应用笔记 4087

开关电源介绍


摘要 : 开关电源是非常通用的电源架构,设计人员常常面临DC-DC转换器的选型问题。不同电路在进行直流电源转换时具有较大的性能差异,需折中考虑。本文介绍了开关电源的优势和设计考虑,并介绍了它们的基本工作原理和相关理论。

本文还发表于Maxim工程期刊,第61期(PDF,1MB)。

种类繁多的电子产品对直流电压的需求也多种多样,这就需要一个行之有效的方法将标准电源转化成负载所需的电压,这种方法必须通用、高效、可靠。在现代电子产品中,开关电源(SMPS)被普遍用来提供各种不同的直流电源,而且,它对于提高DC-DC电源转换系统的效率和可靠性也是不可或缺的。

为什么选择SMPS?

绝大部分的电气直流负载由标准电源供电。但是,标准电源的电压可能不符合微处理器、电机、LED或其他负载的电压要求,尤其当标准电源本身的输出电压并不稳定时。电池供电设备就是一个最好的例子:标准的Li+电池或镍氢电池的典型电压对于大多数应用而言,不是过高就是过低,或者随着放电过程电压下降的过多。

通用性

幸运的是,SMPS的通用性帮我们解决了这一难题,它将标准电源电压转换成合适的、符合规定的电源电压。SMPS拓扑结构有很多,但可以划分为几种基本的类型,不同类型的转换器可以对输入电压实现升压、降压、反转以及升/降压变换。与线性稳压器只能对输入电压进行降压不同的是,可以选择不同拓扑的SMPS来满足任何输出电压的需求,这也正是SMPS极具吸引力的原因。

可定制

另外,先进的SMPS IC的设计提供了不同的集成度,将经过裁剪的标准SMPS电路集成到单片IC,允许设计人员在不同规模的拓扑中进行选择。由此减轻厂商对通用电源或特殊应用电源的设计负担,并可根据项目需要为工程师提供定制的SMPS IC,从而进一步提高了这类器件的灵活多用性。

效率

工程师经常面临的一个问题是:如何高效的转换DC电源。例如,如何将输入电压降压转换为一个更低的输出电压。比较简单的方案是使用线性稳压器,毕竟,这一方案仅需几个外部的电容和适当的热管理。但是,方案简单所带来的一个结果是效率低下—当输入-输出压差较大时,效率往往低得让人无法接受。

线性稳压器的效率直接与其调整管所消耗的功率有关。调整管的功耗等于ILDO × (VIN - VOUT),由此可见,有些情况下调整管会产生较大损耗。例如,负载为100mA时,将3.6V的电池电压降至1.8V输出,线性稳压器的功耗为0.18W。效率将低于50%,电池的工作时间也将缩减50% (按照理想情况估算)。

线性稳压器的低效率迫使工程师寻求新的改进方案,正是在这一背景下,开关电源引起人们的关注。根据SMPS的工作原理,在不同负载和电压下,一个设计良好的SMPS效率可达90%甚至更高。上述例子中,如果使用图1所示的降压型SMPS代替线性稳压器,效率可达到90%。这相比线性稳压器,效率提高了40%。通过直观的比较,降压SMPS的优势便体现出来了,其他的SMPS拓扑结构同样具有相近或是更高的效率。

图1. MAX8640Y采用简单的降压型SMPS电路
图1. MAX8640Y采用简单的降压型SMPS电路

SMPS设计不仅仅具有高效率这一主要优势,由于功耗的降低还带来许多直接的好处。例如,与低效率的竞争产品相比,SMPS的散热片面积大大减小。降低了对热管理的要求;而且更重要的是,由于器件不会工作在低效的高温环境中,大大提高了器件的可靠性,进而延长工作寿命。

SMPS拓扑及转换原理

如上所述,根据电路拓扑的不同,SMPS可以将直流输入电压转换成不同的直流输出电压。实际应用中存在多种拓扑结构,比较常见有三种基本类型,按照功能划分为(参见图2):降压(buck)、升压(boost)、升/降压(buck-boost或反转)。下面还将讨论图2中所画出的电感充电/放电通道。

图2. 基本的SMPS拓扑:buck、boost和buck/boost
图2. 基本的SMPS拓扑:buck、boost和buck/boost

三种拓扑都包括MOSFET开关、二极管、输出电容和电感。MOSFET是拓扑中的有源受控元件,与控制器(图中没给出)连接,控制器输出脉宽调制(PWM)方波信号驱动MOSFET栅极,控制器件的关断或导通。为使输出电压保持稳定,控制器检测SMPS输出电压,并改变方波信号的占空比(D),即MOSFET在每个开关周期(TS)导通时间。D是方波导通时间和周期的比值(TON/TS),直接影响SMPS的输出电压。两者之间的关系在等式4和等式5给出。

MOSFET的导通和关断状态将SMPS电路分为两个阶段:充电阶段和放电阶段,分别表示电感中的能量传递状态(参见图2的环路)。充电期间电感所储存的能量,在放电期间传递给输出负载和电容。电感充电期间,输出电容为负载供电,维持输出电压稳定。根据拓扑结构不同,能量在电路元件中循环传递,使输出电压维持在适当的值。

在每个开关周期,电感是电源到负载能量传输的核心。如果没有电感,MOSFET切换时,SMPS将无法正常工作。电感(L)中所储存的能量(E)取决于电感电流值(I):

等式1

因此,电感中能量的变化可通过电流的变化量(ΔIL)来衡量,取决于规定的时间(ΔT)内电感两端电压的变化量(VL):

等式2

在每个开关周期中(图3),电感两端的电压恒定,因此电感中的电流变化(ΔIL)是线性的。根据基尔霍夫电压环路定律,可以得到开关过程中电感两端电压,注意极性以及VIN/VOUT的关系。例如,升压转换器的放电期间,电感两端电压为-(VOUT - VIN)。因为VOUT > VIN,所以电感两端电压为负。

图3. 稳态时电感的电压、电流特性
图3. 稳态时电感的电压、电流特性

充电期间,MOSFET导通,二极管反向偏置,能量从电源传递给电感(图2)。由于电感两端电压(VL)为正,电感电流将逐渐上升。同时,输出电容将前一个周期存储的能量传递给负载,以保持输出电压的恒定。放电期间,MOSFET关断,二极管正向偏置并导通。由于此时电源不再对电感充电,电感两端电压极性反转,并且将能量释放给负载,同时补充输出电容的储能(图2)。放电时,电感电流逐渐下降,放电电流如上述关系式所示。

充电/放电周期循环,并保持一个稳定的开关状态。在电路建立稳态的过程中,电感电流逐渐达到其稳定值,该电流是直流电流和电路在两个阶段切换时所产生的交流电流(或电感纹波电流)之和(图3)。直流电流的大小与输出电流成正比,也取决于电感在SMPS拓扑中的位置。

纹波电流需要经过SMPS滤波,以获得真正的直流输出。滤波由输出电容完成,它对于交流信号呈现较低的阻抗。不需要的输出纹波电流通过输出电容旁路,并且当电流对地放电时保持电容电荷恒定。因此,输出电容还起到稳定输出电压的作用。实际应用中,输出电容的等效串联电阻(ESR)产生的输出电压纹波与电容的纹波电流成正比。

由此可见,能量在电源、电感和输出电容间传递,保持输出电压恒定,为负载供电。那么,通过SMPS间的能量传递如何确定输出电压和输入/输出电压转换比? 如果能够理解电路作用一个周期性波形的稳态过程,便可以很容易的计算出这些数值。

稳态期间,有一个变量在重复周期TS的开始阶段与结束阶段相等。对于电感而言,如上所述,其电流周期性的充电与放电,因此其电流在PWM周期的开始阶段应该与结束阶段相等。这意味着,电感电流在充电过程的变化量(ΔICHARGE)应等于在放电过程的变化量(ΔIDISCHARGE)。建立充电和放电期间电感电流变化的等式,可得到下面的表达式,也称作电压第二定律:

等式3

简而言之,在不同的工作周期,电感电压和时间的乘积相等。因此,从图2的SMPS电路中,我们可以很容易的得到稳态时的电压和电流转换比。对于降压电路,根据充电电路的基尔霍夫电压环路可得到电感两端的电压为(VIN - VOUT)。同理,放电过程中电路电感两端的电压为-VOUT。根据等式3中的电压第二定律,可得出电压的转换比为:

等式4

同时,在理想的情况下,输入功率(PIN)与输出功率(POUT)相等。因此,可得出电流转换比为:

等式5

从这一系列等式可以看出,降压转换器的输出相比VIN增大了D倍,而输入电流则比负载电流大D倍。表1列举了图2中所示拓扑结构的转换比。有些复杂的拓扑结构可能难以分析,但是利用这个方法解等式3和5可得到全部SMPS的转换比。

表1. SMPS转换比
Topology Voltage-Conversion Ratio Current-Conversion Ratio
Step-down VOUT/VIN = D IIN/IOUT = D
Step-up VOUT/VIN = 1/(1 - D) IIN/IOUT = 1/(1 - D)
Step-up/down VOUT/VIN = D/(1 - D) IIN/IOUT = D/(1 - D)

SMPS的缺点和折中

当然, SMPS的高效率并不是没有任何代价的。开关模式转换器最常被提及的问题是其引入的电磁干扰(EMI)和传导噪声。电磁辐射的产生源于SMPS电路中电流、电压开关波形的快速瞬变。电感节点电压的快速变化将产生电场辐射,而充/放电环路电流的快速切换将产生磁场辐射。另一方面,当SMPS的输入/输出电容以及PCB寄生对开关电流呈高阻抗时,输入、输出电路间将产生传导噪声。值得庆幸的是,良好的器件布局和PCB布线可以大大降低EMI和传导噪声。

SMPS可以非常复杂,并且需要额外的外部元件,这将提高电源的整体成本。幸运的是,很多SMPS IC厂商提供了有关资料,不仅为用户介绍器件的工作原理,还给出了正确选择的外部元件的详细说明。同时,新一代的SMPS IC具有更高的集成度,大大减少了所需的外部元件数。

即使存在着各种缺点,SMPS仍然大量应用于多种场合。因为可以通过设计克服SMPS的缺点,而采用SMPS所得到的高效率和灵活性是很多应用所迫切需要的。