应用笔记 5271

车载双通道远端天线LDO/开关的外部元件选择

By: Andrea Longobardi

摘要 : 本应用笔记帮助系统设计者在使用MAX16948双通道远端天线LDO/开关时选择正确的外部元件,确保车载稳压幻象天线电源和输出电流监测电路满足性能指标。本文提供电子计算器,帮助限定MAX16948的关键外部元件,缩短设计时间。计算器也确定器件的模拟输出电压、输出限流门限,以及输出电流检测精度。计算器包括新的自动逐步向导功能,帮助设计者选择元件。为使用新自动功能,点击相应部分的Step By Step按钮。

引言

MAX16948是一款双通道、高电压、低压差线性稳压器(LDO)/开关,带有输出电流检测功能。器件通过同轴电缆为汽车系统中的远端射频(RF)低噪声放大器(LNA)提供幻象电源,每通道的最大电流达300mA。MAX16948设计工作在4.5V至28V的输入电压范围(45V抛负载容限)。
器件提供8.5V固定稳压输出电压或1V至12V可调稳压输出电压(LDO模式)。器件也可以配置为开关(SW模式)。
MAX16948监测每通道的负载电流,提供两路与检测输出电流成比例的模拟输出电流(从SENSE_¹引脚源出)。高精度内部可调电流限值保护输入电源不受过流和短路条件的损害。
器件具有电池短路保护、反向电流检测、输入过压和热过载关断功能,这些故障条件期间,闭锁内部LDO/开关。MAX16948包括两路独立的低电平有效、高压兼容关断输入(SHDN_),可以将每通道置于低功耗关断模式,以及将两路低电平有效开漏错误报警输出(ERR_)。

MAX16948的外部元件

图1所示为MAX16948的典型应用电路。主要外部元件及其功能如下:
  • R1_和R2_设置器件处于输出电压可调的LDO模式时的稳压输出电压。
  • RLIM_设置限流门限。
  • RSENSE确定ADC满幅输入电压和输出电流检测精度。
图1. MAX16948典型应用电路
图1. MAX16948典型应用电路。
利用这些外部元件,用户很容易针对具体应用配置MAX16948。还需要其它外部元件,将在下文中讨论。

输入电容

在IN和GND之间并联电解电容和低ESR陶瓷电容,以限制瞬时输出短路条件期间的输入电压降,以及防止器件受到IN线上电感引起的瞬态损害。例如,如果估算输入电感(包括任何杂散电感)为20µH,使用至少0.1µF陶瓷电容与至少10µF电解电容并联。
MAX16948的工作输入电压接近于输出电压时,例如处于压差下的SW工作模式或LDO模式,必须小心谨慎,避免在对地短路故障时发生错误的反向电流检测。如果两路通道均已使能,其中一路在启动后对地短路,从CIN吸收的电流可能会造成输入电压短时跌落,这可能会触发反向电流检测故障。这种错误故障检测在低输出电流(小于80mA)时更为严重。为避免这种错误触发事件,采用至少100µF的输入电解电容。

LDO模式输出电压

LDO模式下使用时,器件的每个通道可配置为提供8.5V固定输出或1V至12V可调输出电压。通过将FB_引脚连接至REG,将输出电压设置为8.5V。该模式下,由于无需考虑外部电阻的容限,所以输出电压精度较高。
需要不同输出电压时,在OUT_、FB_和GND之间连接电阻分压器。确定电阻分压器值的公式如下所示。
图2. MAX16948稳压幻象电源
图2. MAX16948稳压幻象电源。
电阻R1_和R2_ (图2)设置MAX16948的输出电压。选择小于或等于1kΩ的R2_标准电阻(R2_(STD))。利用下式计算最优的R1_值:
Equation 1.
式中,VFB_为调节范围内的反馈引脚电压(标称值为1V)。
选定尽量接近R1_的标准电阻²R1_(STD))后,典型输出电压为:
Equation 2.
考虑到电阻容差(RTOL),输出电压的最小和最大值为:
Equation 3.
Equation 4.
式中,VFB_(MIN)为0.97V,VFB_(MAX)为1.03V (输出电流范围为5mA至150mA)。R1_(MIN)、R1_(MAX)、R2_(MIN)和R2_(MAX)分别为R1_和R2_的最小值和最大值:
Equation 5.
Equation 6.
如果标称输出电压相对于预期输出电压的偏离太大,可采用标准电阻的串联或并联组合,实现最优电阻分压器。
将预期输出电压(VOUT_)、R2_的标准值及这些电阻的容差填入MAX16948计算器的对应部分,用户很容易确定R1_的值。计算器确定最优R1_值后,在相应单元中插入标准值,以估算VOUT_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成LDO模式输出电压部分。
在OUT_和GND之间连接大于> 1µF的电容与0.1µF低ESR (< 900mΩ)电容并联,实现稳压器稳定性。这些电容应尽量靠近器件。使用电介质为X7R的电容,以确保器件的整个工作温度范围内的稳定性。
与输入电容的方式相似,输出电容保护器件不受输出中任何串联电感引起的瞬态损害。在任何条件下,OUT_上的电压都不应低于-0.3V,如数据资料中Absolute Maximum Ratings部分规定。如果预计瞬态会低于地,需要肖特基二极管作箝位,尤其PCB上在负载之前有输出电感时。所选肖特基二极管的正向偏压必须小于0.3V,正向电流等于限流门限。³

限流门限

LIM_引脚电压达到VLIM门限(典型值为2.5V)时,MAX16948限制OUT_的输出电流。从LIM_源出的电流与从OUT_源出的负载电流成比例,比例因子称为电流检测放大器(CSA)增益。这种方式下,限流门限ILIM_由电阻RLIM_设置。
利用下式确定最优RLIM_值:
Equation 7.
式中,ILIM_为预期限流门限,VLIM(TYP)为限制输出电流时LIM_引脚上的典型电压门限(2.5V),A(TYP)为CSA增益典型值(0.005mA/mA)。
选择标准电阻值(RLIM_(STD)),尽量接近RLIM_。那么典型限流门限为:
Equation 8.
考虑到容差不相关性,最坏情况限流门限范围介于以下两个公式之间:
Equation 9.
Equation 10.
式中,VLIM_(MIN)为2.375V,VLIM_(MAX)为2.625V;A(MIN)为0.00485mA/mA,A(MAX)为0.00515mA/mA (典型输出电流100mA);RLIM_(MIN)和RLIM_(MAX)为RLIM_的最小和最大值,基于RTOL的值。
Equation 11.
Equation 12.
如果限流门限范围不合适,可采用标准电阻的串联或并联组合,获得最优范围。
MAX16948计算器4通过选择限流门限范围限值(ILIM_(TYP)、ILIM_(MIN)或ILIM_(MAX)),计算RLIM_的最优值,帮助用户选择RLIM_电阻。通过选择ILIM_(TYP)、ILIM_(MIN)或ILIM_(MAX),以及相对限流门限值和RLIM_容限,实现以上目的。计算器确定最优RLIM_值后,在相应单元中插入标准电阻值,以估算ILIM_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成限流门限部分。
必须将0.1µF补偿电容(CLIM__)与RLIM_并联,以在限流环路中建立主导极点。这样可维持稳定性,并防止快速电流瞬态过早触发限流(图3)。
图3. MAX16948输出限流
图3. MAX16948输出限流。

ADC输入范围和输出电流检测精度

MAX16948源出的电流与OUT_引脚上的负载电流成比例,比例因子为CSA增益。该电流通过RSENSE_,产生与输出电流成比例的电压。利用这一特性,就可能利用ADC采样SENSE_引脚上的电压,从而监测输出电流。
ADC满幅输入电压(VADCFS_)由RSENSE_设置。
利用下式确定最优RSENSE_值:
Equation 13.
式中,ILIM_(TYP)为之前部分计算的典型限流门限,A(TYP)为CSA增益典型值(0.005mA/mA)。
选择标准电阻值(RSENSE_(STD)),尽量接近RSENSE_。那么典型ADC满幅输入电压为:
Equation 14.
考虑到电阻容差(RTOL),ADC满幅输入范围的最小和最大值为:
Equation 15.
Equation 16.
式中,VLIM_(MIN)为2.375V,VLIM_(MAX)为2.625V;RLIM_(MIN)和RLIM_(MAX)已在之前部分计算得到;RSENSE_(MIN)和RSENSE_(MAX)的最小和最大值,基于RTOL值。
Equation 17.
Equation 18.
利用电子计算器5的输出电流检测部分,用户在插入相应的ADC满幅输入电压(VADCFS_)和RSENSE_的容差后,很容易确定RSENSE_值。计算器确定最优RSENSE_值后,在相应单元中插入标准值,以估算VADCFS_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成输出电流检测部分。
然而,使用该部分之前,需要在计算器的限流门限部分确定ILIM_范围限值。
应将0.1µF电容(CSENSE)与RSENSE_并联,以在ADC采样循环期间保持电压(图4)。
图4. ADC输入范围
图4. ADC输入范围。
利用ADC (VADC_)测得SENSE_引脚上的电压后,可用下式估算输出电流:
Equation 19.
由于RSENSE_容限和CSA增益参数值离散,估算的输出电流值会在以下两个公式之间变化:
Equation 20.
Equation 21.
用100mA典型输出电流代替CSA增益值:
Equation 22.
Equation 23.
最终,ADC测量电流的精度为:
Equation 24.
也可在计算器的输出电流检测部分的O.C.S精度行中确定该参数。

负载开路和过流条件检测

除ADC采样外,通过使用外部比较器以及将RSENSE_分成电阻分压器(R3_、R4_和R5_) (图5),可检测负载开路或过流条件。
图5. 负载开路和过流检测电路
图5. 负载开路和过流检测电路。
比较器的输出(OC_和OL_)表示电路的工作状态,如表1所示。
表1.电路工作状态
OC OL State
0 0 Normal Operation
0 1 Open-Load Condition
1 0 Overcurrent Condition
1 1 Invalid State
利用下式确定R5_值:
Equation 25.
式中,IOPEN-LOAD_为通过LDO/开关的预期负载开路电流门限,VOL_,TH为比较器U2_的负载开路电压门限,A(TYP)为CSA增益典型值(0.005mA/mA)。计算得到R5_电阻值后,利用下式确定R4_值:
Equation 26.
式中,IOVERCURRENT_为通过LDO/开关的预期过流门限,必须小于ILIM_(MIN);VOC_,TH为比较器U1_的过流电压门限;A(TYP)为CSA增益典型值(0.005mA/mA)。
最后,计算R3_
R3_ = RSENSE_ - R4_ - R5_
考虑到R3_、R4_和R5_标准电阻的容差(RTOL),负载开路和过流门限的最小、典型和最大值为:
Equation 28.
Equation 29.
Equation 30.
Equation 31.
Equation 32.
Equation 33.
式中,A(MIN)为0.00485mA/mA,A(MAX)为0.00515mA/mA (典型输出电流100mA);R4_(MIN)、R4_(MAX)、R5_(MIN)和R5_(MAX)分别为R4_和R5_的最小和最大值,基于RTOL容限。
Equation 34.
Equation 35.
Equation 36.
Equation 37.
用户可利用计算器6的负载开路和过流检测部分确定R4_、R5_和R6_的值。插入IOPEN-LOAD_ (IOL_)、IOVERCURRENT_ (IOC_)、VOL_,TH、VOC_,TH和电阻容限。利用计算器确定R4_、R5_和R6_的最优值后,在相应单元中插入标准电阻值,以估算IOPEN-LOAD_和IOVERCURRENT_范围限值。点击Step By Step按钮,由计算器逐步引导完成负载开路和过流检测部分。
使用计算器的负载开路和过流检测部分之前,需要在输出电流检测部分确定RSENSE_

计算示例

这些计算例子中,我们假设天线幻象电源应用,电源输入电压为5V,典型负载电流为100mA,最大限流门限值为120mA,采用3.3V输入范围ADC来监测输出电流。
假设MAX16948的IN引脚直接连接至电池,器件必须配置为LDO模式,以获得5V OUT_电压。为此,必须确定R1_和R2_组成的外部电阻分压器。为R2_ (R2_(STD))选择小于或等于1kΩ的标准值,然后计算R1_
R2_(STD) = 750Ω, RTOL = 1% (E96 Series)
Equation 39.
从E96系列中选择标准电阻(R1_(STD) = 3010Ω),输出电压范围为:
Equation 40.
Equation 41.
Equation 42.
为使最大限流门限(ILIM_(MAX))等于120mA,可重新整理ILIM_(MAX)公式后计算RLIM_
Equation 43.
Equation 44.
从E96系列中选择标准电阻(RLIM_(STD) = 4530Ω),限流门限范围为:
Equation 45.
Equation 46.
Equation 47.
ADC输入范围为3.3V时,计算最优RSENSE_如下:
Equation 48.
从E96系列选择标准电阻(RSENSE_(STD) = 6040O, RTOL = 1%),ADC满幅输入电压范围为:
VADCFS_(TYP) = RSENSE_(STD) × ILIM_(TYP) × A(TYP) = 6040Ω × 110.375mA × 0.005 = 3.333V
VADCFS_(MIN) = RSENSE_(MIN) × ILIM_(MIN) × A(MIN) = 5979.6Ω × 100.794mA × 0.00485 = 3.104V
VADCFS_(MAX) = RSENSE_(MAX) × ILIM_(MAX) × A(MAX) = 6100.4Ω × 120.685mA × 0.00515 = 3.571V
那么输出电流监测的精度为:
Equation 52.
*关于这些计算的更多详细信息,请参见MAX16948的数据资料

相关型号
MAX16948 免费样品
下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
© , Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 5271:
应用笔记 5271,AN5271, AN 5271, APP5271, Appnote5271, Appnote 5271