应用笔记 4875

高精度温度测量带动铂电阻温度检测器(PRTD)和Σ-Δ ADC应用

By: Sohail Mirza

摘要 : 高端工业和医学应用需要在整个温度范围提供±1°C至±0.1°C,甚至更高精度的温度测量,并且价格合理、功耗较低。此类应用的测温范围(-200°C至+1750°C)通常需要使用热电偶和铂电阻温度(RT)检测器,即PRTD。

类似文章于2011年8月25日发表在EDN杂志。

引言

工业和医学应用中,如果在-200°C至+800°C温度范围内对温度测量的绝对精度和可重复性要求非常高,最好选择铂电阻温度(RT)检测器,即PRTD。铂元素非常稳定,且不容易腐蚀或氧化。镍、铜及其它金属也可用于RTD,但这些材料的稳定性或可重复性不如铂,所以应用并不普遍。
随着PRTD标准(例如欧洲的IEC 60751和美国的ASTM 1137)的演进,开始允许系统之间互换传感器,只要满足传感器容限和温度系数的要求。基于这些标准,传感器很容易由相同或不同制造商的传感器所替代,对系统稍加修改或校准即可满足额定指标要求。

PRTD基础

三种常见的PRTD包括PT100、PT500和PT1000,0°C下分别呈现100Ω、500Ω和1000Ω阻值。也有成本稍高的大阻值传感器,例如PT10000。PT100曾经非常流行,但目前趋势是使用阻值更高的传感器,以稍高或同等成本提供更高的灵敏度和分辨率。典型代表是PT1000,0°C下的电阻值为1kΩ。
Vishay®、JUMO Process Control等多家厂商可提供标准SMD尺寸(类似于表贴电阻封装)的PRTD,价格通常不到1美元,具体取决于电阻值、尺寸大小和容限。此类器件大幅降低了温度传感器成本,并为设计人员提供在任何印制板(PCB)上PRTD替代产品的灵活性。以下电路采用了比较常见的高性价比PTS1206,是由Vishay Beyschlag提供的1000Ω PRTD¹。PRTD传统测量方法是采用电流源激励,如图1所示²。
图1. PRTD可采用4线(a)、3线(b)或2线(c)接口检测温度。每种设计均向ADC (这里为MAX1403)提供差分信号。
图1. PRTD可采用4线(a)、3线(b)或2线(c)接口检测温度。每种设计均向ADC (这里为MAX1403)提供差分信号。
远端测量且采用不同引线时,图1a所示4线(开尔文连接)架构可以获得最精确的测量结果。这种方法中,电流承载线与测量线完全独立。该配置中,OUT1为PRTD提供200µA电流,OUT2保持浮空。对于RTD没有安装在ADC附近的大多数工业应用,由于每根引线都会增加系统成本,引发可靠性问题,所以更倾向于使用较少的引线。
如果引线相似,图1b所示3线温度检测技术更经济,且读数准确。这也是其得到普遍使用的原因。MAX1403 ADC的两个匹配电流源抵消了引线电阻的IR误差。OUT1和OUT2均源出200µA电流。
图1c所示2线技术最为经济,但只用于已知引线寄生电阻且电阻固定不变的场合。通常利用微处理器或DSP的内部计算对引线的IR误差进行补偿。由于PT1000 PRTD较高的阻值,受引线电阻的影响较小,同时也降低了自身发热产生的误差,所以,即使采用2线配置也能直接连接ADC。
MAX11200 ADC可以采用不同类型的PRTD,表1列出了该ADC的部分重要特性。
表1. MAX11200的主要技术指标
MAX11200 Comments
Sample rate (sps) 10 to 120 The MAX11200's variable oversampling rate can be optimized for low noise, and for -150dB line-noise rejection at 50Hz or 60Hz.
Channels 1 GPIOs allow external multiplexer control for multichannel measurements.
INL (max, ppm) ±10 Provides very good measurement linearity
Offset error (µV) ±1 Provides almost zero offset measurements
Noise-free resolution (bits) 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps Very high dynamic range with low power
VDD (V) AVDD (2.7 to 3.6)
DVDD (1.7 to 3.6)
AVDD and DVDD ranges cover the industry's popular power-supply ranges.
ICC (max, µA) 300 Highest resolution-per-unit power in the industry; ideal for portable applications
GPIOs Allows external device control, including local multiplexer control.
Input range 0 to VREF, ±VREF Wide input ranges
Package 16-pin QSOP, 10-pin µMAX® (15mm²) 10-pin µMAX offers very small size for space-constrained designs.

作为电流激励的替代方案,可以采用高精度电压源激励PRTD。对于较高阻值的PRTD,电压激励更合适,可以利用ADC的电压基准为PRTD提供偏压。PRTD可直接连接到ADC,ADC基准通过一个高精度电阻提供PRTD偏置电流(图2)。ADC即可以高精度比例测量温度。
图2. 该电路采用电压激励,非常适合配合高阻值PRTD工作。
图2. 该电路采用电压激励,非常适合配合高阻值PRTD工作。
假设引线电阻的量级远低于RA和RT,可采用下式计算:
VRTD = VREF × (RT/(RA + RT)) (式1)
式中,RA为限流电阻;RT为t°C时的PRTD电阻;VRTD为PRTD电压;VREF为ADC基准电压。同时:
VRTD = VREF × (AADC/FS) (式2)
式中,AADC为ADC输出编码,FS为ADC的满幅编码(即,对于单端配置的MAX11200,为223-1)。合并式1和2:
RT = RA × (AADC/(FS - AADC)) (式3)
从式3可知,RA必须满足RT指标规定的精度要求。

PRTD选择和误差分析

引线电阻引起的误差

由于PRTD为电阻传感器,它与控制板之间连线的任何电阻都会增大误差,如图3所示。
图3. 2线检测技术中,引线的IR压降会在ADC产生误差。
图3. 2线检测技术中,引线的IR压降会在ADC产生误差。
为了估算2线电路中的误差,将连接线总长与美国线规(AWG)铜线的“电阻/英尺”值相乘,如表2所示。
表2. 线规电阻
Copper Lead Wire (AWG) Ω/Foot (+25°C)
16 0.0041
18 0.0065
20 0.0103
22 0.0161
24 0.0257
26 0.0418
28 0.0649

举例说明,假设采用2根3英尺长的AWG 22导线连接PRTD,引线电阻RW为:
RW = 2 × (3ft.) × (0.0161Ω/ft.) = 0.1Ω (式4)
引线造成的温度读数误差为TWER,其中TWER = RW/S,S为平均PRTD灵敏度。
对于PT100 (PTS 1206,100Ω)器件¹,平均灵敏度S = 0.385Ω/°C,因此:
TWER = RW/0.385 = 0.26°C (式5)
对于PT1000 (PTS 1206,1000Ω)器件¹,平均灵敏度S = 3.85Ω/°C,因此:
TWER = RW/3.85 = 0.026°C (式6)
根据IEC 60751标准,对于 PT1000,TWER = 0.026°C,比CLASS F0.3的±0.30°C容限要求低一个数量级。这意味着PT1000可直接采用3英尺长的2线配置,无需任何引线补偿方法。而PT100,TWER为0.26°C,与±0.30°C容限相当,在大多数高精度应用中,这一误差水平不可接受。从本例可以看出,大阻值PRTD在2线电路中的优势。

PRTD自热引起的误差

PRTD的另一个误差源是激励电流通过RTD元件时,传感器本身产生的热量。激励电流流过RTD电阻,产生测量电压。为了使输出电压高于ADC的电压噪声电平,应保持足够高的激励电流;而激励电流产生的功耗会使温度传感器的温度升高,导致RTD电阻升高,使其高于实测温度下的电阻值。利用制造商数据手册提供的封装热阻,可以计算出RTD功耗引起的温度误差。利用下式计算自热引起的温度误差(TTERR,单位为°C):
TTERR = IEXT² × RT × KTPACK (式7)
式中,IEXT为流过电阻检测元件的激励电流;RT为当前温度T°C下的PRTD电阻;KTPACK为自热误差系数(0.7°C/mW)¹。
图2中的最佳限流电阻RA由式7的TERR和测量系统使用的基准电压(VREF = 3V)确定,表3列出了100Ω PTS 1206和1000Ω PTS 1206的RA
表3. 温度误差计算
VREF KTPACK T°C RT100 RT1000 RA100 RA1000 TERR100 TERR1000 IEXT100 IEXT1000 VRT100 VRT1000
(V) (C/mW) (°C) (Ω) (Ω) (Ω) (Ω) (°C) (°C) (µA) (µA) (mV) (mV)
3 0.7 -55 78.3 783.2 8200 27000 0.015 0.013 362.4 108.0 28.4 84.6
3 0.7 0 100.0 1000.0 8200 27000 0.019 0.016 361.4 107.1 36.1 107.1
3 0.7 20 107.8 1077.9 8200 27000 0.020 0.018 361.1 106.8 38.9 115.2
3 0.7 155 159.2 1591.9 8200 27000 0.029 0.025 358.9 104.9 57.1 167.0

对于100Ω PTS 1206,采用RA = 8.2kΩ;对于1000Ω PTS 120,采用RA = 27.0kΩ。两种情况下,最大温度误差TERR均介于0.025°C和0.029°C之间,比CLASS F0.3的±0.30°C容限低一个数量级。显而易见,平均激励电流IEXT100和IEXT1000在表3所示的温度范围内非常稳定。
从表3还可以看出,RT100和RT1000产品的最大激励电流相差非常大:IEXT1000 = 108µA,IEXT100 = 362.4µA。由于RT1000的激励电流不到RT100电流的三分之一,所以RT1000比RT100更适合低功耗(便携式)仪器。RA电阻应为金属薄膜电阻,精度为±0.1%或更好,额定功率至少1/4W,须具有低温度系数。为确保RA电阻满足设计要求,应选择优秀厂商的产品。

PRTD线性误差

PRTD近似于线性特性,根据温度范围和其它条件的不同,通过计算PRTD电阻在-20°C至+100°C温度范围的变化,进行线性逼近:
R(t) ≈ R(0)(1 + T × a) (式8)
R(t)为t°C下的PRTD电阻;R(0)为0°C下的PRTD电阻;T为PRTD温度,单位为°C;按照IEC 60751标准,常数a为0.00385Ω/Ω/°C (本例中,a = 0.00385Ω/Ω/°C实际上定义为0°C至100°C之间的平均温度系数)¹。
基于式8的PRTD计算如表4所示。
表4. -20°C至+100°C温度范围下的PRTD计算
a Temp RRTD1000 Lin RRTD1000 Nom RA VREF VRTD ADC Code Err
(Ω/Ω/°C) (°C) (Ω) (Ω) (Ω) (V) (V) (LSB) (%)
3.85E-03 -20 923.00 921.60 27000 3 0.0991656 277286 0.15
3.85E-03 -10 961.50 960.90 27000 3 0.1031597 288454 0.06
3.85E-03 0 1000.00 1000.00 27000 3 0.1071429 299592 0.00
3.85E-03 10 1038.50 1039.00 27000 3 0.1111151 310699 -0.05
3.85E-03 20 1077.00 1077.90 27000 3 0.1150764 321776 -0.08
3.85E-03 30 1115.50 1116.70 27000 3 0.1190269 332822 -0.11
3.85E-03 40 1154.00 1155.40 27000 3 0.1229665 343838 -0.12
3.85E-03 50 1192.50 1194.00 27000 3 0.1268955 354824 -0.13
3.85E-03 60 1231.00 1232.40 27000 3 0.1308136 365780 -0.11
3.85E-03 100 1385.00 1385.00 27000 3 0.1463801 409308 0.00

表4中,RRTD1000 Lin栏的数据是根据式8的线性逼近。RRTD1000 Nom按照制造规范EN 60751:2008列出了标称PTS 1206Ω至1000Ω的电阻值;线性误差(Err)列出了规定温度范围的线性误差值,均在±0.15%以内,优于PTS 1206 CLASS F0.3的容限(±0.30°C)。
按照表4,利用MAX11200 ADC (图2)进行实测的结果显示:温度误差仍保持在CLASS F0.3的误差限制以内。对于更宽范围和更高精度的温度测量,PRTD测温标准(EN 60751:2008)定义了铂电阻随温度变化的非线性数学模型,称为Callendar-Van Dusen方程。
在0°C至+859°C温度范围,线性方程需要基于下式中的两个系数:
R(t) = R(0)(1 + A × t + B × t²) (式9)
在-200°C至0°C温度范围:
R(t) = R(0)[1 + A × t + B × t² + (t - 100)C × t³] (式10)
式中,R(t)为t°C下的PRTD电阻;R(0)为0°C下的PRTD电阻;t为PRTD温度,单位为°C。式9和式10中,A、B、C为RTD制造商提供的校准系数,如IEC 60751标准规定:
A = 3.9083 × 10 - 3°C-1
B = - 5.775 × 10 - 7°C-2
C = - 4.183 × 10 - 12°C-4
从式8可以看出,温度超出0°C至+200°C范围时,非线性误差增大(图4,粉色曲线)。利用式9 (蓝色曲线),可以将超低温度下的误差降至可以忽略不计的水平。
图4. PRTD线性误差随温度变化的关系曲线,利用式8 (粉色曲线)和式9 (蓝色曲线)计算得到。
图4. PRTD线性误差随温度变化的关系曲线,利用式8 (粉色曲线)和式9 (蓝色曲线)计算得到。
图5是对图4较窄温度范围曲线的放大。采用式8时,较小温度范围(-20°C至+100°C)内的误差保持在±0.15%以内;采用式9时,这些误差可以忽略不计。在较宽的温度范围(-200°C至+800°C)内进行高精度测量时,需要利用式9、式10进行线性化处理(有关算法在后续文章讨论)。
图5. 图4的放大视图,为两条曲线相交区域。
图5. 图4的放大视图,为两条曲线相交区域。

MAX11200的测试分辨率

MAX11200是一款低功耗、24位、Σ-Δ ADC,适合宽动态范围、高分辨率(无噪声)的低功耗应用。利用这款ADC,可以由下面的式11和式12计算得到图2所示电路的温度分辨率:
RTLSB = (VREF × (TCMAX - TCMIN))/(FS × (VRTMAX - VRTMIN)) (式11)
RTNFR = (VREF × (TCMAX - TCMIN))/(NFR × (VRTMAX - VRTMIN)) (式12)
式中,RTLSB为PRTD 1 LSB的分辨率;RTNFR为PRTD无噪声分辨率(NFR);VREF为基准电压;T°CMAX为最大测量温度;T°CMIN为最小测量温度;VRTMAX为PRTD在最大测量温度下的压降;VRTMIN为PRTD在最小测量温度下的压降;FS为MAX11200采用单端配置时的ADC满量程编码(223-1);NFR为MAX11200采用单端配置时的无噪声分辨率(10sps时为220-1)。
表5列出了利用式11和式12计算的PTS1206-100Ω和PTS1206-1000Ω测量分辨率。
表5. 温度测量分辨率
VREF TC RT100 RT1000 RA (100) RA (1000) RTLSB (100) RTLSB (1000) RTNFR (100) RTNFR (1000)
(V) (°C) (Ω) (Ω) (Ω) (Ω) (°C/LSB) (°C/LSB) (°C/NFR) (°C/NFR)
3 -55 78.32 783.19 8200 27000
3 0 100 1000 8200 27000 0.00317 0.000926 0.021 0.0073
3 20 107.79 1077.9 8200 27000
3 155 159.19 1591.91 8200 27000

表5为-55°C至+155°C温度范围内,°C/LSB误差和°C/NFR误差的计算值。无噪声分辨率(NFR)表示ADC能够区分的最小温度值。如果RTNFR1000为0.007°C/NFR,给定温度范围的分辨率无疑优于0.05°C,远远满足大多数工业、医疗应用要求。
此类应用中,对ADC要求的另一考虑是不同温度点对应的电压水平,如表6所示。最后一行显示PRTD100和PRTD1000的差分输出电压范围。右侧一组公式计算MAX11200 ADC的无噪声分辨率。
表6. 图6中ADC的温度测量范围
TC (°C) VRT (mV) VRT (mV)
PRTD100 PRTD1000
-55 28.4 84.6
0 36.1 107.1
20 38.9 115.2
155 57.1 167.0
210 28.75 82.46
Noise free codes = (VMAX - VMIN)/Input referred noise
Noise free codes = 82.46mV/2.86µVP-P
Noise free codes = 28,822 codes
Temp (accy) = 210°C/28.82K
Temp (accy) = 0.007°C

注意,PRTD应用中输出信号的总范围大约82mV。MAX11200具有极低的输入参考噪声,10sps采样率下570nV,在210°C量程范围可提供0.007°C的无噪声分辨率。
图6. 本文用于测量温度的高精度数据采集系统(DAS)框图。基于MAX11200 ADC (图3)的DAS包括简单校准和线性化处理功能。
图6. 本文用于测量温度的高精度数据采集系统(DAS)框图。基于MAX11200 ADC (图3)的DAS包括简单校准和线性化处理功能。
图6所示,MAX11200的GPIO1引脚设置为输出,控制继电器校准开关,选择固定RCAL电阻或PRTD。这种多功能性提高了系统精度,并减少RA和RT初始值的计算需求。

结论

最近几年,随着PRTD价格的下降、封装尺寸的减小,这类器件已广泛用于高精度温度检测。温度检测系统中,如果ADC和表贴PRTD直接连接,则要求使用低噪声ADC (例如MAX11200)。PRTD和ADC相结合,提供理想用于便携式测试设备的温度测量方案。这一组合具有高性能和高成效。
MAX11200较高的无噪声分辨率、内部缓冲器和GPIO驱动器,可直接连接到高灵敏度PRTD (如PT1000),无需额外的仪表放大器或专用电流源。更少的接线、更低的温度误差进一步降低了系统复杂度和成本,使设计人员能够在长达2米的距离使用2线接口配置。

参考文献
  1. PTS Series - Pt-Sensors from Vishay Beyschlag, https://www.vishay.com/docs/28762/ptsserie.pdf.
  2. Maxim应用笔记3775:“低成本传感器及A/D转换接口的设计考虑”。
下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
© , Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 4875:
应用笔记 4875,AN4875, AN 4875, APP4875, Appnote4875, Appnote 4875