应用笔记 4929

改造低频ISM发送器使其支持高频应用


摘要 : 300MHz至450MHz频段的ISM射频(RF)发送器已广泛用于欧洲434MHz市场,这也是美国260MHz至470MHz频段的重要频点。本文探讨了是否可以用现有的300MHz至450MHz RF IC构建868MHz发送器。868MHz发送器主要面向欧洲868MHz至870MHz免授权波段的应用。此外,本文就一系列测试展开讨论,分析了采用一个或多个设计用于300MHz至450MHz ISM频段的RF发送器在868MHz频率下所能提供的发射功率。

类似文章发表在2011年6月27日的EE Times杂志。

引言

低频(300MHz至450MHz) ISM RF发送器已广泛用于欧洲434MHz市场,这也是美国260MHz至470MHz频段的重要频点。本文介绍了如何使用现有的低频段RF IC构建868MHz发送器,以支持欧洲868MHz至870MHz免授权频段应用。

本文重点讨论了一系列测试,分析采用一个或多个设计用于300MHz至450MHz ISM频段的RF发送器在868MHz频率下所能提供的发射功率。

理论挑战

对于大多数低频ISM发射器,其开关功率放大器(PA)产生的二次谐波仅比基波频率低3dB。如果允许牺牲部分效率和功率性能,是否可以采用设计用于434MHz的IC来构建868MHz ASK发送器呢?由于相位噪声密度仅仅满足欧洲电信标准协会(ETSI)对于欧洲434MHz免授权波段的带外辐射标准要求,该相位噪声密度无法满足868MHz频段更为严格的要求。但这并不意味着设计868MHz ASK发送器没有任何价值。一些用户可能只需要很低的发射功率,或者只需对低频段IC的振荡器进行一些修改,并不需要进行全新的设计。

开关功率放大器的RF频谱

大多数低频ISM RF发送器中,开关功率放大器会产生占空比为0.25的周期脉冲,该脉冲序列的周期即为载波周期。理论上,脉冲序列的频谱是一组位于载频整数倍频点、以均匀间隔排列的谱线。每条谱线的幅度由函数sinc (sinx/x)加权,其中在4倍载频的整数倍频点处,幅度为零。图1给出了434MHz载波频谱的前六次谐波。868MHz分量(二次谐波)仅比基频434MHz低3dB。事实上,电路中的开关放大器只是驱动一个调谐电路,而电路特性主要取决于对基频谐波的抑制能力。如果调谐电路具有相对较宽的频带,那么它在868MHz处的辐射功率与基频功率的差值就会小于3dB。

图1. 434MHz频点处,25%占空比RF脉冲的基波与谐波理论功率
图1. 434MHz频点处,25%占空比RF脉冲的基波与谐波理论功率

MAX7044EVKIT的谐波滤波器去掉,同时将偏置电感更改为62nH (这个值与2pF至2.5pF的寄生电容产生谐振),可以在此评估板上验证3dB的差异。由L-C组成的谐振电路具有较宽的频带。因此,当功率放大器输出直接连接到50Ω负载时,不会大幅衰减868MHz处的谐波。图2所示为频谱分析仪在434MHz和868MHz频点的显示结果。868MHz分量比434MHz分量低3.5dB,这说明谐振电路衰减了0.5dB。

图2. MAX7044EVKIT的ISM发送器工作在434MHz时的频谱
图2. MAX7044EVKIT的ISM发送器工作在434MHz时的频谱

下一步是修改匹配网络以增强868MHz二次谐波,并衰减434MHz基频。

修改天线匹配电路以支持868MHz系统

434MHz匹配网络拓扑

利用已有的434MHz频段拓扑结构对MAX7044EVKIT进行修改,使其支持868MHz频点应用。所有ISM RF发送器评估板的匹配网络在300MHz至450MHz频段具有相同的拓扑结构,如图3所示。图中器件标号与MAX7044EVKIT评估板标示相同。

图3. MAX7044EVKIT的匹配网络和器件标号
图3. MAX7044EVKIT的匹配网络和器件标号

采用这种拓扑结构时,有多种方法可以将电路匹配至50Ω负载。最直接的方法是将C2-L3-C6的π型网络配置为50Ω低通滤波器来抑制谐波。然后,使用C1-L1组成的“L”型窄带阻抗变换网络将50Ω变换到高阻。除了280MHz至450MHz、可编程发送器MAX7044MAX7060外,所有Maxim ISM RF低频段发送器在驱动125Ω至250Ω负载时的功效是最高的。MAX7044在低频驱动50Ω至60Ω负载时具有最高发射功率(2.7V供电时为13dBm)。增大发送器功率放大器输出端的阻抗,可以降低发射功率和供电电流。正常工作在低频时,选择电感和电容用于匹配功率放大器在设计频率下要求的阻抗。对于MAX7044EVKIT,LC网络在433.92MHz时能够很好地匹配在50Ω负载。

以下实验的目的是改变433.92MHz评估板的匹配网络(使其在868MHz下能够很好地匹配),同时降低其在434MHz频点的发射功率。

功率放大器输出电路调谐至868MHz

设计868MHz频率下的匹配电路,第一步是尝试可行的、最简单的匹配方案,即功率放大器输出端连接至50Ω电阻的868MHz谐振电路。这种方式用于产生图1中的基线频谱。然而,这种情况下,偏置电感与功率放大器引脚的寄生电容谐振工作在868MHz (而不是434MHz)。如配置为图4所示原理图,MAX7044EVKIT功率放大器偏置电感需由62nH (434MHz谐振电路)改为16nH (868MHz谐振电路)。另外,移除π型网络中的并联电容,将串联电感替换为0Ω电阻。最后,将π型网络与偏置电感之间的串联电容C1改为47pF,作为868MHz的隔直电容。

图4. MAX7044EVKIT工作在868MHz时的简单谐振电路匹配网络
图4. MAX7044EVKIT工作在868MHz时的简单谐振电路匹配网络

下面列出了434MHz基频及前4次谐波的功率测量值。图5给出了434MHz和868MHz处的频谱分量,频率值四舍五入至最接近的1MHz内。

VDD = 2.7V,I = 16.83mA,IPLL = 2.06mA,IPA = I –IPLL = 14.77mA
P(434MHz) = +9.0dBm
P(868MHz) = +8.65dBm
P(1302MHz) = +4.5dBm
P(1736MHz) = -3.0dBm

功率放大器总效率(全部四个频点的功率/(VDD × IPA)) = 46.6%
868MHz频点处功率放大器的效率 = 18.4%。

图5. MAX7044EVKIT谐振电路调谐至868MHz时的频谱
图5. MAX7044EVKIT谐振电路调谐至868MHz时的频谱

由于868MHz谐振电路的带宽比434MHz谐振电路的带宽窄(寄生电容相同,因而电感为原来的四分之一),这样能够充分抑制434MHz处的基频,使得基频和二次谐波的功率大小几乎相等。谐振电路的这种简单修改将868MHz与434MHz处的功率比改善了将近3dB。

868MHz频点下的高通匹配

接下来,将低通π型网络改为高通网络,进一步衰减434MHz分量。16nH功率放大器偏置电感和串联电容(47pF)保持不变,π型网络(通常用作低通滤波器,抑制高次谐波)更改为简单的高通L型网络,从而将天线连接器处的50Ω阻抗转换为功率放大器输出端的200Ω。在此选用更为简单的L型网络替代完整的π型网络,可以最大程度地减少对元件的改动,保证可行性。由于采用L型网络后功率放大器输出端的等效阻抗为200Ω (而不是50Ω),其发射功率的电流损耗低于50Ω负载时的电流。

图6. 高通L型阻抗转换网络
图6. 高通L型阻抗转换网络

下面列出了434MHz处基频及前4次谐波的功率测量值。图7给出了434MHz和868MHz处频谱分量,频率值四舍五入至最接近的1MHz内。

VDD = 2.7V,IDC = 18.1mA,IPLL = 2.06mA,IPA = IDC – IPLL = 16.04mA
P(434MHz) = +2.5dBm
P(868MHz) = +11.2dBm
P(1302MHz) = +4.0dBm
P(1736MHz) = -3.2dBm

总效率(全部四个频点) = 41.5%
868MHz频点处的效率 = 30.4%。

图7. MAX7044EVKIT采用868MHz谐振电路和高通L型网络时的频谱
图7. MAX7044EVKIT采用868MHz谐振电路和高通L型网络时的频谱

高通L型匹配网络进一步衰减了434MHz分量,将868MHz分量的效率大幅提升至30.5%。这意味着对现有匹配网络做少许改动,即可使868MHz信号在50Ω天线处产生大于10dBm的发射功率。

匹配网络简单改动的总结

减小MAX7044EVKIT的偏置电感值,与IC和电路板电容共同构成868MHz谐振电路。这样使得434MHz和868MHz频点处的功率大小相同。采用简单的高通L型匹配网络替换谐波滤波器,将868MHz与434MHz的功率比提升9dB,使得868MHz成为主发射频率。虽然在功效上有少许损耗,但是电路仍然能够发射功率大于10dBm的868MHz信号。此外,还可对电路做更多的修改,以进一步提高868MHz与434MHz基频和高次谐波的功率比。

下一步工作的建议

上述简单的修改验证了通过更改外部元件可以显著提高发送器IC的二次谐波功率(相对于基频功率),同时还保持了较高的发射信号功率。这是一个很好的开端,但要发射符合868MHz欧洲免授权频段和美国915MHz频段要求的信号,还需要克服很多困难。

进一步提升868MHz分量

提高谐振电路的Q值(由偏置电感和功率放大器的对地电容组成),可以提高868MHz分量,具体可通过在功率放大器输出引脚增加一个对地电容、并且减小偏置电感来实现。在该实验中,偏置电感降至16nH,与电路板和IC上的寄生电容组成谐振电路。在保证每个元件的空载Q值不会显著影响整体效率的前提下,可以将电感进一步降至5nH至10nH范围,并将总旁路电容增大至约6pF。

在图6的C6位置增加一个并联电感构建高通π型网络,并调整电感值,可以改善高通L型匹配网络对434MHz的抑制性能。精心选择π型网络中的三个元件,可以使其对434MHz分量的抑制能力提高25dB或30dB,但是对于满足ETSI要求(如果868MHz发射信号功率为+10dBm,则所有杂散辐射均低于-36dBm)还差46dB。本文接下来将继续探讨改善抑制性能的建议方案。

保证发送器效率

上述改动的重点是提高868MHz分量并抑制434MHz分量,但这些改动将功率放大器效率由50% (434MHz发射信号)降为30% (868MHz发射信号),后续的434MHz信号抑制方案可能还会进一步影响效率。在针对434MHz发射信号设计匹配网络的早期测试中可以发现,当434MHz匹配网络失谐时,直流电流损耗会随之增大。如果典型滤波器是通过降低频点处的匹配性能来抑制这些频率的话,很显然,这些测试中的电流损耗将进一步增大。那么,如何在不显著增大直流电流、降低效率的前提下改善434MHz的抑制性能呢?

双工器方案

双工器常用于双通道接收系统,用于连接公共接收天线和两个接收器,每个接收器调谐在不同频率。双工器在两个频率下均能够为天线提供很好的匹配。如果用功率放大器替换接收天线,则会提供独立的434MHz和868MHz通道。868MHz通道连接至发射天线,434MHz通道连接至电路板的阻性负载。这种配置与简单的868MHz滤波器相比有两个优势:434MHz分量能够很好地匹配(从而保持较低的电流损耗),并且434MHz信号发送给负载,没有辐射。如果868MHz端口的天线能够正确匹配并调谐,则会对434MHz发射信号产生显著的抑制。为进一步降低434MHz下的电源电流,可以对双工器方案进行修改,使434MHz频点的阻抗高于868MHz频率阻抗。

但是该方案有一个潜在缺陷:它假设信号源是一个带有50Ω负载的线性信号源。而功率放大器的开关放大器输出不是线性的。

重新审视开关放大器模型

图1所示的频谱是基于没有滤波的功率放大器输出结果,434MHz处的波形是占空比为25%的脉冲波。功率放大器输出在434MHz周期的25%时间内呈短路状态,当匹配网络适当调谐后,短路状态出现在434MHz正弦波的波谷。这样设计使得电流在最低电压(接近于0V或地电位)时“灌入”谐振电路。该开关波形的电路模型(通过阻性负载连接至谐振电路)直接决定了功率放大器的性能。但是,需要对该模型加以修改,以构建868MHz谐振电路。以便在不显著增大电源电流的前提下,通过868MHz电路抑制434MHz分量,这同时也解释了匹配网络与434MHz失谐时电流损耗增大的原因(与采用868MHz匹配网络的实验相比,电流损耗会增大10%至20%)。在434MHz的二次谐波可能存在本地电流最低点吗?

降低相位噪声

ETSI要求所有杂散发射信号的绝对功率须低于-36dBm,这不仅限制了谐波辐射,也对发送器的相位噪声提出了要求。在欧洲,434MHz免授权频段介于433.05MHz和43479MHz之间(该频段的中心频点为433.92MHz,这也解释了该频率得到广泛应用的原因)。带外频率的辐射功率不能高于-36dBm。靠近边带频率处,MAX7044的主要噪声分量是载频的相位噪声。MAX7044的相位噪声密度为-92dBc/Hz,其中“dBc”表示“低于载波的dB数”。

根据ETSI的要求,杂散功率需使用准峰值检波器在100kHz带宽内进行测量,作为一个平均功率检测器,准峰值检波器对相位噪声也会进行相同的检波。在100kHz测量带宽与密度指标中的1Hz带宽之间增加一个50dB对数比,可以将100kHz带宽内的测量功率提升至-42dBc。如果被测功率限制在-36dBm,MAX7044在434MHz欧洲频段的发送功率可达+6dBm (最大值)。

在868MHz至870MHz频率范围,可用的最宽频带为868.0MHz至868.6MHz。发送器在该频带以外的平均辐射功率不能大于-36dBm。在100kHz带宽内测量带外功率,同在434MHz频率相同,只是带宽由1.74MH变为现在的600kHz,即868MHz时的带宽比434MHz时窄了几乎3倍。此外,434MHz的二次谐波(即868MHz)相位噪声密度随频率呈平方关系增长。这意味着868MHz时的相位噪声密度比434MHz时高6dB。MAX7044发射434MHz载波信号时,相位噪声密度在300kHz带宽下约为-89dBc/Hz,在868MHz时约为-83dBc/Hz。在100kHz带宽内,300kHz的平均功率成为[-83 + (10log10(100kHz))] = -33dBc,这将MAX7044在868MHz时的发射功率限制-3dBm以内。

MAX7044中的振荡器具有相对较高的相位噪声密度,这是由于设计需要将器件中的VCO频率调谐至300MHz至450MHz范围。这一相位噪声密度对于美国260MHz至470MHz免授权频率是可以接受的,因为对载频附近这些频率的杂散辐射要求没有欧洲那么严格。为了在868MHz欧洲频段的发射功率接近+10dBm,MAX7044中的VCO需要更改到更窄的频带,并采用具有更低相位噪声的设计,类似于L-C振荡器。

结论

对匹配网络进行简单的修改,可使434MHz开关放大器的886MHz发射功率高于434MHz发射功率。本文讨论了在MAX7044EVKIT配置868MHz谐振电路和高通L型阻抗变换网络,从而产生+11dBm的868MHz载波发射功率的方法。这种情况下,868MHz载波功率比434MHz基频功率高出近9dB。功率放大器在868MHz时的效率为30%。

为满足美国和欧洲标准对杂散辐射的限制要求,需要进一步对434MHz分量进行抑制。可以通过不同电路结构和模型改善对434MHz分量的抑制性能。对经典的双工器进行改造,将868MHz分量连接至天线,将434MHz分量连接至假负载。

对开关放大器模型中的调谐电路进行修改,得到一个优化的868MHz的匹配网络。修改VCO能够降低相位噪声密度,从而满足ETSI对868MHz频段杂散辐射的限制要求。
下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
© , Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 4929:
应用笔记 4929,AN4929, AN 4929, APP4929, Appnote4929, Appnote 4929