} \]

\(X \) = Chi-Sq statistical upper limit
\(N \) = Life test sample size
The calculated failure rate for this device/process is:

\[\text{MTTF} = \frac{1}{F_{r}} \]

NOTE: MTTF is frequently used interchangeably with MTBF.

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. Product Number denotes specific product data.

Device Information:
- **Process:** Maxim X3 Fab S18M 5V CMOS, 2V CMOS, 4 metals
- **Passivation:** SiN / SiO2
- **Die Size:** 57 x 40
- **Number of Transistors:** 21438
- **Interconnect:** Aluminum / 0.5% Copper
- **Gate Oxide Thickness:** 140Å

ESD HBM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 1000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 1500 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 2000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 4000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 6000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD22-A114 HBM 8000 VOLTS</td>
<td>1</td>
<td>PUL'S</td>
<td>5</td>
</tr>
</tbody>
</table>

Total: 0

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD78A, I-TEST 25C 100mA</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LATCH-UP I</td>
<td>DS2484</td>
<td>ZJ332803AD</td>
<td>JESD78A, I-TEST 25C 250mA</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
OPERATING LIFE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1018 DS28E10</td>
<td>QH00900A 125C, 3.6 VOLTS</td>
<td>192 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1244 DS2483</td>
<td>ZJ330302AE 125C, 5.25 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1319 DS2484</td>
<td>ZJ332803AD 125C, 5.25 VOLTS</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total:

FAILURE RATE:

MTTF (YRS): 11591 **FITS:** 9.8

DEVICE HOURS: 93034004 **FAILS:** 0

Cumulative monitor data for the S18 Process results in a FIT Rate of 0.05 @ 25C and 0.93 @ 55C (0.8 Ev, 60% UCL).