应用笔记 1946

用基于MAX4454的I/Q发生器测试RF正交调制器


摘要 : 本篇应用笔记介绍了一个简单、低成本的正弦-余弦发生器,用于测试正交调制器。本文提供其设计和性能资料,也提供了根据读者特定需求定制该发生器的方法。

更多信息:

引言

评估正交调制器时,为准确验证调制器需要在基带输入端施加两路正交的正弦信号。利用正交调谐信号、并对RF输出频谱进行测试,可以得到以下参数:载波抑制、旁带抑制、增益控制范围以及整个频带内的增益平坦度。另外,不需要复数调制实验室发生器也可以有效调试完整的发射系统。一旦系统经过调试、并经过验证可以运行,可使用高端设备和试验作进一步评估。

采用同相和正交(I/Q)输入的测试系统需要两路相位差为90°的调谐波,或“正弦-余弦”信号。适当连接两个实验室发生器(通过外部参考等)是获得成功的关键,具体操作时可能很困难,在某种情况下甚至难以实现。

图1所示是产生一对正弦-余弦波的实用方法。这种方法采用阻容(RC)电桥,并用一路正弦波进行驱动。得到的两路信号(正弦和余弦)分别加载到两个单位增益运算放大器(单个MAX4454)进行缓冲,通过50Ω端口接入。原始的正弦信号可以用一个廉价的函数发生器产生,用普通元件从草图入手到实现完整的解决方案只需要一个下午。在这种应用中,MAX4454具有卓越的特性:200MHz GBW (增益带宽积)、低噪声、超低IMD (交调失真),而且是单位增益稳定。

图1.
图1.

实现:选择电桥元件

RC低通部分在-3dB截止频率处提供-45°滞后相位,而RC高通部分提供+45°超前相位。于是,选择相同的电阻和电容,电桥将提供两路相位差恰好90°的输出,每一路都比输入正弦低3dB。当然,这种电路受频率变化的影响,而且电桥元件必须尽可能保持一致,否则输出调谐波将不匹配。同样,需要选择合适的电阻电容值,使待测无线装置获得适当的转角频率。用以下公式设计该电桥:
Fcorner = 1/2πRC
首先,为无线装置确定最佳的基带输入频率(通常是发射I/Q带宽的中心频率)。然后,选择大于100pF的电容,使电路板的寄生参数不会主导电桥平衡。一旦确定这些变量,接下来只需求解电阻值即可。值得注意的是,MAX4454作为视频运放有很强的驱动能力(例如,向50Ω负载输出几VP-P的100MHz信号),因此为减小放大器失真,电阻R最好(建议)大于~100Ω。表1给出了两个电桥的范例,这两个范例已被实际制作,并被成功地用来测试发射装置。

表1. 电桥元件
Corner Frequency
R1 (Ω)
C1 (pf)
408.09kHz
3.9K
100
4.38MHz
336
100

当制作实际电路时,要牢记最重要的一点:电桥必须平衡。不仅每个电阻要经过测量,每个电容必须从“已知容值”的一批电容中挑选出来,而且所有信号路径(或导线)必须尽可能采用相等的长度。如果这个问题被忽略,将会危及整个电路。下面的照片(图2)是408kHz转角频率的电路组件。请注意照片上等距布置的SMA连接器,以及它们与电桥和运放的相对位置。

图2.
图2.

性能验证

表1中第一行的电路参数最初是为获得408.09kHz正弦-余弦输出选择的。样机按照图3所示的方案安装并测试。

图3.
图3.

I/Q发生器的相位和幅值平衡可以用实验室发生器上变频进行测试,该实验室发生器内部的正交调制器提供-65dBc边带(图像)抑制,这项指标对绝大多数系统而言都是非常优秀的。因此,在输出端观察到的任何不平衡都是由待测I/Q发生器电路引起的。

当用频谱分析仪观察所得到的RF信号时,调节输入信号频率直到载波和边带抑制达到最佳,电桥的转角频率就是这样确定的。408.65kHz下最大的边带抑制为-46dBc。另一点要注意的是,由于我们在I和Q输出端加了隔直电容,测试电路不会给调制器带来DC偏置,因此不会降低载波抑制比。


相关型号
MAX4454 免费样品
下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
© , Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 1946:
应用笔记 1946,AN1946, AN 1946, APP1946, Appnote1946, Appnote 1946